
Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 4: 118-128, DOI: 10.25236/AJCIS.2024.070416 

Published by Francis Academic Press, UK 
-118- 

Enhanced Image Segmentation-Based Detection 
Technique for X-ray Film Images of Weld Seams 

Ruixiang Li1, Shanwen Zhang1,*, Lei Huang2, Mingda Yang1, Chengyu Hu1 

1School of Electronic Information, Xijing University, Xi'an, China 
2Tubular Goods Research Institute of CNPC, Xi’an, 710077, China 
*Corresponding author 

Abstract: In industrial pipeline systems, quality monitoring of steel pipes and welds is a critical 
component to ensure safe operation. Utilizing deep learning techniques to analyze X-ray images can 
efficiently identify weld defects, such as porosity, cracks, and inclusions, significantly enhancing the 
accuracy and efficiency of non-destructive testing. In response to the existing weld defect detection 
models' insufficient feature extraction and lack of handling diversity, this paper introduces a weld defect 
identification method based on the Hierarchical Attention Fusion Network (HAFNet). Initially, a Dilated 
Hierarchical Attention Mechanism (DHAM) is employed to capture multi-scale global and local 
information, thereby enhancing the focus on key features of different scales and effectively addressing 
the issue of large intra-class variability and small inter-class differences in defects. Subsequently, a 
Residual Fusion Module (RFM) is introduced, which adaptively learns the feature weights of different 
encoding layers and fully utilizes contextual information during the decoding phase to suppress the 
complex background interference of weld images. Finally, through a Multi-Level Feature Fusion Module 
(MFFM), the decoded network's multi-layer features are strengthened by a fusion mechanism, enhancing 
the interaction and complementarity between different levels of features, reducing the model's sensitivity 
to noise and non-critical information, and further enhancing the model's recognition accuracy and 
robustness. 

Keywords: Weld Defect Detection, Dilated Hierarchical Attention Mechanism, Residual Fusion Module, 
Multi-Level Feature Fusion Module 

1. Introduction 

1.1. Background and significance of weld identification technology 

Welding technology is a critical component of modern manufacturing, significantly impacting 
product performance and quality. Due to the complexity of the welding process and the variability of 
parameters, various weld seam defects often occur, affecting the strength, performance, and lifespan of 
products. Hence, quality inspection of welded products is crucial. Currently, non-destructive testing 
methods such as X-ray, ultrasonic, magnetic particle, and liquid penetrant inspection are widely used, but 
these traditional methods have drawbacks like slow speed, low accuracy, and high dependence on manual 
evaluation. With the advancement of artificial intelligence and machine learning, image processing 
techniques based on deep learning have demonstrated strong potential in detecting weld seam defects, 
offering an efficient and accurate method that reduces the reliance on manual evaluation. 

  
Figure 1: Illustrates the complex background of weld seam defect images. 

Despite numerous attempts at weld seam defect detection over the past few years, accurately 
extracting features from images remains a challenge. The first challenge is the complex background of 
weld seam images. For example, as shown in Figure 1, images include effects from X-ray equipment 
settings, steel pipe surface quality, the use of image quality indicators, and the interaction between defects. 
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To mitigate this, attention mechanisms have been widely applied in defect detection tasks. For instance, 
Zhang Shuai and colleagues utilized a convolutional attention module to focus on important features by 
integrating spatial and channel information. Cheng Song and others introduced the SELayer, emphasizing 
the extraction of features around porosity and incomplete penetration defects by integrating global spatial 
and channel information. However, these methods focus only on global or local feature information, 
failing to reasonably allocate between the overall and detailed features of the image [1-3]. 

The second challenge involves the diversity and morphological differences of defects within weld 
seam images. Current defect detection methods primarily focus on extracting multi-scale features, often 
employing a pyramid approach that integrates feature maps at various resolutions without exploring the 
higher-order relationships between different scale features. 

