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Abstract: In edge computing environments, device resources are often highly restricted. To cope with 
increasingly complex deep learning tasks, decomposing monolithic models into multiple collaborative 
microservice containers has become an effective approach to break through computing power 
bottlenecks. However, existing container orchestration solutions (e.g., K3s, KubeEdge) suffer from 
excessive control plane overhead, redundant network protocol stacks, and a lack of fine-grained flow 
control on the edge. Furthermore, the NAND Flash storage media widely used in edge devices face 
serious risks of write amplification and wear. Addressing these challenges, this paper proposes SlotFlow, 
a lightweight orchestration architecture based on In-Memory File-Slots. The core idea of SlotFlow is to 
utilize the host's tmpfs as a zero-copy communication bus, achieving microsecond-level synchronization 
through atomic file operations. Additionally, it introduces a backpressure mechanism based on queueing 
theory and control theory to effectively prevent memory overflows. Experimental results demonstrate 
that SlotFlow’s communication performance on a single node approaches that of Unix Domain Sockets, 
reducing latency by approximately 84% compared to traditional TCP loopback. Theoretically, it reduces 
physical Flash writes to zero. In overload scenarios, SlotFlow's backpressure mechanism reduces task 
queue backlog by approximately 73% and extends the system's crash-free runtime by 2.5 times compared 
to the control group, achieving highly robust dynamic task orchestration. 

Keywords: Edge Computing; Container Orchestration; Inter-Process Communication (IPC); tmpfs; 
Backpressure Mechanism; Queueing Theory; Dynamic Routing; Microservice Orchestration; Zero-
Copy Communication 

1. Introduction  

With the deep integration of the Internet of Things (IoT) and Artificial Intelligence (AI), Edge 
Intelligence (Edge AI) is rapidly moving from concept to implementation. In scenarios such as 
autonomous driving, industrial quality inspection, and smart security, a single deep learning model often 
fails to meet complex business demands. Decomposing complex monolithic applications into multiple 
heterogeneous containers (e.g., one container for video decoding, one for object detection, and another 
for logical decision-making) for collaborative inference has gradually become a mainstream practice to 
improve resource utilization, as demonstrated by the multimodal Edge AI framework proposed by Pan 
et al. [1]. Research by Li et al. also indicates that fine-grained model partitioning can effectively enhance 
inference efficiency in heterogeneous edge networks [2]. 

However, directly migrating "Cloud Native" orchestration concepts to edge devices (such as 
Raspberry Pi, NVIDIA Jetson) faces serious "compatibility issues" (or context mismatch): 

First, Orchestration Overhead and Communication Bottlenecks. Traditional Kubernetes (K8s) and its 
lightweight versions (e.g., K3s) rely on complex control plane components (API Server, etcd, Kubelet). 
Comparative analysis by Yakubov et al. points out that these components consume substantial CPU and 
memory resources on resource-constrained devices, leading to an inversion phenomenon where "the 
system consumes more resources than the application" [3]. Furthermore, studies by Alqaisi et al. [4] and 
Gupta et al. [5] quantify the performance loss caused by Container Network Interfaces (CNI), noting that 
communication mechanisms based on Bridge or Overlay networks introduce non-negligible serialization 
and kernel protocol stack overheads when handling high-frequency real-time tasks. 

Second, Storage Lifespan and Reliability Crisis. Most edge devices use NAND Flash (e.g., SD cards 
or eMMC) as primary storage. These media have limited Program/Erase (P/E) cycles. Existing 
orchestration systems and application logs tend to perform frequent disk writes, leading to severe Write 
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Amplification effects. Oh et al., in their work on the MiDAS system, pointed out that log-structured file 
systems significantly accelerate hardware aging when processing small block writes [6], which may cause 
edge devices to become paralyzed due to storage failure during long-term unattended operation. 

Third, Lack of Flow Control Mechanisms. In heterogeneous computing environments, the processing 
speeds of upstream and downstream tasks are often mismatched. The lack of effective backpressure 
mechanisms leads to indefinite data accumulation in buffers, eventually triggering Out of Memory (OOM) 
errors. Ekane et al., in the DiSC system, emphasized that without cross-layer backpressure feedback, 
excess load generated upstream can cause a collapse in overall system throughput [7]. Although data 
center networks have mature flow control algorithms, inter-container communication at the edge often 
lacks this application-layer adaptive protection. 

To address these challenges, this paper proposes SlotFlow. Unlike traditional solutions dependent on 
network protocol stacks, SlotFlow returns to the UNIX design philosophy of "everything is a file," 
constructing a communication plane that resides entirely In-Memory. By combining the zero-physical 
I/O characteristics of tmpfs with a metadata-driven dynamic routing protocol, SlotFlow ensures 
microsecond-level communication latency while completely solving the Flash wear problem. 

