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Abstract: Early diagnosis of gastric cancer is critical for improved patient prognosis. MicroRNAs 
(miRNAs), a class of non-coding small molecules (20-25 nucleotides) that regulate gene expression by 
binding to target RNAs, represent promising disease biomarkers due to their inherent stability in bodily 
fluids. In this study, based on a dataset of 2,834 serum samples sourced from the Gene Expression 
Omnibus (GEO) database (1,417 early gastric cancer patients and 1,417 healthy controls), four 
penalized logistic regression models—LASSO, Elastic Net (ENet), Smoothly Clipped Absolute 
Deviation (SCAD), and Minimax Concave Penalty (MCP)—are employed for feature selection. These 
models are subsequently integrated with a coordinate descent algorithm to develop a diagnostic model. 
The results demonstrated that the MCP model achieved a prediction accuracy of 98.59% using only 
three miRNAs (hsa-miR-1343-3p, hsa-miR-5100, and hsa-miR-6765-5p). Consequently, model 
complexity was substantially reduced, and the model's generalization capability was improved. 
Biological validation revealed that these miRNAs were consistently selected across multiple models, 
furthermore, they are directly implicated in key pathways of gastric carcinogenesis, including the 
regulation of cell proliferation and apoptosis. This study provides a high-accuracy, cost-effective 
diagnostic strategy for early gastric cancer detection and identifies potential therapeutic targets. 
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1. Introduction 

Gastric cancer (GC) remains a leading cause of cancer-related mortality worldwide. Early diagnosis 
is of paramount importance for significantly improving the five-year survival rate of GC patients, as 
early-stage disease exhibits a high curative potential. However, the clinical manifestations of early 
gastric cancer are often subtle and can be easily overlooked, including mild dyspepsia, bloating, or 
abdominal discomfort. Delays in seeking medical consultation are frequently caused by the 
non-specific nature of these symptoms. Furthermore, while traditional diagnostic methods such as 
endoscopy offer high accuracy, their applicability in widespread population screening is limited by 
their invasiveness, associated costs, and the stringent technical requirements imposed on operators. 
Therefore, the development of a simple, non-invasive method for early gastric cancer prediction 
represents an urgent clinical need. 

In recent years, microRNAs (miRNAs), a critical class of non-coding RNA molecules, have been 
positioned as a focal point in early cancer diagnosis research by advances in molecular biology and 
high-throughput technologies. This positioning is due to their significant roles in gene expression 
regulation, cell proliferation, apoptosis, and tumorigenesis[1-3]. Serum miRNAs have been extensively 
investigated as potential biomarkers, owing to their high biological stability in bodily fluids, ease of 
accessibility, and straightforward detection. For instance, Xi et al. (2012) identified a panel of 10 serum 
miRNAs for the diagnosis of early-stage non-small cell lung cancer[4]. Similarly, Roberg et al. (2017) 
demonstrated that circulating miRNA expression profiles could differentiate prostate cancer 
aggressiveness and predict prognosis, combinations of these identified serum miRNA markers are 
anticipated to aid in risk stratification and clinical decision-making for prostate cancer[5]. More recently, 
Chen et al. (2024) identified three serum miRNAs (miR-106b-5p, miR-129-1-3p, and miR-381-3p) as 
potential diagnostic biomarkers for prostate cancer[6]. 

Previous studies have demonstrated the potential of miRNAs in the diagnosis of different cancers, 
but how to systematically screen and validate combinations of miRNA markers with high specificity 
and sensitivity for disease prediction is still a key issue that needs to be addressed. Machine learning 
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methods can help construct accurate diagnostic models for early cancer detection based on miRNAs. 
For example, Wang et al. (2011) combined a genetic algorithm and support vector machine (GA-SVM) 
methods to screen 13 key features from 185 features, the constructed miR-SF classifier achieved 
93.97%prediction accuracy for human miRNA precursors, providing a new approach for the early 
diagnosis of breast cancer[7]. Furthermore,Bo et al. (2021) developed m6A-miRNAs markers for cancer 
detection using support vector machine algorithms, with an Area Under the Curve (AUC) of 0.936 
being achieved in an external validation cohort[8]. However, traditional machine learning methods, 
when applied to the analysis of high-dimensional genetic data, often suffer from multicollinearity and 
overfitting, and their ability to discern variable significance is thereby limited. Therefore, penalized 
logistic regression has been invoked to address these problems. Shen and Tan (2005) proposed a 
penalized logistic regression method combining two dimensionality reduction methods (singular value 
decomposition and partial least squares) to solve the problem of cancer classification in microarray 
data[9]. Similarly, Liang et al. (2013) developed a sparse logistic regression model based on 
penalization and used a coordinate descent algorithm for the selection and classification of 
cancer-related genes in microarray data[10]. In addition, Algamal and Lee (2015) proposed an improved 
adaptive elastic net regularized logistic regression method (AAEelastic) to improve the stability of gene 
selection and classification accuracy in high-dimensional cancer classification by adjusting the initial 
weights[11]. More recently,Lavanya et al. (2023) developed a new fusion logistic regression using 
weighted and penalties ( FLR) to achieve sparsity and oracle properties in gene selection for 
microarray data to improve performance[12]. 

