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Abstract: In the process of soil image classification, the issue of class imbalance occurs, which leads to 
a decline in the generalization performance of the classifier due to the lack of data from minority classes. 
We investigated the effectiveness of Mixup through margin statistical analysis and successfully improved 
the deep imbalanced classification with uneven margins. Additionally, we investigated the relationship 
between margins and logits, and empirically discovered that uncalibrated margins exhibit a positive 
correlation with logits. Based on this revelation, we propose a Mixup-based margin-aware and 
calibration model to address the challenge of handling imbalanced soil image classification data. We 
conducted experiments using the Soil dataset and additionally tested the generalization capabilities of 
our method on the CIFAR10-LT, CIFAR100-LT, and ImageNet-LT datasets. The experimental results 
indicate that our approach achieved impressive results. 
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1. Introduction 

This paper collects six types of soil samples from a region in southeastern China, including clay, silty 
clay, muddy clay, muddy silty clay, silty, and gravel. After the laboratory testing personnel conducted 
physical and chemical analysis on the soil samples, they named and classified the samples to create a soil 
image classification dataset. This dataset suffers from an imbalance problem, as the number of samples 
for each class differs significantly. If the dataset used by the model is imbalanced, it tends to bias towards 
the majority class and often has poor generalization ability when identifying minority classes. 

Long-tailed class imbalance is a common problem in image classification tasks, which often limits 
the practicality of recognition models based on deep networks in real-world applications. This is because 
they tend to bias towards the dominant classes and perform poorly on the tail classes. To address the 
long-tailed class imbalance problem, there are several strategies, which usually involve re-sampling or 
re-weighting techniques. 

Motivated by LDAM[1], We examined the effectiveness of Mixup[2] through margin statistical analysis, 
and LDAM has successfully addressed the depth-imbalanced classification with uneven margins. 
Experimental results indicate that the gap between the majority and minority classes is loosely correlated 
with the accuracy of depth-imbalanced classification. We found that Mixup implicitly reduces the margin 
gap, providing a theoretical basis for its effectiveness. Building on this theoretical foundation, we 
discover that during the first stage of standard training, the margin gap can be more explicitly tuned by 
implementing margin-aware Mixup. The Margin-Aware Mixup (MAM) approach we have developed 
sets a new benchmark in performance on established tests for imbalanced classification, overtaking both 
Mixup and LDAM with considerable margins, especially in environments marked by severe data 
imbalance. 

Furthermore, we delved into the correlation between margin and logit values, undertaking numerous 
experiments which revealed that both are associated with the quantity of images per class. Specifically, 
prior to any calibration efforts, it was observed that classes featuring a higher volume of images exhibited 
larger margins and logits. Conversely, classes with fewer images displayed reduced margins and logits[3]. 
Moreover, we found that uncalibrated margins and logits will substantially detract from image 
classification performance. To address this issue, we integrated margin calibration into our experimental 
setup to achieve logits that are more evenly balanced. Following the extraction of representations and 
classifier heads through standard training processes, we implemented a straightforward class-specific 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 2: 12-18, DOI: 10.25236/AJCIS.2024.070202 

Published by Francis Academic Press, UK 
-13- 

model for margin calibration. 

In summary, our primary contributions are encapsulated in the following points: 

1) We undertook a comprehensive investigation into uncalibrated margins from the standpoint of 
margin analysis. 

2) Drawing inspiration from Mixup, we formulated a Margin-Aware Mixup (MAM) model. 

3) We unveiled a specialized Margin Calibration (MC) model designed for meticulous margin 
adjustment. 

4) By integrating MAM and MC at various stages of training, we developed an innovative framework 
named MAMMC. 

2. Related Work 

2.1. Method Based on Re-Sampling 

Traditional deep network training is based on random sampling of small batches for gradient descent, 
which neglects the imbalance problem in long-tailed learning. Common methods for addressing 
imbalanced classification involve under-sampling the majority classes or over-sampling the minority 
classes. Kang et al.[4] suggested that Decoupling, in conjunction with square root sampling and 
progressive balancing sampling, enhances training strategies for addressing long-tailed recognition 
challenges. Nonetheless, the implementation of these strategies necessitates prior knowledge regarding 
the frequency of training samples across various categories. To tackle this challenge, Feng et al.[5] 
introduced an innovative adaptive sampling strategy termed LOCE. This method tracks the model's 
training performance across various classes by leveraging average class prediction scores and employs 
these scores to adjust the sampling rates for different classes accordingly. Furthermore, Zang et al.[6] put 
forward a meta-learning-oriented approach named FASA. This strategy employs the model's 
classification loss on a balanced meta-validation set as a metric to fine-tune the sampling rates for various 
classes. Consequently, it increases the sampling frequency from underrepresented tail classes to address 
imbalance more effectively. 