2. Related Work 

2.1. Limitations of Edge Container Orchestration 

Currently, lightweight K8s distributions represented by KubeEdge, MicroK8s, and K3s dominate the 
edge orchestration market. However, recent research by Yakubov and Hästbacka [3] points out that even 
after deep pruning, the idle memory footprint of K3s can still reach hundreds of megabytes, which is a 
heavy burden for edge devices with only 2GB or 4GB of memory. Alqaisi et al. [4] further analyzed the 
performance of computer vision applications in edge containers and found that the network virtualization 
layer is a major source of latency. Characterization analysis by Gupta et al. [5] also confirmed that the I/O 
overhead brought by containerization is particularly significant when handling small-packet, high-
frequency communication. In contrast, SlotFlow abandons the general container network abstraction and 
focuses on high-performance in-memory collaboration within a single node, aiming to eliminate these 
unnecessary intermediate layer overheads. 

2.2. Edge Deployment of Deep Learning Models 

To run large models on the edge, researchers have proposed various strategies. Li et al. [2] explored 
fine-grained Model Partitioning techniques, dynamically allocating DNN layers to different computing 
units to optimize latency. Matsubara et al. [8] surveyed "Split Computing" and "Early Exiting" 
mechanisms, emphasizing that communication efficiency after task segmentation is the system 
bottleneck. SlotFlow is designed specifically to provide underlying communication support for such 
frequent interactions following fine-grained segmentation, ensuring that computational gains are not 
offset by communication overheads. 

2.3. Flow Control and Backpressure 

In distributed systems, backpressure is key to preventing overload. Ekane et al. [7], in the DiSC project, 
demonstrated the importance of propagating backpressure in multi-tier applications, noting that static 
queue management often fails under highly dynamic loads. Traditional Socket communication relies on 
the TCP sliding window for flow control, but in single-machine container scenarios, the TCP stack is too 
heavy and agnostic to application-layer semantics. SlotFlow draws on control theory ideas to design a 
lightweight backpressure mechanism based on shared memory atomic counters, filling this gap. 

3. System Architecture 

SlotFlow adopts a "Host-Container" two-layer monitoring model. The key to the architecture is 
placing all task slots (Slots), state files, and intermediate feature tensors entirely within the in-memory 
file system (tmpfs). 
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3.1. Physical Layer: Memory as the Bus 

SlotFlow directly uses /dev/shm or a mounted tmpfs volume as a shared bus. Research by Oh et al. 
[6] indicates that eliminating unnecessary physical Flash writes is crucial for extending device life. To 
this end, SlotFlow mandates the use of the noswap option during mounting, ensuring data remains 100% 
resident in physical memory. This prevents the kernel from swapping pages to disk under memory 
pressure, thereby completely avoiding disk I/O bottlenecks and media wear. The overall system 
architecture of SlotFlow is shown in Figure 1, which displays the host's shared memory bus (tmpfs) and 
multiple containers communicating via File Slots, with the Control Layer (Slot Manager) responsible for 
monitoring slot status and dynamic routing. 

 
Figure 1: SlotFlow Overall System Architecture 

3.2. Communication Protocol: Atomic File Slots 

To ensure concurrency safety in a lock-free environment, we designed a three-phase protocol 
(Publish-Acquire-Commit) based on POSIX atomic file operations: 

Publish: The upstream container first writes data into a .tmp temporary file, then atomically renames 
it to a .slot file using os.rename. 

Acquire: The downstream container listens for directory events via inotify. Once a new .slot file is 
detected, it is atomically renamed to a .proc-{PID}-{timestamp} file. This is equivalent to acquiring a 
mutex lock with a lease. 

Commit: After processing, the downstream container writes the result back to the file (or next stage), 
deletes the .proc file, and releases the slot. 

The system supports dynamic adjustment of the number of task slots. The Slot Manager optimizes 
parallelism by adding or merging slot directories based on queue depth and container load. The routing 
strategy is implemented based on metadata files (e.g., route.json), which can direct .slot files to different 
consumer containers based on task type (e.g., image classification or object detection). The timing 
diagram of its communication protocol is shown in Figure 2, illustrating the entire process from 
publishing to commitment, as well as possible timeout rollback paths. 

