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Abstract: With the rapid development of science and technology, the loss of biodiversity and the 
degradation of ecosystems are becoming increasingly important for human survival and development. 
This article adopts the theory of dynamic transition to investigate the spatial dynamics characteristics 
of the Lotka-Volterra competitive model with diffusion terms. It determines the new solution 
expressions for the system transitioning from zero to nonzero solutions and utilizes spectral theory of 
linear fully continuous fields to demonstrate continuous transitions occurring when the bifurcation 
parameter exceeds the stability threshold of the system. Finally, the theoretical findings are validated 
using finite difference method. The research results obtained in this paper have certain theoretical 
significance and application value, which can be applied in many practical aspects, providing a strong 
theoretical basis for the protection of ecological stability and diversity. 

Keywords: Lotka-Volterra model in biological competition; dynamical transition theory; PES 
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1. Introduction 

The rapid development of China's economy and agriculture is accompanied by an accelerating 
global rate of species extinction due to anthropogenic factors. The loss of biodiversity and degradation 
of ecosystems pose significant threats to human survival and development. Effectively addressing this 
global biodiversity and ecosystem crisis has become an inevitable trend. Consequently, research on 
population dynamics and the dynamic transitions of population systems has emerged as an imperative 
factor. 

In 1979, in order to study the spatial distribution of two competing species under intra- and 
interpopulation reproduction pressure, biologists Shigesada, Kawasaki, and Teramoto firstly proposed 
the S-K-T model of biological competition, abbreviated as S-K-T model. What they proposed in 
literature[14] is the following S-K-T model with cross-diffusion and self-diffusion terms, which can be 
expressed as follows. 
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( ) ( )
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In the above system of equations, Δ  is the Laplace operator, u  and v  is the population density 

of two competing biological species, ( )Ω 1n n⊆ ≥  is a bounded smooth region, represents the areas 

where both species live. ( ), , , 1, 2i i i ia b c d i =  are all positive constants, and 1 2,d d  denote the 

stochastic dispersal rates of u  and v  respectively, 1 2,a a  denote the intrinsic growth rates of 

species u  and v  respectively, 1 2,b c  denote the number of intra-population competitions for species 
u  and v  respectively, 1 2,c b  denote the coefficients of competition between the two populations of 

species u  and v  respectively, 11 22,ρ ρ  denote the rate of self-expansion within the populations of 



Academic Journal of Mathematical Sciences 
ISSN 2616-5805 Vol. 5, Issue 1: 70-80, DOI: 10.25236/AJMS.2024.050111 

Published by Francis Academic Press, UK 
-71- 

two species respectively. 12 21,ρ ρ  denote the cross-dispersal rates of species u  and v , which 
represent the reproductive pressure between the two species. The habitat Ω  is a bounded smooth 
region in n , and is the unit outward normal vector to its smooth boundary Ω∂ . 

When the cases without self-diffusion and cross-diffusion terms are not taken into account, 
11 22 12 21 0ρ ρ ρ ρ= = = = , and considering Neumann boundary conditions, homogeneous Neumann 

boundary conditions represent no exchange between species and the external environment at the 
boundary of the region Ω , then the system 1 degenerates into the classical Lotka-Volterra competition 
model. 
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Δ , Ω, 0

0, Ω, 0
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u d u u a b u c v x t
v d v v a b u c v x t

u v x t
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= + − − ∈ >
 = + − − ∈ >

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Where v  is the out-of-unit normal vector. 

The model 2 was initially independently proposed by American population biologist Lotka in 1921 
in his study of chemical reaction systems and by Italian mathematician Volterra in 1923 when 
considering competition among marine fish species. After the 1970s, this model gained widespread 
attention. Kan-on proved in[3] that the Lotka-Volterra system has no non-constant number of positive 
steady state solutions under Neumann boundary conditions, and every non-negative solution tends to a 
constant steady-state solution. However, this conclusion does not hold under "strong competition" 
conditions. Furthermore, the paper[4] studied the existence of steady-state solutions when the region is 
convex and proved that under "strong competition" conditions, there are no stable non-constant positive 
steady-state solutions. Sharp criteria for diffusion and extinction were also obtained. More research 
results on the Lotka-Volterra competition model can be found in[2,15,17] and their references. 