To address these issues, we propose a Hierarchical Attention Fusion Network (HAFNet), which 
leverages various feature information and their interrelations. Specifically, for the first challenge, this 
paper introduces a Residual Fusion Module (RFM) and a Multi-level Feature Fusion Module (MFFM). 
RFM utilizes fusion weights generated by a Sigmoid function (ranging between 0 and 1) to adaptively 
learn the feature weights of different encoding layers, thereby achieving an effective fusion of feature 
maps from the decoding stage with corresponding feature maps from the encoding stage, resulting in a 
weighted fused feature map. MFFM begins by guiding the optimization of low-level features using high-
level features, adjusting the high-level features to the same dimension as low-level features through 
upsampling for integration, and then uses the optimized low-level features to refine high-level features, 
adjusting low-level features to the same dimension through max pooling for integration. Subsequently, 
features from various levels are concatenated and further extracted through a convolution module, while 
introducing low-level features as residuals to compensate for potential loss of detail information during 
processing. In response to the second challenge, this paper proposes a Dilated Hierarchical Attention 
Mechanism (DHAM). DHAM employs dilated convolutions with varying kernel sizes to effectively 
capture local features of weld seam defects at different receptive fields, integrating local and surrounding 
features to achieve a global feature representation. Through embedded channel and spatial attention 
mechanisms, this method further analyzes and utilizes global and local features to enhance the accuracy 
of defect detection. 

1.2. Related Research Status 

Since the 21st century, the widespread adoption of computer technology has propelled research in the 
field of deep learning. In weld seam defect detection, methods based on deep learning focus on 
optimizing and improving traditional models, enabling more effective use of data, and providing greater 
learning capabilities and robustness. 

Neural networks are categorized into two types: 

(1) BP neural networks: For example, Ding Xiaodong and others developed a weld seam defect 
classification model based on a three-layer BP neural network, utilizing seven feature parameters to 
identify surface defects in weld seams. Wang H and others employed a BP neural network model 
optimized by genetic algorithms, using weld seam depth and width as inputs and welding speed, laser 
power, etc., as outputs, achieving a defect detection accuracy of 97%. Li Tangdong and others applied 
wavelet denoising and BP neural networks for defect analysis and recognition, offering feasibility and 
identification for the qualitative analysis of weld seam defects.  

(2) Deep learning: Hou and others used deep convolutional neural networks (DCNN) to build models 
that extract deep features, achieving an accuracy of 97.2% through learning patches cropped from X-ray 
images, providing strong support for the intelligent evaluation of X-ray images. Lin and others utilized 
an intra-frame attention strategy to reduce false positives, and inter-frame DCNNs to extract features 
from suspicious defect areas and obtain deep learning feature vectors, calculating the similarity of 
suspicious defect areas to track casting defects across continuous frames, thus eliminating false positives 
after defect tracking. Chen Yanfei and others addressed the weight bias update issue in the MobileNet 
model by introducing a residual structure and ReLU activation function, applying transfer learning during 
training to achieve optimal results with less computation. With deeper research into deep learning object 
detection models, the use of improved models has become a new focus, including single-stage models 
like SSD and YOLO, and two-stage models like Faster R-CNN. Wang Zhuyun and others improved the 
SSD network with atrous convolution, enlarging the receptive field of feature points without changing 
the feature map size, achieving an accuracy of 92.62% in identifying the location of circumferential welds, 
spiral welds, and defects. Li Yanfeng and others improved the YOLO network by using feature pyramids, 
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reducing network depth, introducing skip connection convolution blocks, and the K-means algorithm, 
reaching a defect identification rate of 87.9%. Wang Rui and others introduced a lightweight inverted 
residual structure in the YOLO-M model, reducing computational load and employing a multi-scale 
prediction mechanism for different defect features; grid-cross augmentation enhanced positive sample 
information in images, accelerating network convergence during training. Zhang K and others built a 
weld point dataset, applied data augmentation and transfer learning, and replaced the backbone network 
of Faster R-CNN with ResNet-101, achieving an average detection accuracy of 84% for six types of weld 
seam defects. Tang Maojun also replaced the Faster R-CNN backbone network with ResNet-101 and 
optimized the anchor boxes of the Faster R-CNN model using the K-means algorithm, enhancing the 
model's precision by 2.4% through image augmentation, introduction of multi-scale detection networks, 
and DCR decoupled classification refinement structure[4-6]. 

