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Abstract: This paper presents a No-Reference Image Quality Assessment (NR-IQA) method inspired by 
human visual perception. It integrates a dual-branch multi-level residual network that combines two 
complementary streams: one processing HSV images to capture content features aligned with human 
perception, and another utilizing contrast-sensitive weighted gradient (CSG) images to extract structural 
and texture features. This dual-branch architecture provides a comprehensive assessment of image 
quality from both content and structural perspectives. An advanced feature fusion strategy is introduced, 
employing a dedicated weight module to assign varying importance to content and structural features, 
ensuring an accurate final quality score. Experimental results on benchmark datasets, including LIVE, 
CSIQ, TID2013, LIVEC, and KonIQ-10k, showcase the superiority of our method over existing state-of-
the-art NR-IQA techniques in key metrics like PLCC and SROCC. Our work holds significant practical 
value in advancing image quality assessment and has potential applications in multimedia compression, 
image restoration, enhancement, and related image processing technologies. 
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1. Introduction 

Images are crucial for information acquisition, but distortion during acquisition, transmission, 
processing, and storage can hinder information extraction. In Image Quality Assessment (IQA), 
methodologies are divided into subjective and objective IQA. Subjective IQA relies on human 
observation and scoring, suitable for small image sets but inefficient for large datasets[1]. Objective IQA 
uses algorithms to mimic human perception, overcoming manual scoring limitations and boosting 
efficiency for large-scale evaluations. Objective IQA is further categorized into Full-Reference (FR-IQA), 
Reduced-Reference (RR-IQA), and No-Reference (NR-IQA) methods. NR-IQA, which doesn't require 
reference images, holds greater value and practical significance due to challenges in acquiring high-
quality references. 

Traditional NR-IQA (No-Reference Image Quality Assessment) methodologies rely on 
straightforward regression models to convert handcrafted low-level attributes, including Natural Scene 
Statistics (NSS) attributes, into numerical assessments of image quality[2][3][4][5][6]. However, these 
manually extracted features have inherent limitations. Specifically, the manual feature design process 
often hinges on researchers' experiences and intuitions, potentially leading to the oversight of 
comprehensive factors that impact image quality. The inherent subjectivity in this design approach can 
result in discrepancies and unpredictability in evaluation outcomes. Furthermore, manually devised 
features are frequently tailored for specific distortion types or image contents, potentially compromising 
their effectiveness when faced with diverse distortion types or image contents. 

With the rapid advancements in deep learning, numerous Blind Image Quality Assessment (BIQA) 
methods leveraging this technology have emerged, such as IQA-CNN[7], DIQaM-NR[8], DIQA[9], 
HyperIQA[10], DB-CNN[11], and TS-CNN[12]. These methods possess formidable learning capabilities, 
enabling them to automatically extract high-level features from distorted images. Compared to traditional 
methods, deep learning-based approaches offer an end-to-end training paradigm, facilitating a more 
efficient mapping of extracted features to image quality scores. 

While current deep learning-driven IQA methods strive to enhance their performance through 
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optimizations of network architectures or the integration of additional network modules to bolster feature 
extraction capabilities, they tend to overlook the pivotal influence and potential guiding role of Human 
Visual System (HVS) characteristics. Notably, the contrast sensitivity feature of the HVS highlights the 
varying sensitivity of the human eye to different spatial frequencies[13], a factor that warrants further 
consideration in the development of BIQA methods. Campbell et al[14]proposed a contrast sensitivity 
function to explicitly calculate the sensitivity of the HVS to different spatial frequencies. Several 
traditional IQA methods[15][16] have employed the contrast sensitivity function to assign weights to 
extracted features, aiming to achieve superior performance. 

The goal of Image Quality Assessment (IQA) is to measure image distortion based on human visual 
perception. This research explores the integration of Human Visual System (HVS) characteristics with 
deep learning techniques. Although existing methods have shown progress, there's potential for deeper 
exploration. This article introduces HVPIQA, a no-reference IQA method based on human visual 
perception and a dual-branch multi-level residual network. Contributions include: 

(1)Converting RGB images to HSV and CSG formats to extract content features from HSV and 
texture/structural features from CSG. 

(2)Introducing a dual-branch network to extract multi-level features from both HSV and CSG images, 
which are then fused and mapped to a quality score. 

(3)Incorporating a weighting mechanism to prioritize significant features from each branch. 

(4)Demonstrating superior performance through extensive experimentation and comparisons with 
state-of-the-art methods across five databases. 

