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Abstract: With the development of the information age, the volume of data is exploding and the 

operational and performance requirements of massive data are difficult to balance. The high cost of 

distributed storage systems with high data reliability and excellent random read and write performance, 

often consisting of multiple racks, multiple nodes and hundreds of disks, is a thorny issue for researchers. 

A tool to predict the performance of distributed storage architectures has been built based on a study of 

the cost of distributed storage architectures. Without hardware, enabling low cost and fast performance 

prediction. It also provides performance data and latency density to compare the performance of 

different workloads and architectures more intuitively, providing ideas for optimising the performance of 

distributed systems. 
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1. Introduction 

Distributed storage architecture is the most widely used storage architecture today [1-4]. While 

possessing high performance and reliability, distributed storage supports high-capacity scaling and 

horizontal expansion [5,6] and can meet long-term data storage needs in the information age where data 

volumes are increasing. Distributed storage is divided into three categories: object storage [7], block 

storage [8,9] and file storage, of which block storage has the most outstanding read and write 

performance, combined with redundancy technology to ensure high data reliability, and can be used in 

hybrid disk arrays [10]. 

Highly configurable large-scale distributed storage systems require high hardware investment, and 

the cost of hardware devices has become a stumbling block for research work [11,12]. At the same time, 

the performance of block storage is greatly affected by hardware configurations, and the performance 

metrics obtained from different combinations of hardware configurations vary greatly [13-16]. In order 

to comprehensively evaluate the impact of different components on performance, performance testing of 

various hardware combinations is required, which makes evaluating data manipulation and performance 

testing very tedious and labor-intensive and time-consuming just for research environment setup. 

To this end, this paper proposes a performance evaluation platform for virtualisation of block storage, 

the Shape simulator, designed with interception and pre-processing algorithms to extract workloads, 

which enables developers to find breakthroughs in optimising the architecture more quickly. 

2. Related Research 

In previous research on distributed storage systems, most developers would take two approaches to 

predict device performance: first, predicting based on experience [17], and second, getting actual devices 

for testing [14-16]. The former is done by testing a small number of physical devices and thus 

extrapolating the performance of the majority of devices, but distributed storage has a complex structure 

in a non-simple linear relationship that cannot be simply calculated to obtain performance data. As well 

as taking into account factors such as development cost and efficiency. The plausible simulator proposed 

in this paper can discard the physical equipment required for distributed systems and predict system 

performance in the pre-development phase, reducing the financial pressure on the researcher and 

compressing the development cost of the study. 
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Common testing software includes Flexible I/O [18], Iozone [19], etc. The IOP parameters in these 

tests are artificially set, such as the size of the data to be operated, the read/write ratio, etc., but these test 

data often do not match the real work. In this paper, the proposed plausible simulator uses bcc-tools (BPF 

compiler collection) [20] to trace IOPs to get the workload, and the method can be applied to any 

software test, and the tpc series test will be used in this paper [21]. 

3. Imeplementation 

The performance predictions in this paper do not require any hardware devices, which means that no 

software programs can be installed and run on them. Therefore, this paper obtains test results by 

obtaining the workload of a real program in operation and running it simulated on a plausible simulator. 

3.1. Workload acquisition process 

Figure 1 shows the process of acquiring and processing the workload in this paper. The initial 

workload is obtained by bcc-tools interception during the application run, and then the initial snoop file is 

processed by the algorithm Pregen. This algorithm first filters the initial snoop file to ensure the validity 

of each IO; and then completes some environment variables needed in the snoop file to generate the 

complete block device request. 

 

Figure 1: Workload acquisition flow diagram 

3.1.1. BCC interception 

Bcc-tools [20] is a collection of tools for bpftrace, where biosnoop is a trace record of block device IO 

to provide performance prediction and analysis to plausible simulators. biosnoop intercepted IO records 

(referred to as snoop files) are shown in Figure 2: 

 

Figure 2 Sample snoop file 

As shown in Figure 2 the snoop file contains TIME (relative time), COMM (command), PID (process 

id), DISK (located disk), T (type of operation), SECTOR (sector number where the operation starts), 

BYTE (size of the operation in bytes), and LAT (latency in milliseconds). Each line in the Snoop file 

(excluding the header line) is an IOP that initiates a request to the block device. 

