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Abstract: In order to study the classification laws of glass types, the data were first divided into two 
categories of weathered and unweathered points, and then k-means cluster analysis was used to 
subdivide each category of data into two categories. It was found that the artifacts in these two categories 
corresponded to high potassium glass and lead-barium glass, respectively, indicating that k-means 
cluster analysis could be used as a classification law for high potassium glass and lead-barium glass. 
Since there are 14 chemical components in each of the four categories, it is more difficult and 
complicated to use them as the basis for subcategory classification, so principal component analysis was 
applied to reduce the dimensionality, and the 14 chemical components were replaced by comprehensive 
indicators (principal components) filtered by the cumulative contribution of eigenvalues over 80%. Then, 
the sample glass was classified into 15 classes by applying SPSS software to classify the principal 
components of each class as variables, respectively, and the samples as one event for clustering. In order 
to verify whether the classification method established by this model is realistic, the results of the division 
of each category into classes were analyzed separately using ROC curves for reasonableness and 
sensitivity in this paper, and the final reasonableness and sensitivity were both good.  

Keywords: Glass type, Classification law, K-means cluster analysis, Principal component analysis 
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1. Introduction 

The main chemical composition of quartz sand is silicon dioxide (SiO2), which is the most important 
raw material for glass making. However, because the refining process in ancient times was not high 
enough to reach the melting point of pure quartz sand, the ancients would add fluxes to pure quartz sand 
to lower the melting temperature of quartz sand in glass making. In ancient times, people often used grass 
ash, natural soda ash, saltpeter and lead ore as fluxes, and limestone as stabilizer. Different fluxes contain 
different chemical compositions, resulting in different chemical compositions in the manufactured glass. 
For example, the ancient Chinese invented lead-barium glass, adding lead ore as a flux to quartz sand in 
the refining and firing process, and eventually obtaining lead-barium glass, which contains more lead 
oxide (PbO) and barium oxide (BaO). There is also potassium glass, which is popular in Lingnan, China, 
as well as in Southeast Asia and India, and other regions, is manufactured by melting fluxes that have a 
high content of potassium [1]. 

Ancient glass is easily affected by the environment and weathered. In the process of weathering, 
elements inside the glass will exchange with elements outside, which in turn will change the original 
composition of the glass, so that the ratio of various chemical components contained inside the glass will 
change, creating a great disturbance in the judgment of glass categories. To find the influence of different 
types and differentiation on the chemical composition of glass, and to establish a model to distinguish 
the nature of glass by its chemical composition, it is important to study the ancient glass "culture"[2]. 

This study intends to investigate the classification laws of high potassium glass and lead-barium glass. 
And a few more major chemical compositions were selected as the discriminatory criteria for a second 
and more detailed classification of different categories of glasses, and the results of the classification 
were analyzed for reasonableness and sensitivity. 



Academic Journal of Materials & Chemistry 
ISSN 2616-5880 Vol. 4, Issue 3: 39-46, DOI: 10.25236/AJMC.2023.040306 

Published by Francis Academic Press, UK 
-40- 

2. Model building and analysis 

2.1 Classification rules for two types of glass 

In the study of high potassium glass and lead-barium glass, we first divided the data into two 
categories: weathered and unweathered, and then used k-means cluster analysis to subdivide the data in 
each category into two categories. 

(1) Principle of clustering analysis 

K-means cluster analysis [3] is a simple and efficient analysis method that is often applied to cluster 
analysis of large-scale data and has resulted in many other kinds of cluster analysis algorithms. 

The k in k-means cluster analysis represents the data to be divided into k classes, and it is necessary 
to first determine the mean vector of the samples in the cluster selected as the center of the cluster during 
the iteration, and the data in each cluster should satisfy that the sum of squares to the center of that cluster 
is the smallest, and thus the data to be classified into k clusters, each of which. 

(2) The main steps of k-means clustering analysis 

Step 1: Select any k objects from the input data as the initial clustering centers. 

Step 2: According to the mean value of different clustering objects, go to calculate the distance from 
the target object to these clustering centers, and according to the minimum distance is used to re-classify 
the corresponding objects. 