The structure of the rest of this document is as follows: Section 2 reviews traditional, handcrafted 
feature-based IQA methods and those based on deep learning. Section 3 elaborates on the components of 
the HVPIQA methodology discussed in this paper. Section 4 presents a series of experiments validating 
the improvements of our proposed HVPIQA. Finally, Section 5 summarizes the key findings and 
conclusions. 

2. Related works  

2.1. NR-IQA Based on Hand-crafted Features  

Natural Scene Statistics (NSS) models are widely used for reliable feature extraction in Image Quality 
Assessment (IQA). NSS assumes that natural images occupy a constrained subspace defined by specific 
statistical properties[17]. Distortions affect these properties, and capturing deviations from them in 
distorted images indicates image quality. Researchers used the Generalized Gaussian Distribution (GGD) 
to model wavelet decomposition coefficients, identifying distortion types and predicting quality scores. 
They further developed DIIVINE[2] for a comprehensive portrayal of scene statistics. Saad et al[3] applied 
the Discrete Cosine Transform (DCT) to derive contrast and structural features, correlating them with 
quality scores through a probabilistic model. However, these transform-domain methods are 
computationally intensive. 

To avoid image transformation, researchers proposed methods for direct NSS feature extraction in 
the spatial domain. Mittal et al[5] introduced BRISQUE, an NR-IQA method using locally normalized 
luminance coefficients to quantify naturalness loss. They also presented NIQE[6], a simple yet effective 
spatial domain NSS model comparing pristine and distorted image features. Yue et al[18] proposed an NR-
IQA method for contrast-distorted images, combining entropy information and Kullback-Leibler 
divergence to derive quality scores. 

2.2. NR-IQA Based on Deep Learning  

TAIn recent years, learning-based methods have proven effective in No-Reference Image Quality 
Assessment (NR-IQA). Kang et al[7] introduced CNNs for NR-IQA, segmenting distorted images 
into 32×32 pixel patches and assigning quality scores. Shen et al[19] designed a saliency-based filtering 
model, incorporating an upsampling layer subnetwork and dual-stream feature fusion. Liu et al[20] 
proposed a multi-level feature enhancement method, with an Attention Enhancement Module (AEM) 
and Residual Feature Augmentation (RFA) module. Ye et al[21] introduced DRIQA-NR, using 
disentangled representation to separate content and distortion features. Zhu et al[22] presented an end-to-
end Multi-task Efficient Transformer (METER) framework, with modules for distortion type 
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identification and adaptive quality prediction. Chen et al[23] introduced DFAN-IQA, integrating ResNet50 
and Vision Transformer (ViT) through multi-attention and multi-semantic feature aggregation modules. 
Zhang et al[24] proposed an Attention-Driven Residual Dense Network, using multi-scale feature 
extraction and cascaded residual dense channel attention blocks. 

Despite advancements, there is room for improvement in deep learning-based NR-IQA. Integrating 
Human Visual System (HVS) features can align models closer to human perception. HSV images 
facilitate color perception and manipulation, while CSG images excel in capturing edge details and 
localized quality fluctuations. To enhance multi-scale distortion feature representation, we introduce a 
dual-branch, multi-level residual network, learning content features from HSV images and 
structural/textural features from CSG images. This approach mimics HVS perception and 
comprehensively captures distortion information, yielding more precise and reliable IQA results. 

3. Proposed Method  

Despite advancements, there is room for improvement in deep learning-based NR-IQA. Integrating 
Human Visual System (HVS) features can align models closer to human perception. HSV images 
facilitate color perception and manipulation, while CSG images excel in capturing edge details and 
localized quality fluctuations. To enhance multi-scale distortion feature representation, we introduce a 
dual-branch, multi-level residual network, learning content features from HSV images and 
structural/textural features from CSG images. This approach mimics HVS perception and 
comprehensively captures distortion information, yielding more precise and reliable IQA results. 

To effectively integrate human visual perception attributes with deep learning for No-Reference 
Image Quality Assessment (NR-IQA), we propose HVPIQA. The overall process is illustrated in Figure 
1: 

 
Figure 1: Overall flowchart. 

Images are processed into HSV and contrast-sensitive weighted gradient images aligned with human 
perception, then fed into two identical multi-level residual networks: one for content features from HSV 
images, the other for structural and texture features from gradient images. These features are fused and 
weighted by a module to emphasize significant ones, finally translated into a quality score by a fully 
connected layer. 

3.1. HSV Color Space Images 

The HSV color space aligns with human perception, comprising hue (H) for color, saturation (S) for 
purity, and value (V) for brightness, enabling precise color variation visualization. The formula for 
converting RGB to HSV is outlined below[25] 
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An example of converting an RGB image to an HSV image is illustrated in Figure 2. 

