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Abstract: In light of societal progress, energy has emerged as a critical concern, and new energy 

sources are poised to become the energy mainstream. Among these developments, lithium-ion batteries 

play a pivotal role in the new energy industry. Accurately estimating the State of Charge (SOC) of 

lithium-ion batteries is essential for the proper functioning of devices like electric vehicles. However, 

the SOC of lithium-ion batteries cannot be measured directly by instruments and can only be estimated 

by measurable variables. This paper proposes a new algorithm for accurate SOC estimation using a 

combination of adaptive extended Kalman filtering (AEKF) and support vector machine (SVM) 

algorithms, taking into account the characteristics of lithium-ion batteries. The AEKF algorithm was 

employed to estimate the State of Charge (SOC) under the Beijing Bus Dynamic Stress Test (BBDST) 

condition. By leveraging the adaptive noise covariance advantage of the AEKF algorithm, a model that 

is more fitting for the lithium-ion battery was obtained. Subsequently, the SOC for the Hybrid Pulse 

Power Characterization (HPPC) and Dynamic Stress Test (DST) conditions were predicted. 

Experimental results revealed that the SVM-AEKF algorithm, when used for SOC estimation, resulted 

in a maximum error of 0.037% under the HPPC condition, marking an improvement of 8.9% compared 

to the AEKF algorithm. Under the DST condition, the maximum error was 0.335%, indicating a 6.9% 

improvement over the AEKF algorithm. These results underscore the potential of the SVM-AEKF 

algorithm in accurately estimating SOC, thereby holding promise for practical applications. 

Keywords: power lithium battery; Thevenin; state of charge; adaptive extended Kalman filter; support 

vector machine 

1. Introduction 

With the development of society, the demand for fossil energy [1] is gradually rising, while the 

amount of fossil energy storage is significantly declining. Concurrently, global warming [2] and the 

emergence of various extreme weather [3] events have made the vigorous development of new energy 

sources our best solution to the energy problem. Lithium-ion batteries [4], as a primary focus of the new 

energy industry, offer advantages such as high energy density, lightweight, good cycling performance, 

low self-discharge rate, and no memory effect [5]. Consequently, lithium-ion batteries are widely used in 

automobiles and other applications. Therefor The estimation of the battery's state of charge (SOC) has 

always been an important research direction [6]. 

As the state of charge (SOC) of a lithium-ion battery cannot be measured directly by instruments, it 

can only be estimated indirectly by measuring the voltage[7,8], current [9], and temperature of the battery. 

Additionally, the SOC of lithium-ion batteries is influenced by temperature, charge and discharge 

rates[10], and the degree of battery aging[11], making SOC monitoring particularly challenging. Common 

methods for predicting SOC include the open-circuit voltage method[12,13,14], internal resistance 

method[15,16], ampere-hour integration method[17], and discharge test method. 

The open-circuit voltage method is simple and practical, but its main disadvantage is that the 

battery must be left to rest, preventing real-time SOC monitoring. The discharge test method is 

applicable to a wide range of batteries and is simple and accurate, but it takes a long time to complete. 

The accuracy of SOC estimation using the ampere-hour integration method depends on the initial value, 

and the estimation error increases significantly over time. 

To address these challenges, researchers have proposed the Kalman filter method [18,19,20]for SOC 
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estimation. This method uses the state equation of the battery to obtain an accurate SOC value based on 

the principle of minimum mean squared error. However, due to the non-linear operating characteristics 

of most lithium-ion batteries, the extended Kalman filter (EKF) algorithm[21,22,23] was introduced. This 

algorithm applies a Taylor expansion to the Kalman algorithm, ignoring higher-order terms. 

To overcome the slow convergence and low accuracy of the Kalman filter algorithm, researchers 

also developed the Unscented Kalman filter (UKF) algorithm[24,25]. For example, Meng [26] et al. 

employed a joint adaptive UKF algorithm and a Support Vector Machine (SVM) algorithm to estimate 

the SOC of lithium-ion batteries. The adaptive UKF algorithm adjusts the noise covariance during the 

estimation process, and the least-squares SVM algorithm reduces the impact of internal battery 

characteristics on the SOC. Experimental results show that this algorithm achieves an absolute error of 

less than 2%, demonstrating its feasibility. 

In this paper, we use the first-order Thevenin model to estimate the SOC of lithium-ion batteries. 