1.3. The Main Content of This Paper 

Due to the multi-scale variations, diversity, and complex background interference in weld seam defect 
images, the current challenges and difficulties in weld seam defect detection research are as follows: 

(1) Weld seam defect images suffer from complex background issues. The complexity of the 
backgrounds in weld seam defect images primarily manifests in the diversity of defects and their different 
grayscale and texture characteristics in X-ray images. This not only increases the difficulty of accurately 
extracting defect information from complex backgrounds but also reduces recognition accuracy due to 
the interaction between defects. Moreover, the same type of defects may exhibit different image 
characteristics under different welding conditions, posing additional challenges to defect identification 
and classification. 

(2) There are significant variations in the scale of defects in weld seam defect images, along with a 
wide variety of types and distribution patterns. Defect types include porosity, cracks, inclusions, and lack 
of fusion, each presenting different characteristics in X-ray images. Defects are unevenly distributed 
across the weld seam; some may be spread throughout the seam, while others are concentrated in specific 
areas. Furthermore, the positions of defects vary, with some on the surface and others hidden internally. 
Such scale differences and distribution complexities require the detection system to have high flexibility 
and precision to identify, classify, and accurately locate various defects, significantly increasing the 
technical challenges. 

This paper proposes a weld seam defect identification method based on the Hierarchical Attention 
Fusion Network (HAFNet), aiming to address the challenges posed by multi-scale variations, diversity, 
and complex background interference in weld seam defect images, as well as the existing models' 
shortcomings in feature extraction and handling diversity. Initially, a Dilated Hierarchical Attention 
Mechanism (DHAM) is employed to capture multi-scale information, enhancing the focus on key 
features across different scales and effectively addressing the issue of significant intra-class variability 
and minor inter-class differences in defects. Subsequently, a Residual Fusion Module (RFM) is 
introduced, which adaptively learns the feature weights of different encoding layers using fusion weights 
generated by a Sigmoid function and fully utilizes contextual information during the decoding phase to 
suppress the complex background interference of weld images. Finally, through a Multi-level Feature 
Fusion Module (MFFM), the fusion of multi-layer features from the decoding network is strengthened, 
enhancing the interaction and complementarity between features at different levels, reducing the model's 
sensitivity to noise and non-critical information, thereby further improving the model's recognition 
accuracy and robustness. Through embedded channel and spatial attention mechanisms, this method 
further analyzes and utilizes global and local features to enhance the accuracy of defect detection. 

2. Design of Dual-encoding Multi-scale Attention Network 

In this paper, U-Net is utilized as the backbone, and upon this network model, a Residual Fusion 
Module, a Dilated Hierarchical Attention Mechanism, and a Multi-level Feature Fusion Module are 
integrated to enhance the model's performance in the task of weld seam defect image detection. The 
structure of the Hierarchical Attention Fusion Network is illustrated in Figure 2. 
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Figure 2: The structure of the Dual-encoding Multi-scale Attention Network. 

2.1. Dilated Hierarchical Attention Mechanism (DHAM) 

During the convolution process, larger convolution kernels are more suitable for capturing larger 
objects, while smaller kernels are better suited for capturing smaller objects. In the context of steel pipe 
weld X-ray images, using a convolution kernel of a single size does not effectively capture the necessary 
information features. Therefore, a method similar to the Receptive Field Block (RFB) is adopted, 
utilizing receptive fields of different sizes to establish various branches that complement each other. 
Consequently, a Dilated Hierarchical Attention Mechanism is proposed, with its structure illustrated in 
Figure 3. 
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Figure 3: The structure of the DHAM. 

To reduce the computational load, a convolution with a 1x1 kernel is used to decrease the number of 
channels. Dilated convolutions are used to concatenate these branches and standardize the number of 
feature channels to 64. The kernel size of the dilated convolution is (2b−1)×(2b−1) with a dilation rate 
of (2b−1), where b=5, …,1.However, the features obtained from different receptive fields of various 
branches cannot distinguish subtle features, and directly connecting these features would lead to spatial 
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inconsistency. Therefore, embedding a Channel Self-Attention Mechanism (CAM) addresses the 
aforementioned issue. The channel self-attention map is calculated using the original features 

WHCRF ××∈ . First, F is reshaped into
NCR ×

, where N=H×W. Matrix multiplication is then performed 

between the transposed F and the original feature F. The channel self-attention map, 
CCRM ×∈  is 

obtained through applying the Softmax function. 