 
Figure 2: Communication Protocol Timing Diagram 
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3.3. Dynamic Routing Strategy Example 

SlotFlow supports dynamic routing based on JSON metadata. The following is a typical routing 
configuration example: 

JSON 

json 

{ 

  "task_type": "object_detection", 

  "model_version": "yolov5s", 

  "target_container": "detector_container", 

  "priority": "high", 

  "timeout_ms": 100, 

  "fallback_target": "detector_backup" 

} 

The routing decision adopts a "Shortest Queue First" strategy: The Slot Manager monitors the task 
queue length of each consumer container in real-time and dynamically assigns new tasks to the container 
with the shortest queue, thereby achieving load balancing. 

3.4. Dynamic Routing Strategy Example 

Addressing the issue of "tasks getting stuck due to consumer failure," SlotFlow includes a built-in 
Watchdog (Janitor) based on file leases. The Slot Manager periodically scans all .proc files; if the 
modification time exceeds a threshold (e.g., 5 seconds), it determines that the container has zombie-died 
and rolls back the task or moves it to a dead-letter queue. 

4. Theoretical Modeling and Analysis 

To thoroughly demonstrate SlotFlow's performance advantages and stability, this section performs 
mathematical modeling from the dimensions of queueing theory and control theory. 

4.1. Latency Analysis Based on Queueing Theory 

We model the inference pipeline of an edge node as an 𝑀𝑀/𝑀𝑀/1 queueing system. Assuming task 
arrival follows a Poisson distribution with parameter 𝜆𝜆 , and service time follows an exponential 
distribution with parameter 𝜇𝜇. According to Little's Law, the average number of tasks in the system 𝐿𝐿 
and the average residence time W satisfy 𝐿𝐿 = 𝜆𝜆𝜆𝜆. 

In the traditional Socket communication model, the service time for a single interaction 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1  
includes multiple kernel-mode copies, consistent with the high system call overhead observed by Al-Ali 
et al. [3]: 

1
𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢2𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑡𝑡𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘2𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢         (1) 

In the SlotFlow model, since data resides in shared memory, communication involves only pointer 
operations at the VFS layer. Its service time 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1  is: 

1
𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                     (2) 

Since 𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≪ 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , we obtain 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 . This theoretically explains why 
SlotFlow can significantly reduce queue waiting time. 

4.2. NAND Flash Write Amplification and Lifespan Model 

Write Amplification Factor (WAF) is a key factor affecting Flash lifespan. WAF is defined as 
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𝑊𝑊𝑊𝑊𝑊𝑊 =
𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ
𝑉𝑉ℎ𝑜𝑜𝑜𝑜𝑡𝑡

. Oh et al. [6] pointed out that in journaling file systems like ext4, to ensure metadata 
consistency, even writing 1KB of logs may trigger a 4KB (Page) or even larger physical block erasure, 
resulting in 𝑊𝑊𝑊𝑊𝑊𝑊 ≫ 1. 

For SlotFlow, due to the use of tmpfs and disabled Swap, all file operations are completed in DRAM: 

𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≡ 0 ⟹ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 → ∞                    (3) 

This means that no matter how frequent the interactions between containers are, the wear on physical 
storage media is completely eliminated through architectural design. 

4.3. Control Theory Interpretation of Backpressure Mechanism 

To solve the overload problem proposed by Ekane et al. [7], we model SlotFlow's backpressure 
mechanism as a nonlinear feedback control loop. 

Controlled Object: The task queue in shared memory. 

State Variable: Currently backlogged task count 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (maintained by an atomic counter). 

Control Law: Adopting logic similar to a Hysteresis Comparator: 

𝑢𝑢(𝑡𝑡) = {
1 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴), 𝑖𝑖𝑖𝑖 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑛𝑛𝑛𝑛 < 𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
0 (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), 𝑖𝑖𝑖𝑖 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

                   (4) 

The flow control and backpressure mechanism logic is shown in Figure 3, illustrating the closed-loop 
control process from queue monitoring to decision feedback. 

 
Figure 3: Flow Control and Backpressure Mechanism Logic Diagram 

Compared to traditional TCP window-based flow control, SlotFlow leverages global visibility in a 
single-machine environment to achieve deterministic traffic shaping with O(1) complexity.  

Based on the trade-off between steady-state error and response speed in control theory, we suggest 
using the following empirical formula to set backpressure thresholds: 

Twarn = 2 ⋅ Nprocessed，Tcritical = 5 ⋅ Nprocessed                       (5) 

Where Nprocessed is the average number of tasks the system can process per unit time in a steady state. 
This setting avoids frequent triggering of backpressure while ensuring the system does not lose stability 
under burst loads. 
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5. Experiments and Evaluation 

5.1. Experimental Setup 

Hardware Environment: To verify the architecture’s universality, experiments were conducted in a 
virtualized environment simulating an edge computing node (WSL2, limited to 2 vCPU / 2GB RAM). 