 
Figure 2: RGB to HSV. 

3.2. CSG Images 

Gradient images capture critical structural details sensitive to the human visual system (HVS). The 
Scharr operator[26], a popular edge detection filter, excels in precision and low computational complexity, 
ideal for real-time processing. Its unique 3x3 kernel uses second-order differences for accurate edge 
extraction, ensuring uniform sensitivity across directions. This is crucial for image quality assessment, 
capturing edge information in distorted images to assess structural integrity and clarity. The Scharr 
operator's structure is shown in Figure 3. 

 
Figure 3: Scharr operator. 
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The HVS exhibits contrast sensitivity, varying with spatial frequencies, akin to spatial attention and 
image saliency[27]. Campbell et al[14] introduced a contrast sensitivity function to quantify HVS sensitivity 
to different spatial frequencies: 

1.1(0.114 )( ) 2.6(0.192 0.114 ) fA f f e−= +                  (2) 

Where f  represents the spatial frequency of a point. For point I (i, j), its spatial frequency can be 
calculated as: 
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This method applies contrast sensitivity weighting to the gradient image to enhance frequency 
information that is sensitive to the HVS, thus aligning the model closely with the perception of the HVS. 
Specifically, the contrast sensitivity function is used to calculate the contrast sensitivity of each pixel in 
the distorted image. This results in a contrast sensitivity image, which is then combined with the gradient 
image to obtain a CSG image: 

CWG C GI I Iα β γ= + +                         (4) 

In the equation, CWGI  represents the gradient image, CI  represents the contrast sensitivity image, 

and GI  represents the CSG image. α, β and γ are constants. We have set α = β = 0.5 and γ = 0. 

Representative gradient images and the corresponding CSG images are shown in the figure 4: 

 
Figure 4: Comparison between distorted images and CSG images. 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 2: 7-19, DOI: 10.25236/AJCIS.2025.080202 

Published by Francis Academic Press, UK 
-12- 

The case images show 'fastfading' distortion, decreasing from level 4 at the top to 1 at the bottom. 
The left column displays distorted images, and the right column shows their CSG counterparts. 
Comparison reveals that CSG images emphasize distortion changes due to their focus on human visual 
perception-sensitive areas, enhancing the human visual system's ability to discern these changes. 

3.3. Multi-level Residual Network 

When evaluating image quality, the HVS considers both global high-level and local low-level features. 
This is vital for IQA, as real-world distortions are unevenly distributed. Relying solely on global features 
may miss local distortions. Hence, we propose a multi-level residual network using nine residual blocks 
grouped into three levels to extract and fuse multi-scale distortion features, enabling simultaneous focus 
on both global and local features. Each block contains two convolutional layers, two batch normalization 
layers, and a PReLU. Detailed structures are shown in figures 5 and 6: 

 
Figure 5: Diagram of The Multi-level Residual Network Structure. 

 
Figure 6: Residual Block-x. 

After each convolutional layer, PReLU is used to avoid undesirable initialization. A 3×3 
convolutional layer precedes the residual blocks to increase the number of feature map channels. 
Additionally, when the feature map size changes, a 1×1 convolutional layer is used before the residual 
blocks to adjust the size to match the input. The outputs after the PReLU of the third, sixth, and ninth 
residual blocks are designated as the first-level feature F1, second-level feature F2, and third-level feature 
F3, respectively. Subsequently, to reduce the number of channels, F1, F2, and F3 are processed through 
1×1 convolutional layers to generate FF1, FF2, and FF3. When FF1, FF2, and FF3 differ in size, 
upsampling is applied to increase the spatial resolution of the coarser feature maps by a factor of 2. 
Specifically, FF3 is obtained by applying a 1×1 convolution to F3; FF2 is obtained by merging the result 
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of a 1×1 convolution on F2 with the upsampled result of FF3; and FF1 is obtained by merging the result 
of a 1×1 convolution on F1 with the upsampled result of FF2. To mitigate aliasing effects introduced by 
upsampling on each merged feature map, three 3×3 convolutional layers are used to obtain the final 
feature maps FFF1, FFF2, and FFF3. This process can be expressed as follows: 

( )( )
( ) ( )( )( )
( ) ( ) ( )( )( )( )

3 3

2 2 3

1 1 2 3

FFF g f F

FFF g f F h f F

FFF g f F h f F h f F

 =
 = ⊕

 = ⊕ ⊕          (5) 

In the formulas, ⊕  represents element-wise addition, f () represents the 1×1 convolution 
operation, g ()  represents the 3×3 convolution operation, and h ()  represents the upsampling 
operation. 