𝐼𝐼𝑚𝑚𝑖𝑖,𝑗𝑗 =
exp�𝐹𝐹𝑖𝑖⨂𝐹𝐹𝑗𝑗�

∑ exp�𝐹𝐹𝑖𝑖⨂𝐹𝐹𝑗𝑗�𝐶𝐶
𝑗𝑗=1

                                (1) 

where jimI
, measures the influence of the j-th channel on the i-th channel. Furthermore, after 

transposing M and F, matrix multiplication is performed, and their result is reshaped into 
CWHR ××

.  
The result is multiplied by the parameter λ, and then element-wise addition is performed with F to obtain 

the output result 
CWHQC ××∈ : 

𝐶𝐶𝑖𝑖 = 𝜆𝜆∑ (𝐼𝐼𝑚𝑚𝑖𝑖,𝑗𝑗 × 𝐴𝐴𝑗𝑗)⨁𝐹𝐹𝑖𝑖𝐶𝐶
𝑗𝑗=1                              (2) 

where λ is a parameter with an initial value of 0, which can be automatically adjusted during the 
training process. 

From equation (2), it can be seen that to obtain the output feature of each channel, a weighted 
summation of the features across all channels and the original features is conducted. To compensate for 
the loss of feature information details and to enhance the network's feature transmission capability, a skip 
connection layer is incorporated. This approach retains the detailed information of lower-level features 
and combines them with higher-level features, thereby obtaining a richer and more accurate feature 
representation. 

2.2. Residual Fusion Module (RFM) 

To enable the network to fully leverage contextual information during the decoding phase and 
mitigate the interference from complex backgrounds in weld seam images, a Residual Fusion Module 
(RFM) is proposed, with its structure illustrated in Figure 4. Unlike conventional methods that employ 
element-wise summation or concatenate multiple features for fusion, RFM can adaptively learn the 
feature weights of different encoding layers. This module primarily consists of two steps: proportional 
scaling and adaptive fusion, effectively enhancing the network's capability to integrate and refine multi-
level feature representations. 
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Figure 4: The structure of the RFM. 

The feature representation at the i-th layer( }2,1{i∈ )in the encoder is denoted as iX ,corresponding 
to L1 and L2 in Figure 3. Since features at different levels possess varying resolutions and channels, they 
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need to be standardized to the same size before fusion. The operation of resizing the feature nX to the 

dimensions of feature iX  is denoted as 
i
nX . To unify L1 and L2 to the same size (same resolution and 

channel count), convolution with a 1×1 kernel and upsampling by a factor of 2 are employed to 
redistribute the features. The specific operation is shown in equation (3): 

𝑋𝑋12 = 𝑓𝑓𝐶𝐶(𝑓𝑓𝑢𝑢(𝑋𝑋1)) 

𝑋𝑋22 = 𝑋𝑋2                                    (3) 

where cf  represents a convolutional layer with a kernel size of 1 and a stride of 1, while uf  

denotes upsampling with a scale factor of 2. 
i
nX  signifies the operation of resizing the features from 

the n-th layer to match the dimensions of the i-th layer. 

The output of the RFM is as shown in equation (4): 

𝑂𝑂𝑂𝑂𝑂𝑂 = 𝜛𝜛1𝑋𝑋1𝑖𝑖 + 𝜛𝜛2𝑋𝑋2𝑖𝑖                               (4) 

where 1ϖ  and 2ϖ  are trainable parameters representing the feature weights obtained through 

resizing. Here, 1ϖ  and 2ϖ  maintain distinct training weights at different positions within the 
decoding layer to accommodate the requirements of different scale fusion strategies. Furthermore, it 

holds that 121 =+ϖϖ , where ]1,0[, 21 ∈ϖϖ . nϖ  is defined as: 

𝜛𝜛𝑛𝑛 = 𝑒𝑒𝜆𝜆𝑛𝑛

𝑒𝑒𝜆𝜆1+𝑒𝑒𝜆𝜆2
                                 (5) 

where 2,1n∈ . 1ϖ  and 2ϖ  is defined using 1λ  and 2λ  as a control parameter and the 
Softmax function, and it can be learned through standard backpropagation. 