2.2. Method Based on Re-Weighting 

To mitigate the challenges posed by class imbalance, re-weighting techniques modify the training 
loss values for different classes through multiplication with unique weights tailored to each class[7]. The 
most straightforward approach is to directly use the label frequency of training samples for loss 
reweighting, thereby rebalancing the uneven class gradients. Cui et al.[8] introduced a Class-Balanced 
(CB) loss, which recalibrates the weight of each class based on its effective number of instances. This 
method amplifies the significance of minority instances within the loss function, thereby averting the 
underrepresentation of less populated classes. Ren et al.[9] proposed the Balanced Softmax technique, 
which alleviates the class imbalance bias by adjusting the predicted logits using the label frequencies 
before calculating the final loss. Lin et al.[10] put forward the concept of Focal Loss, which diverges from 
using training label frequency and instead focuses on recalibrating weights based on the difficulty of 
predicting each class. To address the issue of overfitting, Cao et al.[1] developed a theoretically grounded 
approach known as Label Distribution-Aware Margin (LDAM) loss, aimed at reducing the generalization 
bound through margin optimization. Additionally, they proposed a Delayed Reweighting (DRW) 
technique to further improve model performance. 

2.3. Method Based on Re-Margining 

In response to class imbalance, re-margining endeavors to mitigate this challenge by fine-tuning the 
loss function through the subtraction of unique margin factors tailored to each class. This methodology 
enables the calculation of distinct minimum margins between features and classifiers for every category, 
effectively addressing disparity among classes. Cao et al.[11] introduced an innovative frequency metric 
grounded in inter-class feature compactness, subsequently employing this metric to re-margining the 
feature space of the tail domain. Nevertheless, while this re-margining technique aimed at enlarging the 
margin for tail classes might effectively address certain issues, it also carries the risk of diminishing 
feature learning capabilities within head classes. Wu et al.[12] employed a scale-invariant classifier and 
re-balanced the data by utilizing margin engineering during the training phase and margin adjustment 
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during the inference phase to enhance the adversarial robustness under the long-tailed distribution. The 
decision margin adjustment technique refines the classifier's head in a learnable manner post-standard 
training, leveraging strategies such as maximum likelihood estimation among others. Nonetheless, 
prevailing methods of decision margin adjustment overlook the crucial aspect of margin calibration. Our 
objective is centered on fine-tuning the margin to achieve equitable prediction outcomes. 

3. Method 

We propose MAMMC, A Mixup-based Margin Aware and Calibration Model, specifically designed 
to tackle imbalance issues prevalent in soil image datasets. Drawing inspiration from Mixup, we infuse 
the concept of variable margins into this framework through our Margin-Aware-Mixup (MAM). 
Subsequently, to refine these margins post-training, we apply an Margin Calibration (MC) during the 
latter training phase for precise margin adjustment. 

3.1. Margin-Aware-Mixup 

We propose to integrate the concept of uneven margins into the Mixup-based data augmentation 
technique. Given a training sample x and its corresponding label y, the margin of (x,y) is defined as 
follows: 

j
yj

y xfxfyx )(max)(),(
≠

−=γ                              (1) 

LDAM proposes a loss function that encourages class-dependent margins to address the class 
imbalance problem. Theoretically, it has been derived that the ideal margin for each class is proportional 
to the ratio of positive to negative samples in that class. 

4/1/ jj nC=σ                                      (2) 

where C is a constant. Theoretically, this loss function encourages larger margins for the minority 
class. Assuming (xi,yi) and (xj,yj) are two samples from different classes, the distance between the 
decision margin between class i and class j for sample xi is defined as follows: 

ωω κκ ji nn ji /1;/1 ==                                  (3) 

where ω is a hyper-parameter that needs to be tuned to achieve the optimal balance in the proposed 
margin-aware mixing technique. Experimental analysis has been conducted on this hyper-parameter. 
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where  and the Mixup-selected pairs (xi,yi) and (xj,yj) is similar to the original Mixup, and 
, . If the mixing factor , The probability of outputting 

the synthesized example for both class i and class j should be 0.5.  

Finally, we propose the Margin-Aware-Mixup formula as follows: 
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In the original Mixup, the mixing factor for synthesizing x and y are the same, that is . The 
core idea of Mixup for addressing class imbalance is to obtain different y. We propose a method that 
achieves this idea by combining margin-aware. 

