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Abstract: In edge computing environments, device resources are often highly restricted. To cope with
increasingly complex deep learning tasks, decomposing monolithic models into multiple collaborative
microservice containers has become an effective approach to break through computing power
bottlenecks. However, existing container orchestration solutions (e.g., K3s, KubeEdge) suffer from
excessive control plane overhead, redundant network protocol stacks, and a lack of fine-grained flow
control on the edge. Furthermore, the NAND Flash storage media widely used in edge devices face
serious risks of write amplification and wear. Addressing these challenges, this paper proposes SlotFlow,
a lightweight orchestration architecture based on In-Memory File-Slots. The core idea of SlotFlow is to
utilize the host's tmpfs as a zero-copy communication bus, achieving microsecond-level synchronization
through atomic file operations. Additionally, it introduces a backpressure mechanism based on queueing
theory and control theory to effectively prevent memory overflows. Experimental results demonstrate
that SlotFlow’s communication performance on a single node approaches that of Unix Domain Sockets,
reducing latency by approximately 84% compared to traditional TCP loopback. Theoretically, it reduces
physical Flash writes to zero. In overload scenarios, SlotFlow's backpressure mechanism reduces task
queue backlog by approximately 73% and extends the system's crash-free runtime by 2.5 times compared
to the control group, achieving highly robust dynamic task orchestration.
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1. Introduction

With the deep integration of the Internet of Things (IoT) and Artificial Intelligence (AI), Edge
Intelligence (Edge Al) is rapidly moving from concept to implementation. In scenarios such as
autonomous driving, industrial quality inspection, and smart security, a single deep learning model often
fails to meet complex business demands. Decomposing complex monolithic applications into multiple
heterogeneous containers (e.g., one container for video decoding, one for object detection, and another
for logical decision-making) for collaborative inference has gradually become a mainstream practice to
improve resource utilization, as demonstrated by the multimodal Edge Al framework proposed by Pan
et al. [, Research by Li et al. also indicates that fine-grained model partitioning can effectively enhance
inference efficiency in heterogeneous edge networks 21,

However, directly migrating "Cloud Native" orchestration concepts to edge devices (such as
Raspberry Pi, NVIDIA Jetson) faces serious "compatibility issues" (or context mismatch):

First, Orchestration Overhead and Communication Bottlenecks. Traditional Kubernetes (K8s) and its
lightweight versions (e.g., K3s) rely on complex control plane components (API Server, etcd, Kubelet).
Comparative analysis by Yakubov et al. points out that these components consume substantial CPU and
memory resources on resource-constrained devices, leading to an inversion phenomenon where "the
system consumes more resources than the application" ). Furthermore, studies by Algaisi et al. [ and
Gupta et al. ! quantify the performance loss caused by Container Network Interfaces (CNI), noting that
communication mechanisms based on Bridge or Overlay networks introduce non-negligible serialization
and kernel protocol stack overheads when handling high-frequency real-time tasks.

Second, Storage Lifespan and Reliability Crisis. Most edge devices use NAND Flash (e.g., SD cards
or eMMC) as primary storage. These media have limited Program/Erase (P/E) cycles. Existing
orchestration systems and application logs tend to perform frequent disk writes, leading to severe Write
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Amplification effects. Oh et al., in their work on the MiDAS system, pointed out that log-structured file
systems significantly accelerate hardware aging when processing small block writes [, which may cause
edge devices to become paralyzed due to storage failure during long-term unattended operation.

Third, Lack of Flow Control Mechanisms. In heterogeneous computing environments, the processing
speeds of upstream and downstream tasks are often mismatched. The lack of effective backpressure
mechanisms leads to indefinite data accumulation in buffers, eventually triggering Out of Memory (OOM)
errors. Ekane et al., in the DiSC system, emphasized that without cross-layer backpressure feedback,
excess load generated upstream can cause a collapse in overall system throughput [7l. Although data
center networks have mature flow control algorithms, inter-container communication at the edge often
lacks this application-layer adaptive protection.

To address these challenges, this paper proposes SlotFlow. Unlike traditional solutions dependent on
network protocol stacks, SlotFlow returns to the UNIX design philosophy of "everything is a file,"
constructing a communication plane that resides entirely In-Memory. By combining the zero-physical
I/O characteristics of tmpfs with a metadata-driven dynamic routing protocol, SlotFlow ensures
microsecond-level communication latency while completely solving the Flash wear problem.