We employ the Adaptive Extended Kalman Filter (AEKF) algorithm [27] to estimate the SOC and use 

the SVM algorithm[28] to correct the SOC estimated by the AEKF algorithm, resulting in a more 

accurate SOC estimation. 

2. Mathematical analysis 

2.1. SVM-AEKF algorithm 

The SVM algorithm is developed based on the Vapnik-Chervonenkis (VC) dimensional theory of 

statistical learning and the principle of structural risk minimization, which are currently considered the 

best approaches for statistical estimation and prediction learning from small samples. The AEKF 

algorithm enhances the Extended Kalman Filter (EKF) by incorporating the Sage-Husa adaptive 

filtering method. This addition allows the statistical characteristics of noise in the filtering algorithm to 

be updated adaptively with changes in estimation results. To combine the advantages of both 

algorithms, the SVM-AEKF algorithm has been proposed in this paper. 

The specific implementation steps of the algorithm are as follows: first, train a Support Vector 

Machine (SVM) model with three inputs and one output. The inputs are the voltage value Uk at time k, 

the State of Charge (SOC) estimate s(k) from the Adaptive Extended Kalman Filter (AEKF) algorithm, 

and the predicted SOC value ŝ(k) from the integration of the ampere-time. The output is the 

estimation error s(k) − ŝ(k) of the AEKF algorithm. The SVM model uses the Radial Basis Function 

(RBF) kernel function. The flowchart of the SVM-AEKF algorithm is shown in Fig. 1. 
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Figure 1: SVM-CKF algorithm flow chart Experimental analysis 
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2.2. Equivalent modeling and Parameter identification 

Modeling lithium-ion batteries is crucial for accurately estimating their State of Charge (SOC). 

These batteries undergo complex internal chemical reactions during charge and discharge cycles, 

making the selection of a suitable model essential for precise SOC estimation. Commonly utilized 

models include electrochemical models, data-driven models, and equivalent circuit models. 

Electrochemical models, while accurate, suffer from high complexity, significant computational 

requirements, and a tendency to overfit, resulting in subpar SOC estimation accuracy. Data-driven 

models, such as neural network models, demand extensive experimental data for training and can be 

time-consuming and costly to develop, often requiring server resources. 

Equivalent circuit models, such as the Rint model and the Thevenin model, offer a different 

approach by using standard circuit components to represent the battery's external characteristics. The 

Thevenin model, comprising a resistor and an RC circuit, effectively captures both the internal 

resistance and polarization of the lithium-ion battery. In contrast, the Rint model lacks the RC circuit 

and cannot fully depict the battery's internal polarization characteristics. 

Given its advantages, this paper opts to model the lithium-ion battery using the Thevenin model, as 

illustrated in Fig. 2. 

Ro
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Uoc I(t)

 

Figure 2: Thevenin equivalent circuit model 

Fig. 2 shows the Thevenin model, where Ro is the ohmic internal resistance, Rp is the polarization 

resistor and Cp is the polarization capacitor in the RC circuit, Up is the polarization voltage, Uoc is the 

open-circuit voltage, UL is the terminal voltage, and U0 is the voltage across the ohmic internal 

resistance. According to Kirchhoff's law in the circuit, the following expressions can be obtained from 

this model as shown in Eq. (1). 
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According to the definition of SOC: the ratio of the remaining capacity of a lithium-ion battery to 

the nominal capacity of the battery. The commonly used calculation method is the ampere-time 

integration method, whose equation is shown in Eq. (2). 

                      (2) 

𝜂 represents the rated capacity of the battery and represents the current of charging and discharging 

the battery at time t. Since the open-circuit voltage is usually a function of the SOC of the lithium-ion 

battery, while using the knowledge of modern control theory, the equivalent circuit can be discretized to 

obtain a discretized model of the lithium-ion battery, whose state-space equations are shown Eq. (3). 
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         (3) 

where 𝛥𝑡 is the sampling interval, τ is the time constant, and its expression is τp= RpCp, w is the 

state error, and v is the measurement error. 

2.3. Parameter identification 

Parameter identification involves determining the values of each parameter in a model based on 

existing experimental data and the established model. Common methods for parameter identification 

include offline and online parameter identification. 

Offline parameter identification involves obtaining the OCV-SOC curves from HPPC conditions 

and then solving for the parameters of each component at different SOC values based on the 

relationships in the Thevenin model. The values of each component and SOC are then determined by 

least-squares polynomial fitting, which establishes the relationship between each component and 

SOC.Online parameter identification, on the other hand, uses the least-squares method to continuously 

correct and update the system's parameters, yielding more accurate identification results. However, due 

to its complexity and high computational demands, this paper employs the offline parameter 

identification method. 