3.4. Weighting Mechanism 

The method proposed in this paper posits that content and structural features contribute unequally to 
quality scores. Thus, a training-based weighting mechanism is introduced to assign weights to these 
features, as illustrated in Figure 7. 

 
Figure 7: Weighting module. 

Firstly, the fused content and structural features are concatenated to form final fused features. After 
passing through two fully connected layers, weight values for each channel are derived. These weights 
are then multiplied with the fused features to enhance their representational ability and robustness. A 1×1 
convolution halves the number of channels, reducing computational costs. A global average pooling 
method is applied to obtain a multi-scale feature vector. The process can be summarized as follows: 

( )( )

( )( )

i

2 1

1 1

( )

 Conv 

j

m

F F F
W W W GAP F

F WF

F GAP F

σ δ
′

′
×

= ⊗
 =
 =
 =                    (6) 

In this formula, iF  and jF  represent the feature maps of the first and second branches, 

respectively. 1W  and 2W  are the parameters of the two fully connected layers. σ() and δ() denote the 
sigmoid function and the ReLU function, respectively. GAP() stands for global average pooling, and 

1 1Conv × () represents a 1×1 convolution operation. 
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4. Experiments 

4.1. Database 

To evaluate our HVPIQA, we conducted extensive experiments using synthetic (LIVE[28], CSIQ[29], 
TID2013[30]) and authentic (LIVEC[31], KonIQ-10k[32]) distortion databases. These experiments 
compared our method against state-of-the-art approaches. Relevant details of the databases are 
summarized in Table 1. 

Table 1: Details of the database. 

Database Ref Dis Type Score 

LIVE 29 779 5 MOS 

CSIQ 30 886 6 MOS 

TID2013 25 3000 24 MOS 

LIVEC  1162  MOS 

KonIQ-10k 81 10.1k 25 MOS 

The LIVE dataset, established by the Image and Video Engineering Lab at the University of Texas at 
Austin in 2006, is recognized as one of the largest annotated image quality datasets. It comprises 779 
distorted images generated by applying five types of computer-induced distortions, such as Gaussian blur, 
JPEG compression, and white noise, at 5 to 6 varying levels. 

The CSIQ dataset, created by the Computational Perception and Image Quality Lab at Oklahoma 
State University in 2009, includes six distortion types with 4 to 5 levels each. These include Gaussian 
blur, JPEG compression, and additive white Gaussian noise among others. 

The TID2013 dataset, developed by Tampere University of Technology as an extension of TID2008 
and released in 2013, encompasses a wide range of distortion types, including newly introduced ones 
like saturation changes and comfort noise, in addition to traditional types like Gaussian blur and JPEG 
compression. 

The LIVEC dataset, initiated in 2016, is known as the "wild image quality challenge dataset." It 
features images captured from real-world scenes by various photographers using different camera 
equipment, embodying complex and authentic distortions. 

Established by Hosu et al. in 2020, the KonIQ-10k dataset is a large-scale collection for assessing 
real-world image quality. It meticulously selects 10,073 high-quality images from the YFCC100M 
dataset, ensuring diverse image content and quality distribution. 

4.2. Experimental Scheme and Evaluation Metrics 

To ensure no overlap between training and testing image content, we selected 80% of the synthetic 
distortion database for training using reference images, reserving the remaining 20% for testing. This 
approach was also applied to databases containing real distortions. To enhance reliability and 
generalization, we conducted ten random splits of each database following these guidelines, using the 
average of these ten experimental results as the final evaluation basis. When assessing IQA method 
effectiveness, we employed two metrics: Spearman's Rank Order Correlation Coefficient (SROCC) and 
Pearson's Linear Correlation Coefficient (PLCC). SROCC quantifies the monotonic relationship between 
predicted and actual scores, while PLCC evaluates their linear correlation. Both metrics range from -1 to 
1, with higher absolute values indicating better model performance. By utilizing these two metrics, we 
could comprehensively and accurately assess IQA method performance. 

4.3. Performance on a Single Database 

We selected nine additional IQA methods for comparison, including two handcrafted feature-based 
methods: DIIVINE[2] and BRISQUE[5], and seven advanced deep learning-based methods: BIECON[33], 
HyperIQA[10], TS-CNN[12], DB-CNN[11], MEON[34], METER[22], and DFAN[23]. For some methods, we 
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adopted results reported in their original papers. To evaluate their performance, we used two common 
metrics: Spearman's Rank Order Correlation Coefficient (SROCC) and Pearson Linear Correlation 
Coefficient (PLCC). SROCC measures the monotonicity of IQA metrics, while PLCC assesses the linear 
relationship between objective and subjective quality scores. Following convention, the top two scores 
in each category are bolded. Table 2 shows that all methods performed satisfactorily on LIVE and CSIQ 
databases with limited distortion types. However, performance significantly declined on TID2013 and 
KADID-10k databases with more complex distortions, as well as on LIVEC and KonIQ-10k databases 
with authentic distortions. 