The aim of this study is to analyze the differences in serum miRNA expression profiles between 
early gastric cancer patients and healthy controls using high-throughput miRNA microarray technology. 
Based on this objective, four penalized logistic regression methods—LASSO, ENet, SCAD, and 
MCP—are applied to screen miRNAs and predict early gastric cancer through penalized logistic 
regression modeling. These applications are intended to establish an efficient and reliable miRNA 
prediction model and to provide a novel, non-invasive screening tool for early gastric cancer in the 
clinic. 

This paper is structured as follows: Section 2 introduces the data sources and variable descriptions, 
Section 3 describes the models and algorithms, Section 4 presents a comparison of the feature 
screening ability and prediction accuracy of the four models, Section 5 provides a brief analysis of the 
screened biomarkers, and Section 6 contains the conclusions and outlook. 

2. Data Sources and Variable Descriptions 

The gene expression data utilized in this paper originate from the Gene Expression Omnibus (GEO) 
database, accession number GSE164174. This dataset contains serum microRNA expression profiles of 
2940 samples, comprising 1423 patients with early gastric cancer, 1417 non-cancer controls, 50 
patients with esophageal cancer, and 50 patients with colorectal cancer. The expression levels of 2565 
miRNAs are obtained via high-throughput miRNA microarray technology, using the Toray Industries 
GPL21263 (3D-Gene Human miRNA V21_1.0.0) platform. In this study, 1417 early gastric cancer 
(EGC) patients and 1417 non-cancer control individuals are screened from the original dataset to serve 
as samples, and the expression levels of 2565 miRNAs serve as the variables. Samples from EGC 
patients are labeled as 1, while non-cancer controls are labeled as 0. Subsequently, the dataset is 
randomly divided into a training set (n=1984) and a test set (n=850) in a 70% to 30% ratio, these sets 
are respectively used for constructing the classification model and evaluating its prediction 
performance. Subsequently, we utilize the following four methods—LASSO penalized logistic 
regression, ENet penalized logistic regression, SCAD penalized logistic regression, and MCP penalized 
logistic regression—to conduct variable screening and classification prediction. 

3. Models and Algorithm 

3.1 Four Penalized Models 

A logistic regression model is a generalized regression model commonly used in classification 
problems. First, we introduce two types of logistic regression 
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  (1) 

Where the response variable Y = 1 denotes the early gastric cancer sample, Y = 0 denotes the 
normal sample, the predictor variable is a real-valued random variable, 
P(Y|X) denotes the conditional probability, and denotes the effect of the 
predictor variable on the classification of the cancer, and its log-likelihood function is 

  (2) 

Penalized negative log-likelihood function  Introducing penalization function to get 
penalized negative log-likelihood function 

  (3) 

Where  is the four penalty functions listed in Table 1, is the tuning parameter, 

and  is the regularization parameter. 

Table 1: Four kinds of penalty functions 

Marking penalty functions 

LASSO . 

ENet  

SCAD 
 

MCP 
 

3.2 Coordinate Descent Algorithm 

In this paper, a coordinate descent algorithm is employed to estimate parameters in penalized 
logistic regression. This algorithm iteratively optimizes one variable at a time while holding others 
fixed, proceeding sequentially until convergence. As demonstrated by Patrick and Jian (2011), 
coordinate descent is effective for LASSO, SCAD, and MCP-penalized logistic regression, providing 
iterative estimates for these models[13]. 