2.3. Multi-Level Feature Fusion Module (MFFM) 

The Multi-level Feature Fusion Module achieves the final output by integrating the output features 
from five distinct decoding layers, with its architecture depicted in Figure 5. This module enhances the 
detail and accuracy of the final output feature map by fusing features extracted at different levels of the 
network, thereby bolstering the network's robustness against the inherent variations and complexities in 
weld seam defect images. 
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Figure 5: The structure of the MFFM. 

First, optimize low-level features using high-level features, then utilize the optimized low-level 
features to refine high-level features in a reverse manner. Afterward, concatenate the optimized features 
and refine them through convolutional blocks for feature enhancement. Finally, multiply the refined 
features with low-level features to preserve detailed information while supplementing semantic 
information. The specific process is illustrated in equations (6), (7), and (8): 

𝐹𝐹𝑖𝑖′ = 𝑈𝑈𝑈𝑈(𝐹𝐹𝑖𝑖+1) ⊕𝐹𝐹𝑖𝑖                                 (6) 

𝐹𝐹𝑖𝑖+1′′ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐹𝐹𝑖𝑖′)) ⊕𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐹𝐹𝑖𝑖+1′ ) ⊕𝐹𝐹𝑖𝑖+1                   (7) 

𝑂𝑂𝑈𝑈𝑂𝑂 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝑀𝑀𝑂𝑂(𝐹𝐹1′′,𝐹𝐹2′′,𝐹𝐹3′′,𝐹𝐹4′′,𝐹𝐹5′′))⨂𝐹𝐹1                    (8) 
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where Up represents upsampling, Max represents max pooling, Conv represents for convolutional 
layer, Cat(,) represents feature concatenation, ⊕  represents matrix addition, and ⊗  represents 
matrix multiplication. 

3. Experiments 

All experiments in this study were conducted using a workstation server equipped with an NVIDIA 
RTX3090 24G graphics card. Python version 3.8.1 and PyTorch version 1.11.0 were utilized, with model 
weights initialized using the Kaiming parameter initialization method. Image preprocessing techniques 
such as rotation, horizontal flipping, and vertical flipping were applied. Due to hardware limitations, all 
images were resized to 256×256 for faster training. During training, a batch size of 4 was employed, and 
the Ranger algorithm with a learning rate of 0.0001 and weight decay of 0.0005 was chosen as the 
optimizer. The learning rate adjustment was performed using the Cosine Annealing with Warm Restarts 
(CAWR) algorithm, presenting a cosine decay curve[7-9]. 

3.1. Dataset 

There is currently no publicly accessible dataset of X-ray film images for weld seam defect 
segmentation tasks to our knowledge. Therefore, the sample images used in this study were provided by 
a professional steel pipe manufacturing company. The company primarily focuses on producing large-
diameter, thick-walled, high-grade spiral welded steel pipes for long-distance transportation of oil and 
natural gas. To ensure product quality, the company employs an advanced Digital Radiography (DR) X-
ray imaging detection system during the quality inspection stage of the production process. This detection 
system captures X-rays penetrating the steel pipe weld seam using high-sensitivity digital detectors and 
converts the acquired information into electrical signals, which are then input into the computer system. 
In the computer, digital signal processing techniques are applied to enhance the images, adjust contrast 
and brightness, among other processes, to generate high-quality imaging results. 

The obtained weld seam images during the inspection process are output and saved in the 16-bit DCM 
format with a size of 512×512 pixels. The entire dataset comprises 2000 weld seam images, covering 
various defect types such as cracks, pores, lack of fusion, incomplete penetration, slag inclusions, and 
burn-through. Strict adherence to the following principles was maintained during the image collection 
process to ensure the quality and diversity of the dataset, thus supporting the development of efficient 
and accurate defect detection models: 

(1) Diversity of weld seam defect types and morphological differences. 

(2) Variability in image quality due to factors such as X-ray equipment settings and material thickness 
variations. 

(3) Contrast between defects and background. 

(4) Interactions between defects. 