2. Related Work
2.1. Limitations of Edge Container Orchestration

Currently, lightweight K8s distributions represented by KubeEdge, MicroK8s, and K3s dominate the
edge orchestration market. However, recent research by Yakubov and Histbacka P points out that even
after deep pruning, the idle memory footprint of K3s can still reach hundreds of megabytes, which is a
heavy burden for edge devices with only 2GB or 4GB of memory. Alqaisi et al. ! further analyzed the
performance of computer vision applications in edge containers and found that the network virtualization
layer is a major source of latency. Characterization analysis by Gupta et al. [*! also confirmed that the /O
overhead brought by containerization is particularly significant when handling small-packet, high-
frequency communication. In contrast, SlotFlow abandons the general container network abstraction and
focuses on high-performance in-memory collaboration within a single node, aiming to eliminate these
unnecessary intermediate layer overheads.

2.2. Edge Deployment of Deep Learning Models

To run large models on the edge, researchers have proposed various strategies. Li et al. 2 explored
fine-grained Model Partitioning techniques, dynamically allocating DNN layers to different computing
units to optimize latency. Matsubara et al. ¥ surveyed "Split Computing”" and "Early Exiting"
mechanisms, emphasizing that communication efficiency after task segmentation is the system
bottleneck. SlotFlow is designed specifically to provide underlying communication support for such
frequent interactions following fine-grained segmentation, ensuring that computational gains are not
offset by communication overheads.

2.3. Flow Control and Backpressure

In distributed systems, backpressure is key to preventing overload. Ekane et al. 7], in the DiSC project,
demonstrated the importance of propagating backpressure in multi-tier applications, noting that static
queue management often fails under highly dynamic loads. Traditional Socket communication relies on
the TCP sliding window for flow control, but in single-machine container scenarios, the TCP stack is too
heavy and agnostic to application-layer semantics. SlotFlow draws on control theory ideas to design a
lightweight backpressure mechanism based on shared memory atomic counters, filling this gap.

3. System Architecture

SlotFlow adopts a "Host-Container" two-layer monitoring model. The key to the architecture is
placing all task slots (Slots), state files, and intermediate feature tensors entirely within the in-memory
file system (tmpfs).
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3.1. Physical Layer: Memory as the Bus

SlotFlow directly uses /dev/shm or a mounted tmpfs volume as a shared bus. Research by Oh et al.
[6] indicates that eliminating unnecessary physical Flash writes is crucial for extending device life. To
this end, SlotFlow mandates the use of the noswap option during mounting, ensuring data remains 100%
resident in physical memory. This prevents the kernel from swapping pages to disk under memory
pressure, thereby completely avoiding disk I/O bottlenecks and media wear. The overall system
architecture of SlotFlow is shown in Figure 1, which displays the host's shared memory bus (tmpfs) and
multiple containers communicating via File Slots, with the Control Layer (Slot Manager) responsible for
monitoring slot status and dynamic routing.

Control Layer Physical Layer Compute Layer
In-memory Filesystem
(tmpfs + noswap)
e Container A
Slot Manager 0x00 < (Producer)
|Backpressure| .slot
Controller Atomic Counter|
(N pending) -proc
Watchdog OxFF
| Container B
-siot "l(Consumer)
.proc x

Figure 1: SlotFlow Overall System Architecture
3.2. Communication Protocol: Atomic File Slots

To ensure concurrency safety in a lock-free environment, we designed a three-phase protocol
(Publish-Acquire-Commit) based on POSIX atomic file operations:

Publish: The upstream container first writes data into a .tmp temporary file, then atomically renames
it to a .slot file using os.rename.

Acquire: The downstream container listens for directory events via inotify. Once a new .slot file is
detected, it is atomically renamed to a .proc-{PID}-{timestamp} file. This is equivalent to acquiring a
mutex lock with a lease.

Commit: After processing, the downstream container writes the result back to the file (or next stage),
deletes the .proc file, and releases the slot.

The system supports dynamic adjustment of the number of task slots. The Slot Manager optimizes
parallelism by adding or merging slot directories based on queue depth and container load. The routing
strategy is implemented based on metadata files (e.g., route.json), which can direct .slot files to different
consumer containers based on task type (e.g., image classification or object detection). The timing
diagram of its communication protocol is shown in Figure 2, illustrating the entire process from
publishing to commitment, as well as possible timeout rollback paths.
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Figure 2: Communication Protocol Timing Diagram
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3.3. Dynamic Routing Strategy Example

SlotFlow supports dynamic routing based on JSON metadata. The following is a typical routing
configuration example:

JSON
json
{

"task type": "object detection",

n.n

"model_version": "yolov5s",

"target container": "detector container",
"priority": "high",

"timeout_ms": 100,

"fallback target": "detector backup"

}

The routing decision adopts a "Shortest Queue First" strategy: The Slot Manager monitors the task
queue length of each consumer container in real-time and dynamically assigns new tasks to the container
with the shortest queue, thereby achieving load balancing.