  (4) 

   (5) 
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  (6) 

Where represents the soft-thresholding operator, defined as

, and ,where

 

The coordinate descent algorithm is then applied to the four classes of penalized logistic regression 
to obtain the final parameter estimates, and , and finally calculate the probability estimates: 

  (7) 

Based on the above, the coordinate descent algorithm for MCP logistic regression is as follows: 
Algorithmic 1: Coordinate descent for MCP logistic regression 

Require: The training set , a grid of increasing values , 

, a given tolerance limit  and a maximum iteration number M 

1: Initialization  

2: for m = 0, 1, ..., each do 
3: repeat 

4:  

5:  

6:  

7:  

8:  
9: while not convergent do 
10: for each  do 

11:  

12:  

13: where set the for the intercept term to 0 

14: if | then 

15:  

16: else 
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17:  

18: end if  
19:  

20: end for 
21: end while 
22: until  or do a maximum iteration number M 

23: end for 
Ensure:  

4. Characterization and prediction of performance 

A balanced dataset of 2834 samples (1:1 ratio of cancer to normal) with expression data for 2565 
miRNAs was used in this study. To mitigate bias and uncertainties introduced by arbitrary threshold 
optimization, a fixed prediction threshold of 0.5 was chosen. This approach provides a transparent 
evaluation of the model's classification accuracy on the test set at a pre-defined threshold, enabling 
objective comparisons with existing literature. The model's classification efficacy is then 
comprehensively evaluated using accuracy, sensitivity, and specificity metrics at this threshold.  

Combining LASSO penalty, ENet penalty and logistic regression, regular paths are obtained by 
coordinate descent algorithm. The paths are visualized using the R software glmnet package, see Figure 
1.  

 
(a) LASSO                               (b) ENet( =0.5) 

Figure 1: Coefficient paths for LASSO and ENet 

Figure 1 illustrates the coefficient regularization paths for LASSO and ENet, plotting the coefficient 
values for each variable against the norm (the sum of the absolute values of all coefficients). This 
figure demonstrates how the coefficients of different genes evolve during the regularization process, 
revealing the gene selection behavior of each model. Furthermore, coordinate descent algorithms were 
also investigated for SCAD/MCP-penalized logistic regression, and the resulting model coefficient 
paths, generated using the training set and the R package ncvreg, are presented in Figure 2 . 

Figure 2 presents the coefficient paths for SCAD with values of 3, 5, 10, and 15, alongside the 
coefficient paths for MCP with values of 5, 7, 10, and 15. Within the unshaded, locally convex region, 
the solutions exhibit smoothness and stability. However, in the shaded region on the right, the solutions 
become discontinuous and noisy. The SCAD path for = 15 in Figure 2 closely resembles and is 
smoother than the MCP path for = 15, suggesting a more stable model configuration. 
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Figure 2: SCAD and MCP coefficient paths for different  

 
(a) LASSO                                    (b)ENet 

 
(c) SCAD                                  (d) MCP 

Figure 3: Cross-validation error curves for LASSO, ENet, SCAD, and MCP 
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Figure 3(a) and 3(b) present the binomial deviance curves for LASSO and ENet, respectively, 
generated using the cv function in R. Figures 3(c) and 3(d) display the cross-validation error curves for 
SCAD and MCP, respectively, plotted using the plot.cv.ncvreg function in R. The number of selected 
variables is indicated atop each plot. In each curve, the left vertical line denotes the value 
corresponding to the minimum mean squared error (MSE), while the right vertical line indicates the 
value within one standard error of the minimum MSE, representing a standard error rule often used for 
model selection. Given the tendency of cross-validation to select smaller values (leading to 
over-parameterized models) and considering the characteristics of the data in this study, manual 
adjustments were applied to the values for all four penalties. Variables were then screened based on 
performance around the optimal, with the corresponding feature selection capabilities and prediction 
accuracies summarized in Table 2.  

Table 2: Comparison of feature selection ability and prediction accuracy of different models 

Model  Number of Features Sensitivity Specificity Accuracy 
LASSO(

=1) 
0.005 33 0.9976 0.9976 0.9976 
0.01 21 0.9906 0.9976 0.9941 
0.03 12 0.9835 0.9953 0.9894 
0.05 10 0.9765 0.9953 0.9859 

ENet( =0.5) 0.05 35 0.9859 0.9976 0.9918 
0.1 28 0.9812 0.9953 0.9882 
0.3 15 0.9624 0.9953 0.9788 
0.5 9 0.9694 0.9953 0.9824 

SCAD(
=15) 

0.01 20 0.9859 0.9976 0.9918 
0.02 15 0.9835 0.9953 0.9894 
0.05 10 0.9765 0.9929 0.9847 
0.1 5 0.9765 0.9953 0.9859 

MCP( =15) 0.01 19 0.9859 0.9976 0.9918 
0.02 12 0.9835 0.9953 0.9894 
0.05 8 0.9765 0.9929 0.9847 
0.1 3 0.9765 0.9953 0.9859 