3.2. Margin Calibration 

To obtain the calibrated logits, MC calibrates the margins after standard training. Specifically, a 
simple class margin calibration model is used during training, with the original margins remaining fixed: 

xλ
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where  and  is the learnable parameters of class j. In the experiment, the calibration is 
extended from class j to other classes, and finally to the entire dataset. Therefore, the calibrated logit is 
calculated as: 

jjjjjjjjjj dd W)(WˆW ⋅+⋅=+⋅= βηαβα                    (7) 

Where  are the initial fixed logits. Then, we can obtain the calibrated prediction distribution: 
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Moreover, to obtain a more balanced gradient during the training process, we re-weighting the loss 
as in previous studies. The weight of the yi class is calculated as follows: 
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Whereγis the scale hyper-parameter. Whenγ=0, the weights of all classer are set to 1, indicating that 
there is no need for re-weighting. Similar to previous studies, we propose a new loss function for class 
re-weighting, and the loss for the margin calibration model is: 
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Where  and  parameter is frozen in the training process. The entire training process consists 
of two stages: standard training and margin calibration model training. 

4. Experiments 

4.1. Datasets 

Our experiments utilize three public datasets, including CIFAR-10-LT, CIFAR-100-LT, ImageNet-LT. 
The imbalance ratio used in the CIFAR dataset is defined as Nmax/Nmin, where Nmax is the number of 
samples in the largest class, and Nmin is the number of samples in the smallest class. For the CIFAR 
dataset, experiments were conducted with two imbalance ratios, 100 and 200.  For the ImageNet-LT 
dataset, the classes are further divided into three groups based on the number of images: Many-shot (over 
100 images), Medium-shot (20 to 100 images), and Few-shot (fewer than 20 images). Ultimately, we 
deploy our proposed model on the Soil dataset for evaluation. 

4.2. Implementation Details 

For the CIFAR-10-LT, CIFAR-100-LT, and Soil datasets, we used ResNet32 as the backbone network. 
The standard training phase lasted for 200 epochs, and the margin calibration phase consisted of 10 
epochs. We applied a cosine learning rate scheduler with an initial learning rate that gradually decreased 
from 0.05 to 0, and the batch size was 256. For the ImageNet-LT dataset, we selected ResNet50 as the 
backbone network, and the standard training phase consisted of 100 epochs. The margin calibration phase 
also consisted of 10 epochs, using a cosine learning rate scheduler with an initial learning rate that 
gradually decreased from 0.1 to 0. The batch size was 128. During the standard training phase, we 
optimized the model using stochastic gradient descent (SGD) with a momentum of 0.9, weight decay of 
2e-4, and an initial learning rate of 0.1. Theγwas set to 1.2. GPU using NVIDIA GeForce RTX 3090 with 
24G memory, PyTorch 1.9.0 , Python 3.8, and CUDA 11.1. 
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4.3. Ablation study 

Table 1 presents the experimental results on the CIFAR-10-LT, CIFAR-100-LT, and Soil datasets, 
with the imbalance ratio set to 100 for CIFAR-10-LT and CIFAR-100-LT. MAMMC improves the 
accuracy by 6.7%, 7.0%, and 8.2% respectively compared to standalone MAM. Additionally, MAMMC 
outperforms MAM-DRW, which combines MAM with delayed reweighting, by 1.4%, 4.4%, and 1.5% 
respectively in terms of accuracy. The experimental results indicate that the fusion embedding of 
MAMMC during different training stages is superior to other standalone training models, as well as the 
fusion model with delayed re-weighting. 

Table 1: Accuracy on CIFAR-LT and Soil with imbalance ratio of 100. 

Method Top-1 Accuracy (%) 
CIFAR-10-LT CIFAR-100-LT Soil 

ResNet32 75.1 42.4 70.7 
ResNet32+MAM 76.6 42.8 72.3 
ResNet32+MC 81.5 45.2 77.9 

ResNet32+MAM-DRW 81.9 46.3 79.0 
ResNet32+MAMMC 83.3 50.7 80.5 

4.4. Comparisons with State-of-the-Art Methods 

4.4.1. Experiments on CIFAR-LT 

Table 2 presents the experimental results on the CIFAR-10-LT and CIFAR-100-LT datasets, with 
imbalance ratio set to 100 and 200, respectively. Compared to other re-sampling, re-weighting, and re-
margining methods, our proposed method MAMMC demonstrates superior performance than other 
methods in the table. The accuracy of MAMMC on CIFAR-10-LT(100), CIFAR-10-LT(200), CIFAR-
100-LT(100), and CIFAR-100-LT(200) surpasses Balanced Softmax by 0.2%, 0.3%, 0.4%, and 0.6%, 
respectively, with the numbers in parentheses indicating the imbalance ratios. 