The entire dataset comprises 2000 weld seam images, encompassing a wide range of defect types 
such as cracks, pores, lack of fusion, incomplete penetration, slag inclusion, and burn-through as shown 
in Figure 6. Given that the number of samples of weld seam defect images may be insufficient to support 
the training of complex neural network models, data augmentation is employed to simulate various 
interferences that may occur during actual operations, thereby preventing overfitting issues. By applying 
operations such as image rotation, horizontal flipping, vertical flipping, sharpening, brightness 
adjustment, and contrast adjustment, each original image is expanded into 10 images, thus increasing the 
entire dataset to 20,000 images. To further enhance the model's generalization ability and ensure 
evaluation accuracy, the entire dataset is randomly divided into training, validation, and testing sets in a 
3:1:1 ratio. 

     
(a)                (b)                 (c)              (d) 

Figure 6: The structure of the RFM. (a)porosity. (b)incomplete penetration. (c)lack of fusion. (d)cracks. 
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3.2. Evaluation Metrics 

The βF
, MAE, mS  are used as assessment metrics to measure the performance of the proposed 

method: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

                                  (9) 

𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                               (10) 

𝐹𝐹𝛽𝛽 = (1+𝛽𝛽2)⋅𝑇𝑇𝑃𝑃𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑛𝑛⋅𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝛽𝛽2⋅𝑇𝑇𝑃𝑃𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑛𝑛⋅𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

                             (11) 

𝑀𝑀𝐴𝐴𝑀𝑀 = 1
𝑊𝑊×𝐻𝐻

∑ ∑ |𝑆𝑆(𝑃𝑃, 𝑗𝑗) − 𝐺𝐺(𝑃𝑃, 𝑗𝑗)|𝐻𝐻
𝑗𝑗=1

𝑊𝑊
𝑖𝑖=1                      (12) 

𝑆𝑆𝑚𝑚 = 𝛼𝛼 × 𝑆𝑆0 + (1 − 𝛼𝛼) × 𝑆𝑆𝑃𝑃                            (13) 

where, TP represents correct predictions of positive samples, TN represents correct predictions of 
negative samples, FP represents incorrect predictions of negative samples as positive, and FN represents 
incorrect predictions of positive samples as negative. Recall measures the proportion of TP in positive 
samples, Precision measures the proportion of TP in positive predictions. MAE is used to evaluate the 
difference between predicted image S and label G. Fβ is the weighted harmonic mean of precision and 
recall. Sm is an index for assessing the structural similarity difference between predicted images and 
labels. 

3.3. Comparison with Other Defect Image Segmentation Methods 

To validate the advantages of the proposed method, we first conducted a comparison with various 
traditional weld seam image defect segmentation methods on the same dataset. These compared methods 
include: SegNet, which employs a unique encoder-decoder architecture for image segmentation, with the 
decoder utilizing the pooling indices from the encoder to recover image details; U-Net, which uses a 
symmetric structure and skip connections, combining high-resolution features from the encoder with 
features from the decoder to enhance the accuracy of image segmentation; R2Net, which captures 
complementary salient information from different feature layers for more accurate detection of salient 
objects in images; RANet, equipped with recurrent aggregation of deep features, fully leveraging 
complementary salient information captured at different layers to enhance the detection accuracy of 
salient objects; and PoolNet, a novel bidirectional information transmission model that integrates multi-
level features for salient object detection. Figure 7 presents the comparison of prediction results obtained 
after conducting experiments on a homemade X-ray film weld defect image dataset with these methods. 

 
Image    label    U-Net     RANet    PoolNet    R2Net    HAFNet 

Figure 7: Visual Comparison of Experimental Results. 