3.4. Dynamic Routing Strategy Example

Addressing the issue of "tasks getting stuck due to consumer failure," SlotFlow includes a built-in
Watchdog (Janitor) based on file leases. The Slot Manager periodically scans all .proc files; if the
modification time exceeds a threshold (e.g., 5 seconds), it determines that the container has zombie-died
and rolls back the task or moves it to a dead-letter queue.

4. Theoretical Modeling and Analysis

To thoroughly demonstrate SlotFlow's performance advantages and stability, this section performs
mathematical modeling from the dimensions of queueing theory and control theory.

4.1. Latency Analysis Based on Queueing Theory

We model the inference pipeline of an edge node as an M /M /1 queueing system. Assuming task
arrival follows a Poisson distribution with parameter A, and service time follows an exponential
distribution with parameter p. According to Little's Law, the average number of tasks in the system L
and the average residence time W satisfy L = AW.

In the traditional Socket communication model, the service time for a single interaction g jer
includes multiple kernel-mode copies, consistent with the high system call overhead observed by Al-Ali
etal. Bl

1

Usocket = tcompute + tcopy_userzkern + tschedule + tcopy_kernZuser (1)

In the SlotFlow model, since data resides in shared memory, communication involves only pointer
operations at the VFS layer. Its service time .us_l(l)tflow is:

1

=t +t 5
Eslotflow compute T ‘vfs_rename ©)

Since tyfs rename K teopy » WE obtain Ugorfriow > Usocker - This theoretically explains why
SlotFlow can significantly reduce queue waiting time.

4.2. NAND Flash Write Amplification and Lifespan Model

Write Amplification Factor (WAF) is a key factor affecting Flash lifespan. WAF is defined as
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14 . I . .
WAF = 2" 0Oh et al. [ pointed out that in journaling file systems like ext4, to ensure metadata
host

consistency, even writing 1KB of logs may trigger a 4KB (Page) or even larger physical block erasure,
resulting in WAF > 1.

For SlotFlow, due to the use of tmpfs and disabled Swap, all file operations are completed in DRAM:
Vf%fz%flow =0= Lifeexpectancy - © (3)
This means that no matter how frequent the interactions between containers are, the wear on physical
storage media is completely eliminated through architectural design.
4.3. Control Theory Interpretation of Backpressure Mechanism
To solve the overload problem proposed by Ekane et al. 7, we model SlotFlow's backpressure
mechanism as a nonlinear feedback control loop.
Controlled Object: The task queue in shared memory.
State Variable: Currently backlogged task count Npenging (maintained by an atomic counter).
Control Law: Adopting logic similar to a Hysteresis Comparator:
1 (AllOW), if Npending < Twarn
0 (DT‘Op), if Npending 2 Tcritical

The flow control and backpressure mechanism logic is shown in Figure 3, illustrating the closed-loop
control process from queue monitoring to decision feedback.

u(t) = { “

Read Shared Atomic Counter

Time Complexity: O(1)

Vs N pending <T cn'tical? <« critical
(Green/ (II{I;:D Npending éRed
Yellow) (from Atomic ine)

. Counter)
Allow Publish & ' <
Atomic Increment Bty EXIF “— Tiow
ot (Load Shedding) (Green
Line)
Y
Watermark Level
Log Warning

Figure 3: Flow Control and Backpressure Mechanism Logic Diagram

Compared to traditional TCP window-based flow control, SlotFlow leverages global visibility in a
single-machine environment to achieve deterministic traffic shaping with O(1) complexity.

Based on the trade-off between steady-state error and response speed in control theory, we suggest
using the following empirical formula to set backpressure thresholds:

Tyam = 2- Nprocessed’ Teritical =5+ Nprocessed (5)

Where ﬁprocessed is the average number of tasks the system can process per unit time in a steady state.
This setting avoids frequent triggering of backpressure while ensuring the system does not lose stability
under burst loads.
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5. Experiments and Evaluation

5.1. Experimental Setup

Hardware Environment: To verify the architecture’s universality, experiments were conducted in a
virtualized environment simulating an edge computing node (WSL2, limited to 2 vCPU / 2GB RAM).

Scenario: The task was a day/night dual-mode security inference (ResNet-18 + BiLSTM), which
involves multimodal dynamic routing as exemplified in Figure 4.