3.1.2. Pregen algorithm 

There will be underlying threads running simultaneously in the Linux system, which will result in 

many unrelated and hard to distinguish IOPs in the intercepted snoop file, requiring preprocessing 

operations of the snoop file. In this paper, we first use a separate disk for testing, and then filter out the 

invalid IO through the Pregen algorithm. Invalid IO is generally manifested as. 

1) the items recorded in the Snoop file are incomplete. 
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2) the disk on which it is located is not the disk used for the test. 

3) the sector where it is located is outside the range of the underlying physical device. 

4) the sector on which it is located is outside the range of the underlying physical device. 

The entire application process can be divided into two phases: the data generation phase and the data 

run phase (referred to as p1, p2). Ideally, the application completes all initial data writing operations and 

metadata creation in p1, and the p2 phase runs the data written in p1. However, analysis of the p1 snoop 

file reveals that the p1 phase reads the environment information of the underlying system and the 

environment information of the test program, and as this data is written earlier than the BCC intercept 

time, it will be treated as unknown data directly causing the corresponding operation to fail. To ensure the 

integrity of the workload, the Pregen algorithm will simulate running from a metadata-free space, 

complementing the missing IOPs. The pseudo-code of the Pregen algorithm is as follows: 

Algorithm 1 Pregen. 

Input: Initial snoop file. 

Output: After processed snoop file. 

step1. //read the IOPs in the snoop file 

read();  

step2. //check if the data for each IOP exists 

if (items ! = 8)  

continue; 

step3. //check the reasonableness of each data of IOP 

if (disk ! = TESTDISK)  

continue; 

if (sect > MAXDISK)  

  continue; 

if (byte>MAXBYTE || byte/4096!=0 || byte==0)  

continue; 

step4.//Find the page where the IOP is located 

pno= getpg(sect, byte); 

step5.//check the page data and add 

if (OP == READ)  

int miss = Check(pno); 

else 

save(pno); 

if (miss) 

add(IO); 

step6. out(snoop); 

The Pregen algorithm first filters for valid IOs and assumes that the entire workload is running from a 

metadata-free store. And records the generation operation of this data in the form of a snoop file based on 

it. Without the Pregen algorithm, these IOPs would be identified by the Shape simulator as spurious or 

worthless IOPs and discarded, resulting in a lack of integrity in the loaded IO load and further causing the 

system to crash. The lightweight Pregen algorithm yields pure and complete workloads as real IO 

requests in the fastest way possible. 
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3.2 Design and implementation of the Shape simulator 

3.2.1 Environment variables 

User-adjustable parameters are provided in the Shape simulator, as shown in Table 1. 

Table 1: Environment variables 

environment Implication example 

NSIMPOOL number of simpool NSIMPOOL=1 

QD number of queue depth QD=32 

QPG max page in a batch QPG=2048 

SNOOP_<n> path of workload SNOOP_1=TPROC-C/p1.txt 

3.2.2 Structure design for IO requests 

The IO information output after bcc interception is in snoop file format, and IOPs in this format 

cannot be directly applied to the Shape simulator. In this paper, the lunioq structure is designed to be used 

as an executable IOP for the Shape simulator, and the IO queue generated by lunioq is made available to 

the Shape simulator at the beginning of its operation. Lunioq is designed as shown in Table 2. 

Table 2: Lunioq structure 

variable implication 

Ts,ets start time and end time of IOP 

Op operation type of IOP 

Simidx simpool index 

Poolid pool index 

Lunid LUN id 

Ls64 ls64 number of IOP on the lun (ls64 has 64 pages) 

Ls64pno offset on the ls64 (page) 

Npg number of page 

ser IOP index 

Done done flag, if finish will set to 1 

3.2.3 Design and implementation of the Shape simulation 

If the lunioq queues were pressed directly into the Shape simulator, the inter-constraints of real 

operation would be lost and the simulated runtime flow would lack realism. To solve this problem, the 

dep algorithm is designed to analyse the dependencies of a series of IOPs and establish dependencies that 

constrain the operation. Only the dependent IOP (referred to as depIO) will be run before the next IOP 

can be run. Dep algorithm will analyse the depIO based on the information in the snoop file and store it in 

the relationship table (adep table). Dep algorithm is as follows. 

Algorithm 2; IO dependency analysis algorithm dep 

Input: After Pregen snoop file. 