Table 2: Performance on a single database. 

 

Method 

LIVE CSIQ TID2013 LIVEC KonIQ-10k 

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC 

DIIVINE 0.923 0.913 0.743 0.777 0.664 0.535     

BRISQUE 0.942 0.940 0.829 0.746 0.694 0.604 0.585 0.607 0.692 0.673 

BIECON 0.962 0.961 0.838 0.825 0.762 0.717 0.613 0.595 0.651 0.618 

HyperIQA 0.966 0.962 0.942 0.923 0.858 0.840 0.882 0.859 0.917 0.906 

TS-CNN 0.965 0.969 0.905 0.892 0.784 0.779 0.667 0.655 0.729 0.722 

DB-CNN 0.972 0.960 0.908 0.901 0.855 0.835 0.601 0.606 0.736 0.722 

MEON 0.954 0.943 0.890 0.839 0.811 0.828 0.688 0.693 0.760 0.754 

METER 0.953 0.956 0.905 0.876 0.752 0.701 0.536 0.516 0.671 0.655 

DFAN 0.971 0.968 0.959 0.946 0.865 0.816 0.869 0.851 0.884 0.875 

Ours 0.975 0.972 0.952 0.943 0.860 0.846 0.873 0.856 0.914 0.909 

In summary, based on SROCC and PLCC evaluations, the proposed HVPIQA exhibits commendable 
performance across five widely-used databases. Compared to other dual-path architectures, including 
DB-CNN[11] and TS-CNN[12], our method holds a superior position on most databases. Notably, it 
demonstrates significant performance differences compared to TS-CNN[12] on databases with authentic 
distortions. This superiority is mainly attributed to the incorporation of human visual system 
characteristics in HVPIQA. Specifically, HSV space images enable more effective extraction of content 
information from distorted images, while CSG images facilitate better extraction of frequency 
information relevant to human vision. Furthermore, the introduced multi-scale feature fusion module 
allows the model to focus on both global content and local details, prioritizing more important aspects of 
content and structural features through a weighting mechanism. 

4.4. Performance on Individual Distortion Types 

To evaluate model performance on individual distortion types, we conducted additional experiments 
using the LIVE and CSIQ databases. Our model was trained on all distortion types present in these 
databases and then tested on each individual distortion type. For performance assessment, HVPIQA was 
compared with nine other IQA algorithms: DIIVINE[2], BRISQUE[5], BIECON[33], HyperIQA[10], TS-
CNN[12], DB-CNN[11], MEON[34], IQA-CNN[7], and METER[22]. Table 3 presents the SROCC and PLCC 
results for individual distortion types on the LIVE and CSIQ databases. From Table 3, it is evident that 
HVPIQA consistently achieved the top two SROCC values for single distortion types on both LIVE and 
CSIQ datasets, highlighting its significant advantage in assessing image quality for specific distortion 
types. 
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Table 3: SROCC comparisons of various distortion types on the LIVE and CSIQ datasets. 

 

