
International Journal of Frontiers in Engineering Technology

ISSN 2706-655X Vol.5, Issue 2: 50-57, DOI: 10.25236/IJFET.2023.050209

Published by Francis Academic Press, UK

-50-

A virtualisation performance evaluation approach for

distributed block device

Linxiangyi Li1, Haiyan Wang2,*, Yanjin Wu3

1Distributed Storage, Shaanxi University of Science & Technology, Xi’an, China
2Signal and Information Processing, Shaanxi University of Science & Technology, Xi’an, China
3Embedded and Simulator, Shaanxi University of Science & Technology, Xi’an, China
*Corresponding author

Abstract: With the development of the information age, the volume of data is exploding and the

operational and performance requirements of massive data are difficult to balance. The high cost of

distributed storage systems with high data reliability and excellent random read and write performance,

often consisting of multiple racks, multiple nodes and hundreds of disks, is a thorny issue for researchers.

A tool to predict the performance of distributed storage architectures has been built based on a study of

the cost of distributed storage architectures. Without hardware, enabling low cost and fast performance

prediction. It also provides performance data and latency density to compare the performance of

different workloads and architectures more intuitively, providing ideas for optimising the performance of

distributed systems.

Keywords: Low cost, No hardware, Performance evaluation, Distributed systems

1. Introduction

Distributed storage architecture is the most widely used storage architecture today [1-4]. While

possessing high performance and reliability, distributed storage supports high-capacity scaling and

horizontal expansion [5,6] and can meet long-term data storage needs in the information age where data

volumes are increasing. Distributed storage is divided into three categories: object storage [7], block

storage [8,9] and file storage, of which block storage has the most outstanding read and write

performance, combined with redundancy technology to ensure high data reliability, and can be used in

hybrid disk arrays [10].

Highly configurable large-scale distributed storage systems require high hardware investment, and

the cost of hardware devices has become a stumbling block for research work [11,12]. At the same time,

the performance of block storage is greatly affected by hardware configurations, and the performance

metrics obtained from different combinations of hardware configurations vary greatly [13-16]. In order

to comprehensively evaluate the impact of different components on performance, performance testing of

various hardware combinations is required, which makes evaluating data manipulation and performance

testing very tedious and labor-intensive and time-consuming just for research environment setup.

To this end, this paper proposes a performance evaluation platform for virtualisation of block storage,

the Shape simulator, designed with interception and pre-processing algorithms to extract workloads,

which enables developers to find breakthroughs in optimising the architecture more quickly.

2. Related Research

In previous research on distributed storage systems, most developers would take two approaches to

predict device performance: first, predicting based on experience [17], and second, getting actual devices

for testing [14-16]. The former is done by testing a small number of physical devices and thus

extrapolating the performance of the majority of devices, but distributed storage has a complex structure

in a non-simple linear relationship that cannot be simply calculated to obtain performance data. As well

as taking into account factors such as development cost and efficiency. The plausible simulator proposed

in this paper can discard the physical equipment required for distributed systems and predict system

performance in the pre-development phase, reducing the financial pressure on the researcher and

compressing the development cost of the study.

International Journal of Frontiers in Engineering Technology

ISSN 2706-655X Vol.5, Issue 2: 50-57, DOI: 10.25236/IJFET.2023.050209

Published by Francis Academic Press, UK

-51-

Common testing software includes Flexible I/O [18], Iozone [19], etc. The IOP parameters in these

tests are artificially set, such as the size of the data to be operated, the read/write ratio, etc., but these test

data often do not match the real work. In this paper, the proposed plausible simulator uses bcc-tools (BPF

compiler collection) [20] to trace IOPs to get the workload, and the method can be applied to any

software test, and the tpc series test will be used in this paper [21].

3. Imeplementation

The performance predictions in this paper do not require any hardware devices, which means that no

software programs can be installed and run on them. Therefore, this paper obtains test results by

obtaining the workload of a real program in operation and running it simulated on a plausible simulator.

3.1. Workload acquisition process

Figure 1 shows the process of acquiring and processing the workload in this paper. The initial

workload is obtained by bcc-tools interception during the application run, and then the initial snoop file is

processed by the algorithm Pregen. This algorithm first filters the initial snoop file to ensure the validity

of each IO; and then completes some environment variables needed in the snoop file to generate the

complete block device request.