From Figure 7, it can be observed that compared to U-Net, and PoolNet, HAFNet demonstrates better 
ability to suppress environmental interference and preserve defect integrity. This is attributed to the 
proposed Dilated Hierarchical Attention Mechanism (DHAM), which effectively extracts multi-scale 
features by obtaining different receptive fields on different branches. However, features obtained from 
different receptive fields cannot distinguish subtle features, and directly connecting these features may 
lead to spatial inconsistency. Therefore, a channel attention mechanism is employed to improve multi-
scale information representation and suppress background interference. In addition, PoolNet and R2Net 
lack adaptability to complex backgrounds, making it almost impossible to distinguish defects from the 
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background, resulting in inaccurate defect localization. It is worth noting that the results of RANet 
indicate better detection performance, but some defects may appear to be stuck together due to incorrect 
boundary recognition. To better integrate multiple features and reduce the impact of complex 
environmental backgrounds, a residual fusion module is proposed. Unlike other methods that use 
element-wise summation or joint multi-feature fusion methods, this module can adaptively learn the 
feature weights of different encoding layers, thereby better integrating multiple features and avoiding the 
influence of complex environmental backgrounds. In the fourth and fifth images, the morphology and 
dispersion of defects vary, but there are some common characteristics. However, R2Net, RANet, PoolNet, 
and LVNet fail to clearly describe the defect contours. HAFNet addresses the issue of mutual influence 
among defects in the weld seam defect image dataset by introducing the Multi-level Feature Fusion 
Module (MFFM) to focus on the correlation between features at different levels and enhance the 
interaction and complementarity between features through fusion mechanisms. Therefore, for defects of 
different shapes and sizes, HAFNet demonstrates better detection performance. On the other hand, 
PoolNet's feature aggregation module also exhibits issues of missed detections and false alarms when 
dealing with scale changes. By comparing the images, it can be seen that compared to other models, 
HAFNet demonstrates stronger capability to capture effective features. It not only clearly delineates 
defect boundaries but also suppresses other interferences, giving it a significant advantage in defect 
segmentation tasks[10-12]. 

Table 1: Comparative Experimental Results. 

Model MAE Fβ Sm 
U-Net 0.0355 0.7912 0.8426 
RANet 0.0303 0.8143 0.8467 
PoolNet 0.0251 0.8199 0.8689 
R2Net 0.0202 0.8416 0.8823 

HAFNet 0.0143 0.8517 0.8981 
Table 1 presents the results of the comparative experiments. Compared to U-Net, HAFNet achieves 

enhancements of 0.0605 and 0.0555 in Fβ and Sm respectively, with a reduction in MAE by 0.0212. 
Compared to RANet, HAFNet exhibits increases of 0.0374 and 0.0514 in Fβ and Sm, respectively, along 
with a decrease in MAE by 0.016. Furthermore, compared to PoolNet, it demonstrates superior 
performance on the dataset, with Fβ and Sm increasing by 0.0318 and 0.0292, respectively, while MAE 
decreases by 0.0108. Notably, HAFNet outperforms R2Net, showing increases of 0.0101 and 0.0158 in 
Fβ and Sm, respectively, while MAE decreases by 0.0059. 

3.4. Ablation Study 

The proposed method consists of three key components: DHAM, RFM, and MFFM. Therefore, we 
conducted ablation experiments to evaluate the importance and contribution of each component. The 
baseline model adopts the same encoder-decoder architecture and optimization strategy. Figure 8 
provides visualizations of feature maps, demonstrating the effectiveness of our proposed components 
intuitively. It can be observed that compared to the baseline network, our proposed method can reduce 
background interference, create more discriminative features, and provide more accurate segmentation 
results. 

 
Image       Label       Baseline        HAFNet 

Figure 8: Visualization results of ablation study.  

To better illustrate the roles of different components, we gradually added the DHAM, RFM, and 
MFFM modules to the baseline model. To minimize the influence of other factors, we selected MAE, Fβ, 
and Sm as evaluation metrics. Figure 9 shows the results obtained by progressively adding the DHAM, 
RFM, and MFFM modules to the baseline model. 
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(a)      (b)       (c)        (d)        (e)      (f) 

Figure 9: The results obtained by progressively adding the three modules DHAM, RFM, and MFFM to 
the baseline model. (a)Image; (b)Label; (c)Baseline; (d)Baseline+ DHAM; (e) Baseline+ DHAM+ 

RFM ; (f) Baseline+ DHAM+ RFM+ MFFM. 

Through Figure 9, it can be observed that using the Backbone alone does not accurately detect all 
targets. However, with the addition of the DHAM, RFM, and MFFM modules to the Backbone, detection 
performance significantly improves. With the DHAM, the model can extract more multi-scale feature 
information and segment the target contour region, albeit susceptible to background interference. After 
incorporating the RFM, the model gains rich global and detail feature information, thereby delineating 
clear contours of the target region. Finally, with the introduction of the MFFM, by fully integrating and 
utilizing low-level and high-level feature information, background interference is further suppressed. 
Table 2 presents the comparative results of the ablation experiments for HAFNet's performance. 

Table 2: Quantitative Evaluation of Ablation Studies of Different Components. 