2.4. Adaptive extended Kalman algorithm 

The adaptive Kalman filter algorithm is developed based on the extended Kalman filter algorithm, 

which achieves accurate estimation of the SOC of lithium-ion batteries by continuously updating the 

system noise and process noise based on the extended Kalman filter algorithm. The system needs to be 

initialized first, and the calculation process is shown in Eq. (4) 
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where is the estimated value of the initial state and is the error covariance matrix. Then the update 

of the error covariance is performed, along with the Kalman gain, whose equation is shown in Eq. (5). 

             (5) 

The Kalman gain coefficient is obtained, while combining the difference between the real-time 

observation data and the system observation data, the a priori estimate can be corrected, if the 

difference is large then the magnitude of the correction is also large, the difference is small the 

magnitude of the correction equation is shown in Eq. (6) 

          (6) 

The adaptive regulation of SOC is achieved by estimating and correcting the statistical 

characteristics of the process noise and the measurement noise of the system with the following Eq. (7). 
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  (7) 

2.5. Support Vector Machine algorithm 

Support Vector Machines (SVM) are widely used in supervised learning for classification and 

regression tasks. The core idea behind SVM is to find the optimal hyperplane that separates different 

classes of data points by maximizing the margin between them. This approach enhances classification 

accuracy and generalization to new data. Support Vector Regression (SVR) is an extension of SVM 

used for regression analysis. Unlike classification, SVR aims to find a function that closely 

approximates the data points within a specified tolerance while controlling model complexity. SVR 

achieves this by adjusting the distance to the farthest data points, striking a balance between model bias 

and variance. 

3. Experiment 

3.1. Experimental result 

The commonly used methods for offline parameter identification are the point-taking calculation 

method and the curve-fitting method. The point-taking calculation method uses only a few data points 

from the many data points of impulse response in the HPPC condition, discarding a large amount of 

data. This may lead to inaccurate data identification results, and the complex formulas involved are 

prone to errors during actual operation. Therefore, this paper adopts the curve-fitting method, which is 

simpler to execute and makes better use of the data points. 

Firstly, a suitable line segment for curve fitting is selected. Using the Thevenin model, the 

expression of the circuit in the zero state can be derived, as shown in Eq. (8). 

                         (8) 

The values of ohmic internal resistance R0, polarized internal resistance Rp, and polarized 

capacitance Cp in the Thevenin model can be obtained by calculating the data using HPPC experiments, 

and the results are shown in Tab.1. 

Table 1: Model parameters under different SOC states 

SOC/100% R0/mΩ Rp /mΩ Cp /F Uoc/V 

0.1 1.961057682 0.519082 12519.57063 3.4592 

0.2 1.859498063 0.390383 19667.75322 3.5410 

0.3 1.825930538 0.350388 23038.81399 3.5897 

0.4 1.802504690 0.319963 23332.61905 3.6166 

0.5 1.780507248 0.344103 23954.96034 3.6514 

0.6 1.758224125 0.524653 16215.69966 3.7360 

0.7 1.745939839 0.523653 16879.77215 3.8318 

0.8 1.730370221 0.482801 17187.37110 3.9350 

0.9 1.723228194 0.435092 18133.44121 4.0497 

1.0 1.718942978 0.426950 22069.80251 4.1840 

To verify the performance of the first-order Thevenin model, the Thevenin model is constructed 

using Matlab, and the simulation results using the Thevenin model can be obtained by comparing the 

actual voltage with the simulated voltage, and the results are shown in Fig. 3 
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(a) Voltage Comparison Curve                        (b) Simulation error 

Figure 3: Thevenin model simulation results 

In the figure above, U represents the actual voltage, while Us represents the simulated voltage. 

Comparing the actual voltage with the simulated output in Fig. 3(a), it can be observed that the 

simulated output closely tracks the voltage changes of the Li-ion battery. From Fig. 3(b), it can be 

concluded that the maximum error is less than 0.05V, with an overall error maintained around 0.04V. 

When the SOC of the lithium-ion battery is at 0.1, the difference between the model output voltage and 

the actual voltage is relatively large, approximately 0.05V. However, this difference is small enough to 

be considered negligible. 