Figure 1: Workload acquisition flow diagram

3.1.1. BCC interception

Bcc-tools [20] is a collection of tools for bpftrace, where biosnoop is a trace record of block device IO

to provide performance prediction and analysis to plausible simulators. biosnoop intercepted IO records

(referred to as snoop files) are shown in Figure 2:

Figure 2 Sample snoop file

As shown in Figure 2 the snoop file contains TIME (relative time), COMM (command), PID (process

id), DISK (located disk), T (type of operation), SECTOR (sector number where the operation starts),

BYTE (size of the operation in bytes), and LAT (latency in milliseconds). Each line in the Snoop file

(excluding the header line) is an IOP that initiates a request to the block device.

3.1.2. Pregen algorithm

There will be underlying threads running simultaneously in the Linux system, which will result in

many unrelated and hard to distinguish IOPs in the intercepted snoop file, requiring preprocessing

operations of the snoop file. In this paper, we first use a separate disk for testing, and then filter out the

invalid IO through the Pregen algorithm. Invalid IO is generally manifested as.

1) the items recorded in the Snoop file are incomplete.

International Journal of Frontiers in Engineering Technology

ISSN 2706-655X Vol.5, Issue 2: 50-57, DOI: 10.25236/IJFET.2023.050209

Published by Francis Academic Press, UK

-52-

2) the disk on which it is located is not the disk used for the test.

3) the sector where it is located is outside the range of the underlying physical device.

4) the sector on which it is located is outside the range of the underlying physical device.

The entire application process can be divided into two phases: the data generation phase and the data

run phase (referred to as p1, p2). Ideally, the application completes all initial data writing operations and

metadata creation in p1, and the p2 phase runs the data written in p1. However, analysis of the p1 snoop

file reveals that the p1 phase reads the environment information of the underlying system and the

environment information of the test program, and as this data is written earlier than the BCC intercept

time, it will be treated as unknown data directly causing the corresponding operation to fail. To ensure the

integrity of the workload, the Pregen algorithm will simulate running from a metadata-free space,

complementing the missing IOPs. The pseudo-code of the Pregen algorithm is as follows:

Algorithm 1 Pregen.

Input: Initial snoop file.

Output: After processed snoop file.

step1. //read the IOPs in the snoop file

read();

step2. //check if the data for each IOP exists

if (items ! = 8)

continue;

step3. //check the reasonableness of each data of IOP

if (disk ! = TESTDISK)

continue;

if (sect > MAXDISK)

 continue;

if (byte>MAXBYTE || byte/4096!=0 || byte==0)

continue;

step4.//Find the page where the IOP is located

pno= getpg(sect, byte);

step5.//check the page data and add

if (OP == READ)

int miss = Check(pno);

else

save(pno);

if (miss)

add(IO);

step6. out(snoop);

The Pregen algorithm first filters for valid IOs and assumes that the entire workload is running from a

metadata-free store. And records the generation operation of this data in the form of a snoop file based on

it. Without the Pregen algorithm, these IOPs would be identified by the Shape simulator as spurious or

worthless IOPs and discarded, resulting in a lack of integrity in the loaded IO load and further causing the

system to crash. The lightweight Pregen algorithm yields pure and complete workloads as real IO

requests in the fastest way possible.

International Journal of Frontiers in Engineering Technology

ISSN 2706-655X Vol.5, Issue 2: 50-57, DOI: 10.25236/IJFET.2023.050209

Published by Francis Academic Press, UK

-53-

3.2 Design and implementation of the Shape simulator

3.2.1 Environment variables

User-adjustable parameters are provided in the Shape simulator, as shown in Table 1.

Table 1: Environment variables

environment Implication example

NSIMPOOL number of simpool NSIMPOOL=1

QD number of queue depth QD=32

QPG max page in a batch QPG=2048

SNOOP_<n> path of workload SNOOP_1=TPROC-C/p1.txt

3.2.2 Structure design for IO requests

The IO information output after bcc interception is in snoop file format, and IOPs in this format

cannot be directly applied to the Shape simulator. In this paper, the lunioq structure is designed to be used

as an executable IOP for the Shape simulator, and the IO queue generated by lunioq is made available to

the Shape simulator at the beginning of its operation. Lunioq is designed as shown in Table 2.