Backbone DHAM RFM MFFM MAE Fβ Sm 
√    0.0355 0.7912 0.8426 
√ √   0.0299 0.8155 0.8653 
√ √ √  0.0210 0.8299 0.8798 
√ √ √ √ 0.0143 0.8517 0.8981 

From Table 2, it can be observed that Backbone + GBAM + DSAM + RFM achieves the best 
performance in terms of MAE, Fβ, and Sm metrics. In contrast, the performance of using Backbone alone 
is the poorest. The introduction of DHAM facilitates the extraction of effective multi-scale features. It 
enables the extraction of effective multi-scale features with different receptive fields on different 
branches, while incorporating channel attention to improve multi-scale information representation and 
suppress background interference. Compared to the backbone, there is a decrease of 0.0056 in MAE, 
while Fβ and Sm increase by 0.0243 and 0.0227, respectively. Subsequently, RFM is introduced to fuse 
multi-scale feature information, adaptively learn the feature weights of different encoding layers, and 
further suppress the influence of complex background environments. From Table 2, it is evident that 
compared to the model without RFM, there is a decrease of 0.0089 in MAE, while Fβ and Sm increase by 
0.0144 and 0.0145, respectively. Finally, with the addition of MFFM, by strengthening the fusion of 
multi-layer features of the decoding network, enhancing interaction and complementarity between 
features at different levels, reducing the model's sensitivity to noise and non-critical information, further 
improvements in model recognition accuracy and robustness are achieved. Simultaneously, there is a 
decrease of 0.0067 in MAE, while Fβ and Sm increase by 0.0218 and 0.0183, respectively. Thus, it is 
concluded that GBAM, DSAM, and RFM effectively enhance the model's detection. 

3.5. Sensitivity analysis of parameters experiment 

Through sensitivity analysis experiments, the robustness of the HAFNet model is verified under 
different learning rate settings, as well as its tolerance to the application of different initialization weights. 
A series of experiments with different parameters were conducted, involving learning rates, optimizers, 
and initial weight values. These experiments were carried out on a custom-madedefects dataset to analyze 
the sensitivity of HAFNet. Initially, learning rates were set to 0.001, 0.0015, 0.0001, and 0.00015, and 
the sensitivity of HAFNet to the learning rate was analyzed by observing the experimental results. Next, 
sensitivity analysis of the initial weight values was performed using two initialization methods: Xavier 
and Kaiming. Additionally, two different optimizers, Ranger and Adam, were applied to analyze the 
sensitivity of HAFNet to different optimizers, while keeping other parameters constant. Table 3 presents 
the parameter sensitivity analysis of HAFNet. 

As shown in Table 3, according to the results of parameter sensitivity analysis, it can be concluded 
that the learning rate, optimizer, and initialization weights have no significant impact on the performance 
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of the proposed network model. This indicates that HAFNet is less affected by hyperparameter variations 
and exhibits strong robustness. 

Table 3: Comparative Experimental Results. 
 Parameters MAE Fβ 

Learning rate 

0.001 0.0145 0.8521 
0.0015 0.0142 0.8516 
0.0001 0.0141 0.8518 
0.00015 0.0146 0.8520 

Optimizer Ranger 0.0142 0.8520 
Adam 0.0144 0.8519 

Initialization Xavier 0.0142 0.8517 
Kaiming 0.0143 0.8516 

4. Conclusions  

In this article, we introduce a HAFNet for defect image segmentation in weld seam X-ray film images. 
Thanks to the constructed feature extraction and fusion modules, along with attention mechanisms, the 
proposed method can accurately locate and segment targets of different categories while effectively 
suppressing noise interference. Within our proposed method, the DHAM is capable of extracting multi-
scale global and local detail features, whereas the RFM and MFFM leverage contextual information to 
efficiently fuse features across different levels and reduce the interference of redundant feature 
information. Extensive experiments demonstrate that our method significantly outperforms other 
compared SSS image segmentation methods. Specifically, our method's precision, MAE, and F-measure 
reached 1.43%, 85.17%, and 89.81%, respectively. Ablation studies further validate the effectiveness of 
each designed component. In the future, designing more robust defect segmentation models with stronger 
generalization capabilities represents a promising direction for further research.  
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