Method 

PLCC SROCC 

JP2 K  JPEG W N  BLUR FF JP2 K  JPEG W N  BLUR FF 

DIIVINE 0.901 0.887 0.987 0.787 0.879 0.925 0.913 0.985 0.789 0.873 

BRISQUE 0.923 0.973 0.985 0.951 0.903 0.914 0.965 0.978 0.951 0.877 

BIECON 0.949 0.971 0.977 0.951 0.916 0.952 0.974 0.980 0.956 0.923 

HyperIQA 0.954 0.966 0.979 0.940 0.945 0.949 0.961 0.972 0.926 0.934 

TS-CNN 0.971 0.967 0.984 0.970 0.934 0.966 0.950 0.979 0.963 0.911 

DB-CNN 0.920 0.964 0.980 0.951 0.933 0.914 0.951 0.972 0.944 0.926 

MEON 0.950 0.959 0.971 0.960 0.899 0.953 0.964 0.981 0.958 0.904 

IQA-CNN 0.941 0.970 0.979 0.966 0.914 0.936 0.965 0.974 0.952 0.906 

METER 0.964 0.979 0.981 0.944 0.939 0.955 0.972 0.980 0.935 0.930 

Ours 0.977 0.984 0.988 0.972 0.944 0.972 0.981 0.986 0.967 0.948 

4.5. Performance Across Different Databases 

Consistency between prediction results and human subjective evaluations is crucial in Image Quality 
Assessment (IQA) methods. Therefore, an excellent IQA method must demonstrate high accuracy across 
various databases. To determine the generalization capability of IQA methods, we conducted cross-
database evaluation experiments. Specifically, we trained the IQA methods on the LIVE database and 
evaluated their performance on the CSIQ and KonIQ-10k databases. In these comparative evaluations, 
we benchmarked our HVPIQA against DIIVINE[2], BRISQUE[5], BIECON[33], HyperIQA[10], TS-CNN[12], 
DB-CNN[11], MEON[34], IQA-CNN[7], and METER[22]. The SROCC results on the CSIQ and KonIQ-10k 
databases are summarized in Table 4, where A/B indicates training on A and testing on B. 

Table 4: Generalizability comparison of cross-dataset testing on SROCC. 

Method LIVE/CSIQ LIVE/KonIQ-10k  LIVE/KonIQ-10k 

DIIVINE  0.602 0.342 0.791 

BRISQUE  0.573 0.354 0.735 

BIECON  0.732 0.365 0.749 

HyperIQA  0.744 0.579 0.857 

TS-CNN  0.621 0.431 0.823 

DB-CNN  0.702 0.415 0.815 

MEON  0.605 0.387 0.788 

IQA-CNN  0.698 0.407 0.803 

METER  0.769 0.581 0.901 

Ours 0.755 0.586 0.910 
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Our analysis of the experimental results from the first two groups, conducted on different databases, 
reveals that HVPIQA consistently ranks among the top two. However, when comparing training and 
testing performance between different databases versus within the same database, a noticeable 
performance decline is evident. This decline can be attributed to significant differences in distortion types 
between the LIVE database used for training and the other two databases. Specifically, the LIVE and 
CSIQ datasets share only four common distortion types: JP2K, JPEG, WN, and BLUR. Furthermore, the 
CSIQ dataset includes two additional distortion types not present in the LIVE dataset, indicating that our 
model has not been exposed to these extra distortion types during training, which may contribute to the 
lower scores. To validate this observation, we conducted a third group of experiments, training on the 
CSIQ dataset and testing on the LIVE dataset, which confirmed our initial findings. 

These experimental results demonstrate that while HVPIQA performs well across multiple databases, 
its performance is affected when faced with distortion types not included in the training set. This 
highlights the challenges faced by IQA methods in terms of generalization, particularly when dealing 
with multiple distortion types. To improve the model's generalization capability, future research could 
explore using a wider range of distortion types for training or developing IQA methods that can 
adaptively learn new distortion types. 

4.6. Ablation Experiments 

To validate the effectiveness of each module in HVPIQA, we conducted ablation studies on the LIVE, 
TID2013, and CSIQ datasets. The results of these ablation studies are presented in Table 5. 

Table 5: Ablation experiment. 

baseline 1 1 1 1 

RGB image 1 0 0 0 

HSV image 0 1 1 1 

CSG image 0 1 1 1 

MFEF 0 0 1 1 

WM 0 0 0 1 

LIVE 0.947/0.952 0.956/0.961 0.964/0.968 0.972/0.975 

CSIQ 0.909/0.921 0.924/0.937 0.933/0.946 0.943/0.952 

TID2013 0.765/0.802 0.806/0.825 0.821/0.840 0.846/0.860 

The first column represents the use of the base network architecture with RGB images as training 
data for two different branches. The second column employs the base network structure but uses HSV 
and CSG images for the two branches, noting improvements in SROCC/PLCC results by 0.9%/0.3%, 
1.5%/1.6%, and 4.1%/2.3% across the three datasets, respectively. The third column integrates the Multi-
Feature Enhanced Fusion (MFEF) module, leading to further improvements in SROCC/PLCC results by 
0.8%/0.7%, 0.9%/0.9%, and 1.5%/1.5% on the three datasets. Finally, the fourth column represents the 
comprehensive method proposed in this paper, which achieves additional improvements in 
SROCC/PLCC results by 0.8%/0.7%, 1.0%/0.6%, and 2.5%/2.0% on the three datasets, respectively. 

These results demonstrate that changing the type of training data (from RGB to HSV and CSG) and 
integrating the MFEF module can significantly enhance the performance of Image Quality Assessment 
(IQA) methods. Furthermore, the comprehensive method proposed in this paper builds on these 
improvements, indicating that the synergy between the modules is crucial for improving overall 
performance. The results of these ablation studies provide strong evidence for the effectiveness of the 
HVPIQA method. 