Table 2: Lunioq structure

variable implication

Ts,ets start time and end time of IOP

Op operation type of IOP

Simidx simpool index

Poolid pool index

Lunid LUN id

Ls64 ls64 number of IOP on the lun (ls64 has 64 pages)

Ls64pno offset on the ls64 (page)

Npg number of page

ser IOP index

Done done flag, if finish will set to 1

3.2.3 Design and implementation of the Shape simulation

If the lunioq queues were pressed directly into the Shape simulator, the inter-constraints of real

operation would be lost and the simulated runtime flow would lack realism. To solve this problem, the

dep algorithm is designed to analyse the dependencies of a series of IOPs and establish dependencies that

constrain the operation. Only the dependent IOP (referred to as depIO) will be run before the next IOP

can be run. Dep algorithm will analyse the depIO based on the information in the snoop file and store it in

the relationship table (adep table). Dep algorithm is as follows.

Algorithm 2; IO dependency analysis algorithm dep

Input: After Pregen snoop file.

Output: Dependency relationship table for IOPs adep

1. // Read IO_1 and calculate the relative start time of IO_1 in the program tim

Read(IO)

Time = Gettime(IO)

2. // Read the operations in the IO queue sequentially and find depIO

Read(nextIO)

Nexttime = time(nextIO)

isDep = Compare(time, nexttime)

3. //If their running times overlap then depIO for IO_3 is IO_1, otherwise depIO for IO_2.

if (isdep)

put(IO, nextIO)

International Journal of Frontiers in Engineering Technology

ISSN 2706-655X Vol.5, Issue 2: 50-57, DOI: 10.25236/IJFET.2023.050209

Published by Francis Academic Press, UK

-54-

Else

4.// Read the next IO in a loop and repeat steps 2-4

if (end)

Out(adep_table);

Table 3: Example of an adep table

IO 1 2 3 4 5 6 7

depIO 0 1 1 2 2 3 5

The adep table, created by the dep algorithm, holds the correspondence between each IO and depIO,

as shown in Table 3. IO_1 is a standalone operation. depIO for both IO_2 and IO_3 is IO_1. The Shape

simulator will use the information in the adep table to rationalise the order in which the IOs are run and

automatically allocate resources to complete the IOPs. Before executing each lunioq, the adep table is

queried to see if there is a depIO and if the depIO has finished executing, and when the depIO has

finished executing or there is no depIO, the current lunioq can start executing dep algorithm will restore

the interlocking relationship between IOPs in program operation, effectively simulate the real operation

state and provide valuable performance analysis results.

3.3 Performance Data Acquisition

In this paper, throughput, latency density and runtime are provided as performance data. Latency

density can be used to compare the IO latency performance between different test programs or different

devices.

3.3.1 Storage pool information

Based on the IO load running in the plausible simulator, the storage pool information records the type

of operation, batch operation, database interaction and other information of the test program respectively,

as shown in Table 4.

Table 4: IO type

op implication

prewrite number of prewrite in the workload

postwrite number of postwrite in the workload

rd number of read in the workload

1) Types of operations

This article introduces two concepts when analysing the performance of workloads: prewrite and

postwrite.

prewrite: a write operation when data is first written to the data segment

postwrite: a non-first write operation to the segment

The first time data is written to a new data segment, the metadata for that segment is created. The two

types of write operations are different in terms of resource utilization and need to be distinguished in

order to analyse the composition of the IO load for developers to tune the system to improve

performance.

Assuming that the size of a data segment is seg_size (in pages), the start disk number of a write

operation is sect_num, the number of blocks per page is sect_per_page, and the data segment in which the

write operation is performed is seg_num (ignoring cross-segment operations), the formula is as follows.

sizesegpagepertnumtnum _*__sec/_sec_seg 
 (1)






postwrite

prewrite
numsegnew

,0

,1
)_(

 (2)

Assuming a total of N IOs in the workload, the relationship between operations is formulated as

follows, where read's represent read operations and cross's represent cross-segment operations.

International Journal of Frontiers in Engineering Technology

ISSN 2706-655X Vol.5, Issue 2: 50-57, DOI: 10.25236/IJFET.2023.050209

Published by Francis Academic Press, UK

-55-

 
NNNN

crossprewritepostwriteread
0000

N
 (3)

This is more comprehensive than traditional information such as throughput and rate, analysing

detailed information about the IO load in operation and providing clear ideas for optimisation.

3.3.2 Latency density information

As mentioned in Section 3.2.2 each lunioq has a request start time ts and a run end time ets. To obtain

delay time information, the Shape simulator internally stores the start run time sts for each IOP and the

delay lat for the m lunioq is calculated as follows:

)()()(lat mtsmstsm 
 (4)

After executing all the IOs, the Shape simulator sorts all the collected IO latency to obtain the

maximum latency Max and the minimum latency Min. According to the number of IOs, all the IOPs are

divided into n groups, with the same number of IOPs in each group, and the latency range of each group

is recorded. Assuming that the total number of IOs is N, the delay range for group i is calculated as

follows.