Table 2: Accuracy on CIFAR-LT with imbalance ratio of 100 and 200. 

 
Method 

Top-1 Accuracy (%) 
CIFAR-10-LT CIFAR-100-LT 

100 200 100 200 
Focal Loss[10] 77.1 71.8  43.8 40.2 

Mixup-DRW[2] 82.0 78.3 47.5 43.5 
Class Balanced Loss[8] 78.2 72.6 44.6 39.9 

LDAM-DRW[1] 77.5 73.8 41.3 37.1 
Decouple-cRT[4] 82.0 76.6 50.0 44.5 

Equalization Loss[13] 78.5  74.6  47.4  43.3 
Balanced Softmax[9] 83.1  79.0  50.3 45.9 

BBN[14] 79.8 - 42.6 - 
Remix-DRW[15] 82.3 77.8 46.0 42.8 

LADE[16] 81.8  76.9 45.4 43.6 
DisAlign[17] 78.0 71.2  49.1 43.6 

Hybrid-SC[18] 81.4 - 46.7 - 
RISDA[19] 79.9 74.0 50.1 44.7 
LOBM[20] 78.7 - 46.2 - 
MAMMC 83.3 79.3 50.7 46.5 

4.4.2. Experiments on ImageNet-LT 

Table 3 presents the experimental results on the ImageNet-LT dataset, where the classes are divided 
into three groups based on the number of images: Many-shot (over 100 images), Medium-shot (20 to 100 
images), and Few-shot (fewer than 20 images). MAMMC demonstrates superior performance compared 
to all re-weighting methods. When using all category images, MAMMC improves the accuracy by 0.2% 
compared to MARC. In the Many-shot group, it performs lower than methods such as Seesaw; in the 
Medium-shot group, it improves the accuracy by 0.3% compared to DisAlign; in the Few-shot group, it 
improves the accuracy by 0.3% compared to MARC. 
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Table 3: Accuracy on ImageNet-LT with different groups. 

Method Top-1 Accuracy (%) 
All  Many   Medium Few 

Focal Loss[10] 43.7 64.3  37.1  8.2 
LDAM-DRW[1] 49.8 60.4 46.9 30.7 
Decouple-cRT[4] 47.3 58.8 44.0 26.1 

Balanced Softmax[9] 51.4 62.2 48.8 29.8 
LADE[16] 51.9 62.3 49.3 31.2 

DisAlign[17] 52.2  60.8 50.4  34.7 
Seesaw[21] 50.4 67.1 45.2 21.4 
MARC[3] 52.3 60.4 50.3 36.6 
MAMMC 52.5 62.5 50.7 36.9 

4.5. Hyper-Parameter Analysis 

To analyze the role of the scale hyper-parameter γ in the margin calibration model, experiments were 
conducted on the CIFAR-10-LT and CIFAR-100-LT datasets with an imbalance ratio of 100. The 
experimental results are shown in Figure 1. The horizontal axis represents the value of the scale hyper-
parameter γ, and the vertical axis represents the Top-1 Accuracy.  From the figure, it can be observed 
that when γ=0, the accuracy of CIFAR-10-LT and CIFAR-100-LT is 80.1% and 48.2%, respectively. At 
this point, no loss re-weighting techniques are used during training, and the model remains effective. 
When γ=1.2, the accuracy of CIFAR-10-LT and CIFAR-100-LT is 83.3% and 50.7%, respectively. 
Therefore, when training other datasets, we directly use the setting with γ=1.2. 

 
Figure 1: Accuracy on CIFAR-LT with different scale hyper-parameterγ. 

5. Conclusions 

We utilize margin statistical approaches to assess the model's proficiency in acquiring precise 
representations from a margin perspective within a class-imbalanced learning setting. Introducing the 
Margin-Aware Mixup (MAM), we harness Mixup technology to establish variable edges deliberately. In 
typical imbalanced classification contexts, the original Mixup technique inadvertently results in uneven 
margin. By explicitly manipulating the extent of this edge imbalance, we fine-tune the model’s 
performance. Furthermore, we employ a MC margin calibration model to obtain balanced logits in long-
tailed visual recognition, achieving good results without altering the model's representation. Ultimately, 
our study amalgamates MAM and MC across varying phases of training, thereby introducing a 
groundbreaking model framework dubbed MAMMC. Through this margin-aware and calibration 
approach based on Mixup, the problem of soil class imbalance can be effectively addressed, thereby 
improving the model's performance in practical applications. Moreover, this method can be applied to 
other domains with imbalanced classification issues, providing a new perspective for solving such 
problems. 
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