Output: Dependency relationship table for IOPs adep 

1. // Read IO_1 and calculate the relative start time of IO_1 in the program tim 

Read(IO) 

Time = Gettime(IO) 

2. // Read the operations in the IO queue sequentially and find depIO 

Read(nextIO) 

Nexttime = time(nextIO) 

isDep = Compare(time, nexttime) 

3. //If their running times overlap then depIO for IO_3 is IO_1, otherwise depIO for IO_2. 

if (isdep) 

put(IO, nextIO) 
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Else  

4.// Read the next IO in a loop and repeat steps 2-4 

if (end) 

Out(adep_table); 

Table 3: Example of an adep table 

IO 1 2 3 4 5 6 7 

depIO 0 1 1 2 2 3 5 

The adep table, created by the dep algorithm, holds the correspondence between each IO and depIO, 

as shown in Table 3. IO_1 is a standalone operation. depIO for both IO_2 and IO_3 is IO_1. The Shape 

simulator will use the information in the adep table to rationalise the order in which the IOs are run and 

automatically allocate resources to complete the IOPs. Before executing each lunioq, the adep table is 

queried to see if there is a depIO and if the depIO has finished executing, and when the depIO has 

finished executing or there is no depIO, the current lunioq can start executing dep algorithm will restore 

the interlocking relationship between IOPs in program operation, effectively simulate the real operation 

state and provide valuable performance analysis results. 

3.3 Performance Data Acquisition 

In this paper, throughput, latency density and runtime are provided as performance data. Latency 

density can be used to compare the IO latency performance between different test programs or different 

devices. 

3.3.1 Storage pool information 

Based on the IO load running in the plausible simulator, the storage pool information records the type 

of operation, batch operation, database interaction and other information of the test program respectively, 

as shown in Table 4. 

Table 4: IO type 

op implication 

prewrite number of prewrite in the workload 

postwrite number of postwrite in the workload 

rd number of read in the workload 

1) Types of operations 

This article introduces two concepts when analysing the performance of workloads: prewrite and 

postwrite. 

prewrite: a write operation when data is first written to the data segment 

postwrite: a non-first write operation to the segment 

The first time data is written to a new data segment, the metadata for that segment is created. The two 

types of write operations are different in terms of resource utilization and need to be distinguished in 

order to analyse the composition of the IO load for developers to tune the system to improve 

performance. 

Assuming that the size of a data segment is seg_size (in pages), the start disk number of a write 

operation is sect_num, the number of blocks per page is sect_per_page, and the data segment in which the 

write operation is performed is seg_num (ignoring cross-segment operations), the formula is as follows. 

sizesegpagepertnumtnum _*__sec/_sec_seg 
  (1) 






postwrite

prewrite
numsegnew

,0

,1
)_(

   (2) 

Assuming a total of N IOs in the workload, the relationship between operations is formulated as 

follows, where read's represent read operations and cross's represent cross-segment operations. 
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N
     (3) 

This is more comprehensive than traditional information such as throughput and rate, analysing 

detailed information about the IO load in operation and providing clear ideas for optimisation. 

3.3.2 Latency density information 

As mentioned in Section 3.2.2 each lunioq has a request start time ts and a run end time ets. To obtain 

delay time information, the Shape simulator internally stores the start run time sts for each IOP and the 

delay lat for the m lunioq is calculated as follows: 

)()()(lat mtsmstsm 
     (4) 

After executing all the IOs, the Shape simulator sorts all the collected IO latency to obtain the 

maximum latency Max and the minimum latency Min. According to the number of IOs, all the IOPs are 

divided into n groups, with the same number of IOPs in each group, and the latency range of each group 

is recorded. Assuming that the total number of IOs is N, the delay range for group i is calculated as 

follows. 

)1*)(,,1)1(*)(),1(*)max((_max  i
n

N
i

n

N
i

n

N
lat 

              (5) 
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n
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i

n

N
i

n

N
lat 

               (6) 

Where max_lat (i) represents the maximum latency for group i min_lat(i) represents the minimum 

latency for group i. 

Usually most of the IOPs in a program have concentrated latency, but individual IOPs have 

particularly high latency, and the minimum and maximum latency are not representative enough to allow 

a comparative study between different workloads or different devices. The latency density proposed in 

this paper not only provides the maximum and minimum latency, but also explicitly lists information on 

the density of IO latency. The performance of different workloads on the same device, or the same 

workload on different devices, can be compared and analysed between control groups to provide clearer 

optimisation recommendations to developers. 