5. Conclusion 

This paper introduces a no-reference image quality assessment (NR-IQA) method that integrates 
human visual perception with a dual-branch multi-level residual network. The effectiveness of this 
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method is demonstrated through three key modules: dual-branch feature extraction, multi-level feature 
extraction and fusion, and a weighting mechanism. The method converts input images into HSV and 
CSG images that align with human perception, while simultaneously extracting content and structure-
texture features through parallel residual networks. The fusion of these complementary multi-level 
features enhances the overall feature representation, and the weighting mechanism fine-tunes their 
respective contributions to the final quality score. 

Upon reviewing the development and evaluation of this method, several key insights are gained. 
Firstly, incorporating diverse image representations and features that align with human perception is 
crucial for achieving accurate and reliable NR-IQA. Secondly, the design of the multi-level residual 
network facilitates the effective extraction of hierarchical information, which is essential for capturing 
subtle variations in image quality. 

Compared to synthetically distorted images, real-world distorted images often exhibit complex and 
varied conditions, often with randomness and unpredictability. Current state-of-the-art IQA methods face 
numerous challenges when assessing the quality of real-world distorted images, such as limited 
generalization ability, high computational complexity, resource constraints, and inconsistency in 
subjective evaluations. Therefore, future research must delve deeper into overcoming these challenges 
and enhancing the accuracy and practicality of IQA methods. 

To achieve this goal, future research can focus on several areas: firstly, developing more generalized 
models that can adapt to a wider range of distortion types and image content; secondly, optimizing 
algorithms to reduce computational complexity and increase evaluation speed; thirdly, exploring more 
effective feature representation and extraction methods to more accurately capture subtle changes in 
image quality; and fourthly, leveraging deep learning and other technologies to enhance the adaptive 
capabilities and robustness of models. Through these efforts, we can drive the continuous development 
of IQA methods and provide more reliable tools for accurate image quality assessment. 

References 

[1] Li, F., Shuang, F., Liu, Z., Qian, X.: A cost-constrained video quality satisfaction study on mobile 
devices. IEEE Transactions on Multimedia 20(5), 1154–1168(2017) 
[2] Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: From natural scene statistics to 
perceptual quality. IEEE transactions on Image Processing 20(12), 3350–3364 (2011) 
[3] Saad, M.A., Bovik, A.C., Charrier, C.: A dct statistics-based blind image quality index. IEEE Signal 
Processing Letters 17(6), 583–586 (2010) 
[4] Saad, M.A., Bovik, A.C., Charrier, C.: Blind image quality assessment: A natural scene statistics 
approach in the dct domain. IEEE transactions on Image Processing 21(8), 3339–3352 (2012) 
[5] Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. 
IEEE Transactions on image processing 21(12), 4695–4708(2012) 
[6] Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. 
IEEE Signal processing letters 20(3), 209–212 (2012) 
[7] Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality 
assessment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 
1733–1740 (2014) 
[8] Bosse, S., Maniry, D., M¨uller, K.-R., Wiegand, T., Samek, W.: Deep neural networks for no-reference 
and full-reference image quality assessment. IEEE Transactions on image processing 27(1), 206–219 
(2017) 
[9] Kim, J., Nguyen, A.-D., Lee, S.: Deep cnn-based blind image quality predictor. IEEE transactions on 
neural networks and learning systems 30(1), 11–24 (2018) 
[10] Su, S., Yan, Q., Zhu, Y., Zhang, C., Ge, X., Sun, J., Zhang, Y.: Blindly assess image quality in the 
wild guided by a self-adaptive hyper network. In: Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, pp.3667–3676 (2020) 
[11] Zhang, W., Ma, K., Yan, J., Deng, D., Wang, Z.: Blind image quality assessment using a deep 
bilinear convolutional neural network. IEEE Transactions on Circuits and Systems for Video Technology 
30(1), 36–47 (2020) https://doi.org/10.1109/TCSVT.2018.2886771 
[12] Yan, Q., Gong, D., Zhang, Y.: Two-stream convolutional networks for blind image quality 
assessment. IEEE Transactions on Image Processing 28(5), 2200–2211(2018) 
[13] Mannos, J., Sakrison, D.: The effects of a visual fidelity criterion of the encoding of images. IEEE 
transactions on Information Theory 20(4), 525–536 (1974) 
[14] Campbell, F.W., Robson, J.G.: Application of fourier analysis to the visibility of gratings. The 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 2: 7-19, DOI: 10.25236/AJCIS.2025.080202 