It is worth mentioning that this model is not only significant in ecological diversity but also finds 
numerous applications in population control, population dynamics, infectious diseases, chemistry, and 
other fields. In order to further explore the dynamics of the model after incorporating spatial factors, 
this paper investigates the dynamic characteristics of the Lotka-Volterra system with and without 
diffusion terms at zero and nonzero solutions based on dynamic transition theory. The aim is to obtain 
the PES conditions for transitions occurring in the system, as well as the expressions of the new 
solutions and the types of the jumps. Unlike most of the previous research methods, the main technique 
in this paper is the dynamical transition theory proposed by Ma and Wang[9,12].The core idea of this 
theory is to identify all transition (bifurcation) states, which can further analyze the spatial dynamics 
between populations, thus providing a theoretical foundation for research on biodiversity control. 

It is worth mentioning that steady-state bifurcation theory and dynamic transition theory have been 
widely applied to many intriguing mathematical and physical problems[1,6,7,8,10,11]. To enrich the scope 
of our work and enhance its practical value, we further investigated the threshold conditions for 
transitions occurring in the system. In addition to theoretical analysis, some numerical simulations have 
also played a crucial role in supporting our theory[5,13,16]. Therefore, to enhance the rigor of the article, 
we also conducted numerical simulations for the system under nonzero solution conditions. 

The structure of the article is as follows. Section 3 explores the dynamic transition of the 
Lotka-Volterra model with Laplacian terms, calculating the PES conditions for transitions occurring at 
zero and nonzero solutions, determining the thresholds for local stability of the system at non-negative 
equilibrium points, and demonstrating the occurrence of continuous transitions when the bifurcation 
parameter exceeds the threshold. Section 4 is dedicated to illustrating the aforementioned theory 
through numerical simulations. 

2. The dynamic transition of the system with two diffusion terms 

When the system contains two Laplacian terms, i.e., 0ijρ =  for , 1, 2i j = , the system 1 can be 
transformed into the following equation system 
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We investigate the equation (3) under the following initial and boundary value conditions. 

( ) ( )0 0
0 0

Ω Ω
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= − = −
= =                      (4) 

2.1 The case at the zero solution of the system 

Mathematical manipulation: Let ( , )Tu vω = , the equation can be transformed into 

d L G
dt λ
ω ω ω= +

 
Where the linear part is given by 
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Discretize the Laplace term into a sequence 
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Then the Jacobi matrix of the system is 
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=  −                             (5) 

Noting that the eigenvalue of the Jacobi matrix A  of system is ( )1,2i iβ = , its eigenvalue is next 
calculated by the eigenequation. 

1 1

2 2

0
0

k
k

k

a d
I M

a d
β ρ

β
β ρ

− +
− =

− +  
The eigenvalues are calculated as 

1 1 1 2 2 2,k ka d a dβ ρ β ρ= − = −                             (6) 

Since 1β  and 2β  are both parameter-dependent and can change signs, there isn't a definite 
negative eigenvalue. Therefore we conclude that the zero solution is unstable and the PES condition is 
not satisfied in this case. 
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2.2 The case at the non-zero solution of the system 

Let 
*
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′  
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Substituting it into the system (3), for simplicity, omit the derivative symbols, and we can obtain 
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Mathematical treatment: Let ( , )Tu vω = , the equation can be transformed into 
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The nonlinear part is 
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The eigenvalues of the Jacobian matrix A  for system (3) are denoted as ( )1,2i iβ = . Then we 
calculate these eigenvalues using the characteristic equation. 
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The characteristic equation is given by 
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The discriminant of the characteristic equation is given by 
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The equation has two roots 
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The linear characteristic equation of system (3) is given by 
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Then, we have 
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and thus the eigenvectors kie  corresponding to ( )1,2ki iβ =  from the characteristic equation 
(3.2.4) can be expressed as 
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Now let's discuss the signs of the two eigenvalues. 

Since 1 0kβ < , let's now discuss the sign of 2kβ . Let 
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Then the PES condition for system (5) is given by 
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2.3 Main results 

Theorem 2 If the PES condition (13) holds, then the system (3) satisfies the following conclusions: 

(1) When cλ λ< , the equilibrium state ( )0,0ω =  of the system is asymptotically stable. 

(2) When cλ λ> , the equilibrium state ( )0,0ω =  of the system loses stability. 

(3) When cλ λ> , the system bifurcates into two singular points at ( )0,0ω =  : 
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Proof: We divided the proof into the following three steps. 