Scenario: The task was a day/night dual-mode security inference (ResNet-18 + BiLSTM), which 
involves multimodal dynamic routing as exemplified in Figure 4. 

Comparison Groups: The Baseline Group used standard TCP Loopback communication with 
simulated Ext4 disk storage, while the Experimental Group utilized the SlotFlow architecture based on 
tmpfs in-memory file slots. 

 
Figure 4: Multimodal Dynamic Routing Scenario Example 

5.2. I/O Latency and Throughput Analysis 

As benchmarked in Figure 5, in terms of communication latency, the native Linux kernel shows that 
SlotFlow’s Ping-Pong round-trip latency is as low as 24.6 µs. This represents a reduction of 
approximately 84% compared to the 150.3 µs for TCP Loopback. Although file system overhead in the 
WSL2 virtualization environment causes fluctuations in absolute values, the relative advantage brought 
by its zero-copy mechanism remains significant. 

 
Figure 5: Communication Primitive Latency Benchmark 

In throughput and I/O wait tests, the advantage is particularly evident. We simulated continuous high-
frequency writing of 1000 frames (simulating a 100 FPS video stream). As shown in Table 1, the 
experimental data indicate: 
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Table 1: Performance Comparison 

Metric Ext4 (Simulated SD 
Card) 

SlotFlow (Memory 
Slot) Improvement 

Total Time 18.75 s 11.45 s +38.9% 

Bottleneck 
Source Disk I/O Blocking Pure CPU 

Computing — 

Ext4 Disk Group: Due to frequent fsync flush operations, processing 1000 frames took 18.75 seconds, 
with significant I/O wait (iowait), preventing the CPU from working at full load. 

SlotFlow Group: Benefiting from memory operations, the same task took only 11.45 seconds. 

Conclusion: SlotFlow improved processing efficiency by approximately 38.9%, effectively 
eliminating the I/O bottleneck in edge inference. 

5.3. Backpressure Protection and Robustness Verification 

To verify system stability, we constructed a "Producer-Consumer" rate mismatch scenario: The 
producer generates tasks at a rate of 30 FPS, while the consumer can only process at 5 FPS due to 
simulated load lag. The experimental results are shown in Figure 6: 

 
Figure 6: Comparison of Task Queue Backlog under Overload Conditions 

Scenario 1 (No Backpressure): The queue builds up rapidly, eventually leading to a service crash 
(CRASH) or OOM. 
Scenario 2 (SlotFlow Backpressure): The system maintains a stable state by triggering load 
shedding/early exit when the critical threshold is reached. 

6. Discussion 

6.1. Cross-Node Scalability 

SlotFlow currently targets collaboration within a single node. For cross-node communication (e.g., 
Cloud-Edge collaboration), which typically involves more complex network conditions and model 
splitting strategies as described by Li et al. [2] and Matsubara et al. [8], we suggest a hybrid architecture: 
Use SlotFlow within the node to achieve extreme performance, and bridge to ZeroMQ or MQTT via an 
edge gateway for inter-node communication, combined with fine-grained model partitioning algorithms 
for task scheduling. 
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6.2. Comparison with Stream Processing Systems 

Compared to heavy stream processing systems like Apache Flink or Kafka, SlotFlow is much more 
lightweight. Sedlak et al. [9] studied the autoscaling of stream processing on edge devices and found that 
the startup and maintenance overhead of heavy frameworks is huge. SlotFlow sacrifices some advanced 
features (such as Exactly-once semantics) in exchange for extremely low latency and resource 
consumption on low-power devices, making it more suitable for real-time multimodal AI tasks. 

6.3. Security 

Shared memory does reduce isolation. However, in SlotFlow, container privileges can be restricted 
via User Namespaces and Seccomp, opening only necessary file operations to strike a balance between 
performance and security. 

7. Conclusions 

The SlotFlow architecture proposed in this paper effectively solves the I/O bottlenecks, storage wear, 
and overload crash problems in traditional edge orchestration by combining in-memory file systems, 
metadata-driven routing, and dynamic backpressure protection. By introducing atomic counters, hybrid 
polling mechanisms, and a strict Swap prohibition strategy, SlotFlow guarantees high performance while 
significantly enhancing system robustness. Experiments have proven its efficiency in single-node 
multimodal collaboration scenarios. Future work will focus on researching the distributed consistency 
extension of SlotFlow in cross-node clusters and support for zero-copy sharing of GPU memory. 
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