Step 3: Calculate the average value of each cluster. 

Step 4: Repeat Step 2 and Step 3 until each cluster no longer changes. 

Since the question is to determine the classification law of high potassium glass and lead-barium 
glass, the k value here is taken as 2, that is, the target objects are divided into two classes, corresponding 
to high potassium glass and lead-barium glass respectively. 

(3) Clustering results 

Table 1: Comparison of predicted and actual types of artifacts 
Artifact Number Actual Type Clustering Type Artifact Number Actual Type Clustering Type 

07 High Potassium High Potassium 38 Lead Barium Lead Barium 
09 High Potassium High Potassium 39 Lead Barium Lead Barium 
10 High Potassium High Potassium 40 Lead Barium Lead Barium 
12 High Potassium High Potassium 41 Lead Barium Lead Barium 
22 High Potassium High Potassium 43 Lead Barium Lead Barium 
27 High Potassium High Potassium 43 Lead Barium Lead Barium 
48 Lead Barium High Potassium 49 Lead Barium Lead Barium 
02 Lead Barium Lead Barium 50 Lead Barium Lead Barium 
08 Lead Barium Lead Barium 51 Lead Barium Lead Barium 
08 Lead Barium Lead Barium 51 Lead Barium Lead Barium 
11 Lead Barium Lead Barium 52 Lead Barium Lead Barium 
19 Lead Barium Lead Barium 54 Lead Barium Lead Barium 
26 Lead Barium Lead Barium 54 Lead Barium Lead Barium 
26 Lead Barium Lead Barium 56 Lead Barium Lead Barium 
34 Lead Barium Lead Barium 57 Lead Barium Lead Barium 
36 Lead Barium Lead Barium 58 Lead Barium Lead Barium 

Note: The bolded ones are artifacts with wrong predictions. 

After dividing the detection points into weathering points and unweathered points, the data were 
finally classified into two categories by cluster analysis. For the classification of weathering points, we 
got 7 artifacts belonging to high potassium glass and 25 glasses belonging to lead-barium glass. 
Compared with the actual 6 artifacts of high potassium glass and 26 artifacts of lead-barium glass, there 
is a little prediction error, but the accuracy rate reaches 96.25%, which can meet the requirements of use. 
For the classification of unweathered points, we also divided them into two types of glass, high potassium 
and lead-barium, and finally obtained 13 high potassium glasses and 22 lead-barium glasses, which still 
have an error with the actual value type, but the accuracy rate still meets the requirements of use. Among 
them, the classification results of undifferentiated glass are shown in Table Details see Table 1. 

(4) Classification law 

The above classification of glass using k-means cluster analysis was divided into high potassium 
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glass and lead-barium glass, which were 67 data, of which two pairs of classification errors occurred, 
and the correct rate reached 97%, which shows that the classification criteria of k-means cluster analysis 
can be used as classification criteria for high potassium glass and lead-barium glass. 

For the classification criteria of high potassium glass and lead-barium glass, we first identified several 
chemical components that significantly affect the classification type of glass, and identified the mean and 
standard deviation corresponding to these chemical components, i.e., a certain chemical component 
between the mean ± standard deviation can be considered as a distance of 0. A sample to a certain type 
with the smallest sum of all squared distances can be considered to change the sample to belong to this 
type of glass.  

2.2 Principal component analysis method 

(1) Establishment of the method 

From the above, it can be seen that the heritage samples can be initially divided into four categories: 
weathered high potassium glass, weathered lead-barium glass, unweathered high potassium glass, and 
unweathered lead-barium glass, for which we will conduct a second division, i.e., subcategory division. 
Since there are various chemical components detected in each category, it is more difficult and 
complicated to perform subcategory division, so we choose to use the principal component analysis 
method to retain as much information as possible from the original variables through the dimensionality 
reduction technique with fewer new variables, and these new variables we call the principal components. 

(2) Detailed explanation of the steps 

Step 1: Acquisition of data. 

Assuming that there are n samples with p chemical components, a sample matrix x of size n × p can 
be formed. 