Published by Francis Academic Press, UK 
-19- 

Journal of physiology 197(3), 551 (1968) 
[15] Gao, X., Lu, W., Tao, D., Li, X.: Image quality assessment based on multiscale geometric analysis. 
IEEE Transactions on Image Processing 18(7), 1409–1423(2009) 
[16] Saha, A., Wu, Q.M.J.: Utilizing image scales towards totally training free blind image quality 
assessment. IEEE Transactions on Image Processing 24(6), 1879–1892 (2015) 
[17] Sheikh, H.R., Bovik, A.C., De Veciana, G.: An information fidelity criterion for image quality 
assessment using natural scene statistics. IEEE Transactions on image processing 14(12), 2117–2128 
(2005) 
[18] Yue, G., Hou, C., Zhou, T., Zhang, X.: Effective and efficient blind quality evaluator for contrast 
distorted images. IEEE Transactions on Instrumentation and measurement 68(8), 2733–2741 (2018) 
[19] Shen, L., Zhang, C., Hou, C.: Saliency-based feature fusion convolutional network for blind image 
quality assessment. Signal, Image and Video Processing 16(2),419–427 (2022) 
[20] Liu, C., Zheng, Y., Liao, K., Chen, B., Wang, K., Zhong, C., Xie, B., Miao, Y.: No-reference image 
quality assessment of multi-level residual feature augmentation.Signal, Image and Video Processing 
17(4), 1275–1283 (2022) 
[21] Ye, Z., Wu, Y., Liao, D., Yu, T., Yang, J., Hu, J.: Driqa-nr: no-reference image quality assessment 
based on disentangled representation. Signal, Image and Video Processing, 1–9 (2022) 
[22] Zhu, P., Liu, S., Liu, Y., Yap, P.-T.: Meter: Multi-task efficient transformer for no-reference image 
quality assessment. Applied Intelligence 53, 29974–29990 (2023) 
[23] Chen, Y., Chen, Z., Yu, M., Tang, Z.: Dual-feature aggregation network for no-reference image 
quality assessment. MultiMedia Modeling, 149–161 (2023) 
[24] Zhang, Y., Wang, C., Lv, X., Song, Y.: Attention-driven residual-dense network for no-reference 
image quality assessment. Signal, Image and Video Processing 18(Suppl 1), 537–551 (2024) 
[25] Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: Cbam: Convolutional block attention module. In: 
Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018) 
[26] He, Y., Xin, M., Wang, Y., Xu, C.: Automatic edge detection method of power chip packaging defect 
image based on improved canny algorithm (2024).IEEEXplore 
[27] Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: 
2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009). IEEE 
[28] Jayaraman, D., Mittal, A., Moorthy, A.K., Bovik, A.C.: Objective quality assessment of multiply 
distorted images. In: 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, 
Systems and Computers (ASILOMAR), pp.1693–1697 (2012). IEEE 
[29] Eric, C., Larson, Damon, M.:Most apparent distortion: full-reference image quality assessment and 
the role of strategy[J].Journal of Electronic Imaging 19(1) (2009). 
[30] Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V., Egiazarian, K., Astola, J., Vozel, B., Chehdi, K., 
Carli, M., Battisti, F., et al.: Image database tid2013: Peculiarities, results and perspectives. Signal 
processing: Image communication 30, 57–77 (2015) 
[31] Ghadiyaram, D., Bovik, A.C.: Massive online crowdsourced study of subjective and objective 
picture quality. IEEE Transactions on Image Processing 25(1),372–387 (2015) 
[32] Hosu, V., Lin, H., Sziranyi, T., Saupe, D.: Koniq-10k: An ecologically valid database for deep 
learning of blind image quality assessment. IEEE Transactions on Image Processing 29, 4041–4056 
(2020) 
[33] Kim, J., Lee, S.: Fully deep blind image quality predictor. IEEE Journal of selected topics in signal 
processing 11(1), 206–220 (2016) 
[34] Yan, Q., Gong, D., Zhang, Y.: Two-stream convolutional networks for blind image quality 
assessment. IEEE Transactions on Image Processing 28(5), 2200–2211(2019)  


	2.1. NR-IQA Based on Hand-crafted Features
	2.2. NR-IQA Based on Deep Learning
	3.1. HSV Color Space Images
	3.2. CSG Images
	3.3. Multi-level Residual Network
	3.4. Weighting Mechanism
	4.1. Database
	4.2. Experimental Scheme and Evaluation Metrics
	4.3. Performance on a Single Database
	4.4. Performance on Individual Distortion Types
	4.5. Performance Across Different Databases
	4.6. Ablation Experiments