Note: , ,  

To optimize the balance between prediction accuracy and feature parsimony, the performance of 
LASSO, ENet, SCAD, and MCP regularization methods was compared across a range of  values. 
With minimal differences in accuracy rates (all exceeding 0.97), the ability to minimize the number of 
selected variables became the key differentiator for model selection. As shown in Table 2, the LASSO 
model selected 10 variables at = 0.05 (accuracy: 0.9859), ENet selected 9 variables at  = 0.5 

(accuracy: 0.9824), SCAD selected 5 variables at  = 0.1 (accuracy: 0.9859), and MCP selected only 

3 variables at  = 0.1 (accuracy: 0.9859). Given the importance of cost-effectiveness in screening 

and diagnostic applications, the MCP (  = 0.1) model was chosen as the final model due to its 
minimal feature set and maintained prediction accuracy. This choice significantly reduces model 
complexity, enhances interpretability and generalization, and mitigates the risk of overfitting. The 
subsequent analysis focuses on the biological interpretation of the variables selected by the MCP 
model. 

5. Biological analysis of selected traits 

A brief analysis of the significant variables screened by each of the four penalized models (LASSO, 
ENet, SCAD, and MCP) was conducted. Table 3 summarizes the miRNAs identified by each method 
from the same dataset, with commonly selected miRNAs highlighted in bold. While each model 
selected a distinct set of miRNAs, all achieved prediction accuracies of 0.98 or higher. Notably, the 
three miRNAs selected by the MCP method (hsa-miR-1343-3p, hsa-miR-5100, and hsa-miR-6765-5p) 
were also present in the variable sets identified by the other three methods. This finding underscores the 
importance and robustness of these three miRNAs as key and reliable biomarkers for early gastric 
cancer prediction. 
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Table 3: Variable screening for the four penalty models 

LASSO ENet SCAD MCP 
hsa-miR-1228-5p hsa-miR-1228-5p hsa-miR-1228-5p hsa-miR1343-3p 
hsa-miR-1268b hsa-miR-1290 hsa-miR-1268b hsa-miR-5100 

hsa-miR-1343-3p hsa-miR-1343-3p hsa-miR-1343-3p hsa-miR-6765-5p 
hsa-miR-187-5p hsa-miR-4787-3p hsa-miR-5100  
hsa-miR-3122 

hsa-miR-4787-3p 
hsa-miR-5100 

hsa-miR-6746-5p 
hsa-miR-6765-5p 

  

hsa-miR-5100 hsa-miR-6765-5p   
hsa-miR-6511b-5p hsa-miR-6877-5p   
hsa-miR-668-5p hsa-miR-8073   

hsa-miR-6765-5p    
Consistent with our findings, Wang et al. (2025) demonstrated the predictive value of 

hsa-miR-6765-5p in gastric cancer. Furthermore, Yongxin et al[14]. (2024) found that the circular RNA 
circGLIS3 promotes gastric cancer progression by sponging hsa-miR-1343-3p, suggesting a potential 
tumor-suppressive role for hsa-miR-1343-3p[15]. Huimin et al.(2022) revealed that hsa-miR-5100 
inhibits autophagy in gastric cancer cells by targeting the DEK gene, indicating its potential as a 
therapeutic target[16]. These independent studies, viewed from different perspectives, provide strong 
support for the involvement of these three miRNAs in gastric cancer pathogenesis, bolstering the 
biological plausibility of our study. In conclusion, hsa-miR-1343-3p, hsa-miR-5100, and 
hsa-miR-6765-5p represent a promising biomarker combination for predictive modeling in early gastric 
cancer, warranting further investigation of their diagnostic and therapeutic utility in clinical settings. 

6. Conclusion and outlook  

In this study, a comparative analysis of four regularization methods (LASSO, ENet, SCAD, and 
MCP) revealed that all achieved high prediction accuracies (≥ 0.97) across various parameter settings. 
Considering both feature selection efficiency and model complexity, the MCP (λ = 0.1) model was 
selected as optimal. This model, utilizing only three variables (hsa-miR-1343-3p, hsa-miR-5100, and 
hsa-miR-6765-5p), achieved comparable prediction accuracy to other methods while minimizing the 
risk of overfitting and enhancing model interpretability and generalization. Biological analyses further 
validated these findings, demonstrating that the selected miRNAs were consistently identified across 
multiple models and have been implicated in gastric cancer development in previous studies. This 
suggests their potential as a robust biomarker combination for early gastric cancer prediction, 
warranting further investigation of their clinical diagnostic and therapeutic value. 
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