𝑥𝑥 = �

𝑥𝑥11 𝑥𝑥12 ⋯ 𝑥𝑥1𝑝𝑝
𝑥𝑥21 𝑥𝑥22 ⋯ 𝑥𝑥2𝑝𝑝
⋮ ⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛1 𝑥𝑥𝑛𝑛2 ⋯ 𝑥𝑥𝑛𝑛𝑝𝑝

� = (𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑝𝑝)                      (1) 

Step 2: Data standardization. 

The zero-mean method (z-score) is used to process the data, and the data obeying the standard normal 
distribution with mean 0 and standard deviation 1 can be obtained, i.e., the standardized data 𝑋𝑋ij =

𝑋𝑋ij−𝑋𝑋ȷ���

𝑆𝑆𝑗𝑗
, 

and the original sample matrix becomes after standardization. 

𝑋𝑋 =

⎣
⎢
⎢
⎡
𝑋𝑋11 𝑋𝑋12 ⋯ 𝑋𝑋1𝑝𝑝
𝑋𝑋21 𝑋𝑋22 ⋯ 𝑋𝑋2𝑝𝑝
⋮ ⋮ ⋱ ⋮
𝑋𝑋𝑛𝑛1 𝑋𝑋𝑛𝑛2 ⋯ 𝑋𝑋𝑛𝑛𝑝𝑝⎦

⎥
⎥
⎤

= (𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑝𝑝)                    (2) 

Step 3: Calculate the covariance matrix. 

Obtained by 𝑟𝑟𝑖𝑖𝑖𝑖 = 1
𝑛𝑛−1

� (𝑋𝑋𝑘𝑘𝑖𝑖 − 𝑋𝑋𝚤𝚤� )50
𝑘𝑘=1 �𝑋𝑋𝑘𝑘𝑖𝑖 − 𝑋𝑋𝚥𝚥� � 
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⋮ ⋮ ⋱ ⋮
𝑅𝑅𝑛𝑛1 𝑅𝑅𝑛𝑛2 ⋯ 𝑅𝑅𝑛𝑛𝑝𝑝⎦

⎥
⎥
⎤
                         (3) 

Step 4: Calculate the eigenvalues and eigenvectors of the covariance matrix. 

Eigenvalues. 

                                                                     𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑖𝑖 ≥ 0                         (4) 

Eigenvectors. 
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Step 5: Calculate the contribution of principal components as well as the cumulative contribution. 

𝑆𝑆𝑖𝑖 = 𝜆𝜆𝑖𝑖
� 𝜆𝜆𝑘𝑘

𝑝𝑝
𝑘𝑘=1

(𝑖𝑖 = 1,2,⋯ ,𝑝𝑝)                     (6) 

𝑆𝑆𝑛𝑛 =
� 𝜆𝜆𝑘𝑘

𝑖𝑖
𝑘𝑘=1

� 𝜆𝜆𝑘𝑘
𝑝𝑝
𝑘𝑘=1

(𝑖𝑖 = 1,2,⋯ ,𝑝𝑝)                             (7) 

Where Si represents the contribution rate and Sn represents the cumulative contribution rate. 

By the above method, the eigenvalues and contribution values of each glass category were finally 
obtained, where the eigenvalues and contribution rates of the unweathered high potassium glass category 
were calculated as shown in Table 2. 

Table 2: Calculated eigenvalues and contribution rates for the unweathered high potassium glass 
category 

Principal Component Number Eigenvalue Contribution rate Cumulative contribution rate 
1 4.1121 0.5140 0.5140 
2 3.0068 0.3758 0.8899 
3 0.6363 0.0795 0.9694 
4 0.2120 0.0265 0.9959 
5 0.0328 0.0041 1.0000 
6 0.0000 0.0000 1.0000 
7 0.0000 0.0000 1.0000 
8 0.0000 0.0000 1.0000 
9 0.0000 0.0000 1.0000 
10 0.0000 0.0000 1.0000 
11 0.0000 0.0000 1.0000 
12 0.0000 0.0000 1.0000 
13 0.0000 0.0000 1.0000 
14 0.0000 0.0000 1.0000 

2.3 Calculating principal components 

(1) Principal component calculation 

The first, second, and t-th (t≤p) principal components corresponding to the eigenvalues whose 
cumulative contribution exceeds 80% are taken. 