Comparison Groups: The Baseline Group used standard TCP Loopback communication with
simulated Ext4 disk storage, while the Experimental Group utilized the SlotFlow architecture based on

tmpfs in-memory file slots.

Path 1
(Default: Vision Priority)

Video Source F»{ Vision Container
(Camera)

Y

Y

Decision Container
(Multimodal Fusion) [} Actastor / Output

A

Route Manager
(Event Condition)

Path 2
(Dynamic: Audio Priority)

Audio Source ; ;
—» Audio Cont
(Microphone) I

Figure 4: Multimodal Dynamic Routing Scenario Example

5.2. I/O Latency and Throughput Analysis

As benchmarked in Figure 5, in terms of communication latency, the native Linux kernel shows that
SlotFlow’s Ping-Pong round-trip latency is as low as 24.6 ps. This represents a reduction of
approximately 84% compared to the 150.3 ps for TCP Loopback. Although file system overhead in the
WSL2 virtualization environment causes fluctuations in absolute values, the relative advantage brought

by its zero-copy mechanism remains significant.
Communication Primitive Latency Benchmark (Lower is Better)

150 1 150.3 ps
€l
>~ 100 -
8
<
3 S0F
24.6 ps
8.2 us
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Unix Domain Sockets  SlotFlow TCP Loopback
(UDS)

Figure 5: Communication Primitive Latency Benchmark

In throughput and I/O wait tests, the advantage is particularly evident. We simulated continuous high-
frequency writing of 1000 frames (simulating a 100 FPS video stream). As shown in Table 1, the

experimental data indicate:
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Table 1: Performance Comparison

. Ext4 (Simulated SD SlotFlow (Memory
Metric Card) Slot) Improvement
Total Time 18.75 s 11455 +38.9%
Bottleneck Disk 1/O Blocking Pure CEU o
Source Computing

Ext4 Disk Group: Due to frequent fsync flush operations, processing 1000 frames took 18.75 seconds,
with significant I/O wait (iowait), preventing the CPU from working at full load.

SlotFlow Group: Benefiting from memory operations, the same task took only 11.45 seconds.
Conclusion: SlotFlow improved processing efficiency by approximately 38.9%, effectively
eliminating the I/O bottleneck in edge inference.

5.3. Backpressure Protection and Robustness Verification

To verify system stability, we constructed a "Producer-Consumer" rate mismatch scenario: The
producer generates tasks at a rate of 30 FPS, while the consumer can only process at 5 FPS due to
simulated load lag. The experimental results are shown in Figure 6:
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Figure 6: Comparison of Task Queue Backlog under Overload Conditions

Scenario 1 (No Backpressure): The queue builds up rapidly, eventually leading to a service crash
(CRASH) or OOM.

Scenario 2 (SlotFlow Backpressure): The system maintains a stable state by triggering load
shedding/early exit when the critical threshold is reached.

6. Discussion
6.1. Cross-Node Scalability

SlotFlow currently targets collaboration within a single node. For cross-node communication (e.g.,
Cloud-Edge collaboration), which typically involves more complex network conditions and model
splitting strategies as described by Li et al. ) and Matsubara et al. [¥], we suggest a hybrid architecture:
Use SlotFlow within the node to achieve extreme performance, and bridge to ZeroMQ or MQTT via an
edge gateway for inter-node communication, combined with fine-grained model partitioning algorithms
for task scheduling.
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6.2. Comparison with Stream Processing Systems

Compared to heavy stream processing systems like Apache Flink or Kafka, SlotFlow is much more
lightweight. Sedlak et al. ™) studied the autoscaling of stream processing on edge devices and found that
the startup and maintenance overhead of heavy frameworks is huge. SlotFlow sacrifices some advanced
features (such as Exactly-once semantics) in exchange for extremely low latency and resource
consumption on low-power devices, making it more suitable for real-time multimodal AT tasks.

6.3. Security

Shared memory does reduce isolation. However, in SlotFlow, container privileges can be restricted
via User Namespaces and Seccomp, opening only necessary file operations to strike a balance between
performance and security.

7. Conclusions

The SlotFlow architecture proposed in this paper effectively solves the I/O bottlenecks, storage wear,
and overload crash problems in traditional edge orchestration by combining in-memory file systems,
metadata-driven routing, and dynamic backpressure protection. By introducing atomic counters, hybrid
polling mechanisms, and a strict Swap prohibition strategy, SlotFlow guarantees high performance while
significantly enhancing system robustness. Experiments have proven its efficiency in single-node
multimodal collaboration scenarios. Future work will focus on researching the distributed consistency
extension of SlotFlow in cross-node clusters and support for zero-copy sharing of GPU memory.
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