3.2. Algorithm Comparison 

To verify the accuracy of the algorithm, experiments are necessary. In this experiment, a ternary 

lithium-ion battery with a nominal capacity of 70Ah was used. After capacity testing, its capacity was 

measured to be 70.4Ah. The data from BBDST working conditions were selected to train the SVM 

model at a room temperature of 25℃, with SOC ranging from 1 to 0.1 and a sampling interval of 1s. 

The voltage variation under BBDST working conditions is illustrated in Fig. 5(a). The error results 

obtained by using the AEKF algorithm to predict the SOC for the BBDST condition are presented in 

Fig. 5(b). 

 
(a)BBDST Voltage Curve                (b) AEKF algorithm for estimating error curves 

Figure 4: AEKF-based lithium-ion battery SOC estimation effect 

The maximum error in SOC estimation by the AEKF algorithm for the BBDST condition is 0.0037, 

indicating high accuracy. This result also validates the accuracy of the Thevenin model, as seen in Fig. 

4(b). Consequently, the SOC of the BBDST condition obtained by the AEKF algorithm and the error 

between the predicted SOC and the true SOC are input into the SVM for training. The training data 

were divided into a 7:3 ratio, with 70% used as training data and 30% as validation data. 

To demonstrate the proposed algorithm's adaptability to different operating conditions, the HPPC 

and DST operating conditions were selected for testing. These conditions simulate the lithium-ion 

battery's actual operating conditions as closely as possible. The SVM model was verified using these 

two operating conditions. The SOC estimation results and SOC errors for the HPPC operating 

condition are shown in Fig. 5. 
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(a) SOC estimation in HPPC condition         (b) SOC estimation errors in HPPC condition 

Figure 5: SVM-AEKF-based lithium battery SOC estimation effect in BBDST condition 

In Fig. 5(a), the SOC estimated by the AEKF algorithm and the SVM-AEKF algorithm is depicted. 

Here, S1 represents the SOC estimated by the ampere-time integration method, S2 represents the SOC 

predicted by the AEKF algorithm, and S3 represents the SOC predicted by the SVM-AEKF algorithm. 

Fig. 5(b) shows the SOC estimation errors, where Err1 represents the SOC estimation error of the 

AEKF algorithm, and Err2 indicates the SOC estimation error of the SVM-AEKF algorithm. 

Combining the two experimental result plots, it can be concluded that the maximum error of the 

SVM-AEKF algorithm proposed in this paper is 0.037%, while the maximum error of the AEKF 

algorithm is 0.362%. Therefore, it can be concluded that the SVM-AEKF algorithm has higher 

accuracy compared to the traditional AEKF algorithm. 

The experimental data from DST conditions are once again utilized to validate the trained SVM 

model, with the validation results depicted in Fig. 6. 

 
(a) SOC estimation in DST condition         (b) SOC estimation errors in DST condition 

Figure 6: SVM-AEKF-based lithium battery SOC estimation effect in DST condition 

In Fig. 6(a), the SOC estimation results for the DST condition are plotted, where S1 represents the 

SOC estimated by the ampere-time integration method, S2 represents the SOC estimated by the AEKF 

algorithm, and S3 represents the SOC estimated by the SVM-AEKF algorithm. Fig. 6(b) shows the 

SOC estimation error, where Err1 is the error curve of the SOC estimated by the AEKF algorithm, and 

Err2 is the error curve of the SOC estimated by the SVM-AEKF algorithm. From the figure, it can be 

concluded that the maximum error of the AEKF algorithm is 0.360%, while the maximum error of the 

SVM-AEKF algorithm is approximately 0.335%. Additionally, the error fluctuation of the SVM-AEKF 

algorithm is significantly smaller than that of the AEKF algorithm. 

4. Conclusions 

With the dual pressures of resource scarcity and environmental concerns, lithium-ion batteries are 

becoming increasingly important as a clean energy source for future development. This paper proposes 

an SVM-AEKF algorithm using the Thevenin model with ternary Li-ion batteries as the research 

subject, aiming to predict the charge state of Li-ion batteries under different operating conditions. 

Experimental results demonstrate that the SVM-AEKF algorithm achieves a maximum error of only 

0.037% under HPPC conditions and 0.335% under DST conditions, showing higher accuracy compared 

to the traditional AEKF algorithm. However, due to the limited availability of experimental data, this 

study does not consider the effect of temperature on SOC estimation. It is hoped that future research 

will address this aspect. 
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