The i-th principal component: FI=c1iX1+c2iX2+...+cpiXp (i=1, 2, ..., t). 

Table 3: Eigenvectors of the first four principal components of the unweathered high potassium glass 
category on the original data 

Chemical composition Principal Components 
F1 F2 F3 F4 

SiO2 0.1536 -0.4759 -0.1009 -0.1854 
Na2O 0.2605 0.3147 -0.2287 0.3426 
K2O 0.1546 0.3002 0.1487 0.3804 
CaO 0.1667 0.4755 0.0884 -0.0799 
MgO -0.3792 -0.1082 0.2254 0.094 

Al2O3 -0.3111 0.2292 -0.1071 0.2875 
Fe2O3 -0.3855 0.2152 0.1197 -0.071 
CuO -0.1575 0.2768 0.0593 -0.468 
PbO -0.0228 0.1388 -0.5661 -0.1012 
BaO -0.3084 0.0139 -0.392 -0.3134 
P2O5 -0.4287 -0.0702 0.0546 0.1883 
SrO -0.3979 -0.051 -0.029 0.2823 

SnO2 0.064 -0.3683 0.0644 0.3101 
SO2 0.0323 0.0921 0.5877 -0.2487 

Note: The data in bold in the table indicate the contribution weight of the principal components reflecting the relevant chemical 
components. 

For example, if the cumulative contribution of the eigenvalues of the category of unweathered high 
potassium glass exceeds 80%, the corresponding first, second, third and fourth principal components' 
eigenvectors on the original data are shown in Table 3. 
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(2) Analysis of the significance of principal component representatives based on coefficients 

For a certain principal component, the larger the coefficient in front of the indicator, the greater the 
influence of the representative indicator on that principal component. 

For example, the category of unweathered high potassium glass. 

1) First principal component F1 mainly reflects the contribution of MgO, Al2O3, Fe2O3, BaO, P2O5 
and SrO, which are mainly related. 

2) Second principal component F2 mainly reflects the contribution of SiO2, CaO, and K2O:Na2O <1. 
According to the online information query, it can be regarded as Na2O(K2O)-CaO-SiO2 glass system. 

3) The third main component F3 mainly reflects the contribution of SO2, PbO, and PbO, K2O as the 
main co-solvent in our glass system, so it is judged to be a co-solvent component. 

4) Fourth main component F4 is mainly the contribution weight of CuO, which is a coloring oxide and 
can be classified as a colorant component [4]. 

2.4 Subclassification of principal components by cluster analysis 

 

 
Figure 1: Spectrum diagram using average links (between groups) 
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From the above principal component analysis method we obtained the principal component indicators 
that can reflect the whole data set more comprehensively with a small number of composite variables. 
Then, by using SPSS software, we performed cluster analysis with four categories of principal components 
as variables and each sample as an event, respectively, to derive a cluster dendrogram, and finally we 
divided the samples in each category more carefully by observing the cluster dendrogram (Figure 1). 

2.5 Rationality and sensitivity analysis of ROC curves on subclassification results 

(1) Definition analysis 

The RCO curve reveals the interrelationship between sensitivity and specificity by applying the 
constitutive method, and is a composite indicator of the continuous variables of response sensitivity and 
specificity. Its horizontal coordinate is the true rate FPR and the vertical coordinate is the false positive 
rate TPR. 

This question needs to analyze and test the rationality of the subclassification results as well as the 
sensitivity, and the definition of ROC shows that this class method meets the requirements of this question. 

(2) Application of SPSS to plot ROC curves (using unweathered high potassium glass as an example) 

The ROC curve visualizes the relationship between the false positive rate (1-specificity) and the true 
positive rate (sensitivity) [5]. 

Step 1: AUC, the area under the ROC curve, has a value between 0 and 1. The closer the AUC is to 1, 
the better the diagnosis. 