4. Results 

4.1 Test procedure and environment 

In this paper, we use TPROC-C provided by HammerDB [22] to perform pressure measurements, 

using postgreSQL as the database. P1 and p2 phases are included in the workgroup, for a total of two 

workloads. 

The workgroup was configured with Ubuntu 20.04, kernel version 5.4.0-050400-generic, a six-core 

processor and ext4 5TB SATA HDDs. 

The following test results simulate the following multi-tier storage device configuration: 10 1.6GB 

SSDs with DWPD of 3 and 10 20TB HDDs with 2 copies on the SSDs, striped HDDs with a redundancy 

policy of RAID6, and metadata storage provided by a key-value database on the SSDs. 

4.2 Test results 

In the test program, the workload is divided into two parts: generating the test data workload (referred 

to as p1) and executing the test data workload (referred to as p2). In a real-world usage environment, p1 is 

executed much less often than p2, so in the following tests, the focus is more on the performance of p2. 

The results of the TPROC-C working group tests in the NSIMPOOL=1, QD=32, QPG=2048 

environment are shown in Table 5. 
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Table 5: Results for NSIMPOOL=1, QD=32, QPG=2048 

work

load 

throughput

(MBS) 

elapsed 

time (s) 
type summary latency density (us) 

p1 680.94 55.79 

prewr 44300 

postwr 

242770 

rd 77231 

max 42086 min 0 

0% 0~21 10% 37~52 20% 86~171 30% 227~282 40% 

376~461 50% 582~737 60% 883~1061 70% 

1268~1511 80% 1809~2218 90% 2854~4067 

P2 234.96 80.59 

prewr 13747 

postwr 

606058 

rd 353550 

max 23057 min 1 

0% 1~64 10% 118~178 20% 247~324 30% 406~486 

40% 575~664 50% 757~850 60% 947~1050 70% 

1163~1292 80% 1443~1633 90% 1902~2374 

The throughput of workload P2 is less than 500 MBS when the queue depth is 1. 50% of the IO 

latency of workload p2 is around 800 microseconds, and only 35% of the IO is able to keep the latency 

below 500 microseconds. Performance can be optimised by adjusting the value of the environment 

variable QD or QPG. With the queue depth increased to QD=24 and all other environment variables held 

constant, the results of the tests are shown in Table 6 (only the results for workload p2 are presented). 

Table 6: Results for NSIMPOOL=1, QD=24, QPG=2048 

workload throughput(MBS) 
elapsed time 

(s) 
type summary latency density(us) 

P2 648.92 29.18 

prewr 13758 

postwr 603612 

rd 353550  

max 98909 min 1 

0% 1~33 10% 49~64 20% 90~112 

30% 128~141 40% 153~164 

50% 176~1884 60% 204~225 

70% 252~312 80% 426~560 90% 693~943 

Increasing the queue depth resulted in better system performance, as shown in the results above, with 

a 94% reduction in transaction processing time in batch processing and 80% of the IO latency in the 

workload staying below 500 microseconds. 

The test results when NSIMPOOL=4, QD=24 and QPG=2048 are shown in Table 7. 

Table 7: Results for NSIMPOOL=4, QD=24, QPG=2048 

workload Throughput (MBS) elapsed time (s) 

P2 2639.11 28.7 

The Shape simulator also supports running different workloads in parallel, i.e. different workloads on 

each simulated storage pool. The Shape simulator can be applied to any workloads and this paper only 

uses the TPROC-C in HammerDB as examples. 

5. Concluslon 

In an environment of high demand for distributed block device storage systems, in order to address 

the high development costs and post maintenance issues, this paper has focused on the development of a 

low cost physical device for undistributed systems and proposed a low cost performance prediction 

through a Shape simulator. In addition, the paper designs a workload acquisition method and the Pregen 

algorithm supports any test program for input and testing of the Shape simulator, enriching the 

performance test metrics and providing a clearer idea for developers to optimise system performance. 

The tpcc test is used as an example to demonstrate the feasibility of the plausible simulator and to 

optimise the performance based on the performance test metrics. The next research focuses on analysing 

other characteristics of the workload for performance prediction and a more comprehensive 

consideration of the optimisation path for distributed block devices. 
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