)1*)(,,1)1(*)(),1(*)max((_max  i
n

N
i

n

N
i

n

N
lat 

 (5)

)1*)(,,1)1(*)(),1(*)min((_min  i
n

N
i

n

N
i

n

N
lat 

 (6)

Where max_lat (i) represents the maximum latency for group i min_lat(i) represents the minimum

latency for group i.

Usually most of the IOPs in a program have concentrated latency, but individual IOPs have

particularly high latency, and the minimum and maximum latency are not representative enough to allow

a comparative study between different workloads or different devices. The latency density proposed in

this paper not only provides the maximum and minimum latency, but also explicitly lists information on

the density of IO latency. The performance of different workloads on the same device, or the same

workload on different devices, can be compared and analysed between control groups to provide clearer

optimisation recommendations to developers.

4. Results

4.1 Test procedure and environment

In this paper, we use TPROC-C provided by HammerDB [22] to perform pressure measurements,

using postgreSQL as the database. P1 and p2 phases are included in the workgroup, for a total of two

workloads.

The workgroup was configured with Ubuntu 20.04, kernel version 5.4.0-050400-generic, a six-core

processor and ext4 5TB SATA HDDs.

The following test results simulate the following multi-tier storage device configuration: 10 1.6GB

SSDs with DWPD of 3 and 10 20TB HDDs with 2 copies on the SSDs, striped HDDs with a redundancy

policy of RAID6, and metadata storage provided by a key-value database on the SSDs.

4.2 Test results

In the test program, the workload is divided into two parts: generating the test data workload (referred

to as p1) and executing the test data workload (referred to as p2). In a real-world usage environment, p1 is

executed much less often than p2, so in the following tests, the focus is more on the performance of p2.

The results of the TPROC-C working group tests in the NSIMPOOL=1, QD=32, QPG=2048

environment are shown in Table 5.

International Journal of Frontiers in Engineering Technology

ISSN 2706-655X Vol.5, Issue 2: 50-57, DOI: 10.25236/IJFET.2023.050209

Published by Francis Academic Press, UK

-56-

Table 5: Results for NSIMPOOL=1, QD=32, QPG=2048

work

load

throughput

(MBS)

elapsed

time (s)
type summary latency density (us)

p1 680.94 55.79

prewr 44300

postwr

242770

rd 77231

max 42086 min 0

0% 0~21 10% 37~52 20% 86~171 30% 227~282 40%

376~461 50% 582~737 60% 883~1061 70%

1268~1511 80% 1809~2218 90% 2854~4067

P2 234.96 80.59

prewr 13747

postwr

606058

rd 353550

max 23057 min 1

0% 1~64 10% 118~178 20% 247~324 30% 406~486

40% 575~664 50% 757~850 60% 947~1050 70%

1163~1292 80% 1443~1633 90% 1902~2374

The throughput of workload P2 is less than 500 MBS when the queue depth is 1. 50% of the IO

latency of workload p2 is around 800 microseconds, and only 35% of the IO is able to keep the latency

below 500 microseconds. Performance can be optimised by adjusting the value of the environment

variable QD or QPG. With the queue depth increased to QD=24 and all other environment variables held

constant, the results of the tests are shown in Table 6 (only the results for workload p2 are presented).

Table 6: Results for NSIMPOOL=1, QD=24, QPG=2048

workload throughput(MBS)
elapsed time

(s)
type summary latency density(us)

P2 648.92 29.18

prewr 13758

postwr 603612

rd 353550

max 98909 min 1

0% 1~33 10% 49~64 20% 90~112

30% 128~141 40% 153~164

50% 176~1884 60% 204~225

70% 252~312 80% 426~560 90% 693~943

Increasing the queue depth resulted in better system performance, as shown in the results above, with

a 94% reduction in transaction processing time in batch processing and 80% of the IO latency in the

workload staying below 500 microseconds.

The test results when NSIMPOOL=4, QD=24 and QPG=2048 are shown in Table 7.

Table 7: Results for NSIMPOOL=4, QD=24, QPG=2048

workload Throughput (MBS) elapsed time (s)

P2 2639.11 28.7

The Shape simulator also supports running different workloads in parallel, i.e. different workloads on

each simulated storage pool. The Shape simulator can be applied to any workloads and this paper only

uses the TPROC-C in HammerDB as examples.