Step 2: AUC is judged by the following criteria: below 0.5 does not match the actual situation, 0.5 
indicates no diagnostic value at all, between 0.5 and 0.7 has very low diagnostic value, 0.7 to 0.9 indicates 
some diagnostic value, and above 0.9 indicates high diagnostic value (Table 4). 

Table 4: Summary of AUC of ROC results 
Title AUC Standard error p 95% CI 
F1 0.778 0.157 0.076 0.471 ~ 1.085 
F2 0.833 0.124 0.007** 0.590 ~ 1.077 
F3 0.722 0.163 0.173 0.403 ~ 1.042 
F4 0.556 0.178 0.755 0.206 ~ 0.905 

* p<0.05 ** p<0.01 
We constructed ROC curves with F1, F2, F3, and F4 as variables to determine their diagnostic value 

for type, as seen in the above table. 

F1 corresponds to an AUC value of 0.778 (95% CI:47.09%~108.47%), implying that F1 has a higher 
diagnostic value for the type. 

F2 corresponds to an AUC value of 0.833 (95% CI: 58.99% to 107.68%), implying that F2 has a higher 
diagnostic value for the type. 

F3 corresponded to an AUC value of 0.722 (95% CI:40.27%~104.17%), implying that F3 has a higher 
diagnostic value for the type. 

F4 corresponded to an AUC value of 0.556, implying that F4 has a lower diagnostic value for the type. 

In conclusion, it can be seen that F1, F2 and F3 have a high diagnostic value for type. 

Table 5: Results of ROC best bounds 
Title AUC Optimum Boundary Sensitivity Specificity Cut-off 
F1 0.778 0.667 1.000 0.667 -0.652 
F2 0.833 0.667 1.000 0.667 -0.971 
F3 0.722 0.500 0.500 1.000 0.418 
F4 0.556 0.333 0.833 0.500 -0.871 

The optimal cut-off value of the ROC curve (the maximum value of the Jorden index) is the point of 
maximum diagnostic value. 

Step 1: The optimal cut-off value is the critical point corresponding to the maximum diagnostic value. 

Step 2: The optimal cut-off value is the point corresponding to the best combination of true positive 
rate and true negative rate. 

From the Table 5, we can see that F1 corresponds to an AUC value of 0.778, which means that F1 has 
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a higher diagnostic value for the type and corresponds to an optimal cut-off value of 0.667 (at this time, 
the sensitivity is 1.000 and the specificity is 0.667). 

F2 corresponds to an AUC value of 0.833, which means that F2 has a higher diagnostic value for the 
type and corresponds to an optimal cut-off value of 0.667 (at this point the sensitivity is 1.000 and the 
specificity is 0.667). 

F3 corresponds to an AUC value of 0.722, which means that F3 has a higher diagnostic value for the 
type and corresponds to an optimal cut-off value of 0.500 (at this point the sensitivity is 0.500 and the 
specificity is 1.000). 

F4 corresponds to an AUC value of 0.556, which means that the diagnostic value of F4 for the type is 
relatively low. 

In conclusion, it can be seen that F1, F2 and F3 will have a high diagnostic value for the type (Figure 
2). 

 
Figure 2: ROC curve 

3. Conclusions 

In order to study the classification laws of glass types, the data were first divided into two categories 
of weathered and unweathered points, and then k-means cluster analysis was used to subdivide each 
category of data into two categories. It was found that the artifacts in these two categories corresponded 
to high potassium glass and lead-barium glass, respectively, indicating that k-means cluster analysis could 
be used as a classification law for high potassium glass and lead-barium glass. Since there are 14 chemical 
components in each of the four categories, it is more difficult and complicated to use them as the basis for 
subcategory classification, so principal component analysis was applied to reduce the dimensionality, and 
the 14 chemical components were replaced by comprehensive indicators (principal components) filtered 
by the cumulative contribution of eigenvalues over 80%. Then, the sample glass was classified into 15 
classes by applying SPSS software to classify the principal components of each class as variables, 
respectively, and the samples as one event for clustering. In order to verify whether the classification 
method established by this model is realistic, the results of the division of each category into classes were 
analyzed separately using ROC curves for reasonableness and sensitivity in this paper, and the final 
reasonableness and sensitivity were both good. 
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