Step 1: Spatial decomposition 

The spaces H  and 1H  can be decomposed as 
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Furthermore, in the space 1E , equation can be approximated as 
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Step 2: Center flow approximation 

Through calculation, 
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So under this condition, we need to consider the influence of the central manifold reduction 
function 
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In the vicinity of cλ , an approximate expression for the central manifold function can be obtained 
as follows 
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Then the central manifold approximation function can be expressed simplistically as 
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It can be concluded that 
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Given conditions that 
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After calculation, the last term in the reduced equation 15 is 
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Then 
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Joining 19 and 15, the following approximate equations are obtained. 
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Step 3: Divergence analysis 

By solving the equations, we can obtain that when cλ λ> , the system bifurcates into two singular 

points at ( )0,0ω = , and the solutions bifurcated are 

( ) ( )1
11 1 .k

kx o
β
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= ± +

 
Given that the bifurcation and its local topological structure of equation 7 are determined by the 

reduced equation (3.3.7), we have 
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β β
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±
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It is a bifurcation solution of equation 7, and the stability of the bifurcation solution 11ω±

is the same 

as that of 11x±

. 
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3. Numerical simulation 

In this section, we primarily employ numerical simulation methods to conduct a straightforward 
simulation of the system, aiming to intuitively visualise the type of phase transition and the structure of 
the system. Previously, when discussing the model, we divided it into cases with and without diffusion 
terms for discussion. Within the discussions of both cases, we further examined situations at zero and 
nonzero solutions. Next, we will also conduct a simple simulation of the system's behavior at nonzero 
solutions without the influence of diffusion terms and the phase diagram of a system with two 
Laplacian terms. 

First, we choose 1 1d = , 2 1d = , 1 1a = , 2 1a = , 1 0.1b = , 2 0.07b = , 1 0.08c = , 2 0.1c = ,
( ) ( )0, 0, 0.1u x v x= = , 0.07λ = , 0.4432697cλ = . In this case, cλ λ< . We simulate the situation of 

the system with two Laplacian terms at nonzero solutions, and the results are as follows. 

 
Figure 1: Figure of population u  when the control parameter is set to 0.07 (left) 

Figure 2: Top view corresponding to Figure 3 (right) 

 
Figure 3: Figure of population v  when the control parameter is set to 0.07 (left)    

Figure 4: Top view corresponding to Figure 5 (right) 

Figure 1 shows the changes in the spatial distribution of population u, and Figure 2 shows the 
changes of population u at different locations over time, Figure 3 shows the changes in the spatial 
distribution of population v, and Figure 4 shows the changes of population v at different locations over 

time. As discussed in the previous calculation, when the system is at a nonzero solution ( )D u v⋅  and 
0 cλ λ< < , the system is stable. Now, after simulating the phase diagram, both populations stably 
coexist in the graph, satisfying the PES conditions, consistent with the conclusion drawn in our 
discussion. 

Next, we choose 1 1d = , 2 1d = , 1 15a =  , 2 10a = , 1 0.1b =  , 2 9b =  , 1 10c =  , 2 0.2c =  ,
( ) ( )0, 0, 0.1u x v x= =  , 6.9549cλ = . In this case, cλ λ> . We simulate the situation of the system 

with two Laplacian terms at nonzero solutions. 
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Figure 5: Figure of population u  when the control parameter is set to 9 (left) 

Figure 6: Top view corresponding to Figure 7 (right) 

 
Figure 7: Figure of population v  when the control parameter is set to 9 (left) 

Figure 8: Top view corresponding to Figure 9 (right) 

Figure 5 shows the changes in the spatial distribution of population u, and Figure 6 shows the 
changes of population u at different locations over time, Figure 7 shows the changes in the spatial 
distribution of population v, and Figure 8 shows the changes of population v at different locations over 

time. As discussed in the previous calculation, when the system is at a nonzero solution ( )D u v′  and 
0 cλ λ , the system loses stability. Now, after simulating the phase diagram, it is observed that the 
PES conditions are not satisfied. The two populations do not coexist at non-negative solutions, 
indicating a transition, consistent with the conclusion drawn in our discussion. 

From the figures above, when the system is at nonzero solution ( )* *,D u v
, and cλ λ> 、

( ) ( ) ( )0, 0, 2sinu x v x xπ= = , system stability is the same as the situation when ( ) ( )0, 0, 0u x v x= = , 
failing to satisfy the PES Conditions. The two populations do not coexist at nonnegative solutions; a 
transition occurs, consistent with the conclusion reached in the course of our discussions. All the 
numerical simulations above confirm the conclusions drawn in our paper. 

4. Conclusion 

Based on the theory of dynamic transition and considering spatial factors, this paper conducts a 
dynamic analysis of the Lotka-Volterra model with and without diffusion terms. We obtain the PES 
conditions and stability thresholds at both zero and nonzero solutions of the system. Furthermore, we 
demonstrate that the system undergoes continuous transitions when the bifurcation parameter exceeds 
the stability threshold. Finally, we validate our theory through numerical simulations using the finite 
difference method. The results of this study can be applied in fields such as biodiversity. In future work, 
we plan to conduct further analysis, such as considering the impact of factors like time delay. 
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