5. Concluslon

In an environment of high demand for distributed block device storage systems, in order to address

the high development costs and post maintenance issues, this paper has focused on the development of a

low cost physical device for undistributed systems and proposed a low cost performance prediction

through a Shape simulator. In addition, the paper designs a workload acquisition method and the Pregen

algorithm supports any test program for input and testing of the Shape simulator, enriching the

performance test metrics and providing a clearer idea for developers to optimise system performance.

The tpcc test is used as an example to demonstrate the feasibility of the plausible simulator and to

optimise the performance based on the performance test metrics. The next research focuses on analysing

other characteristics of the workload for performance prediction and a more comprehensive

consideration of the optimisation path for distributed block devices.

References

[1] Raja F R, Akram A. A Highly Scalable and Efficient Distributed File Storage System [J]. 2022.

[2] Weil S A. Ceph: reliable, scalable, and high-performance distributed storage [J]. Santa Cruz, 2007.

[3] Zhangling W U, Wei M. Distributed storage system, data processing method, and storage node,

US11262916B2 [P]. 2022.

[4] Mak R, Kalyanakrishnan A, Song G Y, et al. Object Tiering in A Distributed Storage System,

International Journal of Frontiers in Engineering Technology

ISSN 2706-655X Vol.5, Issue 2: 50-57, DOI: 10.25236/IJFET.2023.050209

Published by Francis Academic Press, UK

-57-

US2022121364A1 [P]. 2022.

[5] Inggs G, Thomas D B, Luk W. An Efficient, Automatic Approach to High Performance

Heterogeneous Computing [J]. Computer Science, 2015.

[6] Li Z, Shen H. Measuring Scale-Up and Scale-Out Hadoop with Remote and Local File Systems and

Selecting the Best Platform [J]. IEEE Transactions on Parallel and Distributed Systems, 2017, 28(11):

3201-3214.

[7] Aung, Mi K M, Zhu, et al. Building a large-scale object-based active storage platform for data

analytics in the internet of things [J]. Journal of supercomputing, 2016.

[8] Zheng S, Chen R, Jin Y, et al. NeoFlow: A Flexible Framework for Enabling Efficient Compilation

for High Performance DNN Training [J]. IEEE Transactions on Parallel and Distributed Systems, 2021.

[9] Batchu R K, Seetha H. A Hybrid Detection System for DDoS Attacks Based on Deep Sparse

Autoencoder and Light Gradient Boost Machine[J]. Journal of Information & Knowledge Management,

2023, 22(01).

[10] Katkar R, Kulkarni K. Study on Block Device Driver and NVMe their Implementation Impacts on

Performance. 2014.

[11] Shen Z, Chen F, Yadgar G, et al. One Size Never Fits All: A Flexible Storage Interface for SSDs

[C]// 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE,

2019.

[12] Wadhwa B, Byna S, Butt A. Toward Transparent Data Management in Multi-layer Storage

Hierarchy for HPC Systems. 2018.

[13] Office of Law Enforcement Standards (OLES)United States of America, America U. Test Results for

Hardware Write Block Device: FastBloc IDE (Firmware Version 16) [J]. Bureau of Justice

Statistics.2006

[14] M Norell. Test Results for Hardware Write Block Device: Fastbloc Fe (Firewire Interface) [J].

2012.

[15] Yang Y, Huang C, Zhang Y, et al. Processable Potassium–Carbon Nanotube Film with a

Three-Dimensional Structure for Ultrastable Metallic Potassium Anodes[J]. 2022.

[16] Nguyen L D, Leyva-Mayorga I, Popovski P. Witness-based Approach for Scaling Distributed

Ledgers to Massive IoT Scenarios[J]. 2020.

[17] Combs V T, Hurley P, Schultz C B, et al. DISTRIBUTED SYSTEM EVALUATION [J]. 2022.

[18] axboe/fio: Flexible I/O Tester [EB/OL]. [2022-12-23]. https://github.com/axboe/fio

[19] Iozone Filesystem Benchmark [EB/OL]. [2022-12-23]. www.iozone.org/

[20] BCC-Tools for BPF-based Linux IO analysis, networking, monitoring, and more [EB/OL].

[2022-12-23]. https://github.com/iovisor/bcc

[21] TPC benchmarks [EB/OL]. [2022-12-23]. www.tpc.org/

[22] HammerDB open-source software with source code hosted by the TPC [EB/OL]. [2022-12-23].

https://www.hammerdb.con

