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Abstract: Visible-Infrared Person Re-identification serves as a core technology in surveillance systems, 
enabling accurate identification of individuals across different times and locations while breaking 
through the constraints of lighting conditions. In contrast, traditional methods exhibit poor performance 
in low-light environments, making it difficult to support the advancement of relevant research. To address 
the inter-modal and intra-modal differences between infrared and visible light modalities, this paper 
proposes an Attention and Feature Enhancement Network (AFEN). The network incorporates a median-
enhanced spatial-channel attention module, which can effectively capture multi-scale features. The 
designed feature enhancement module is capable of reducing the distribution gap between modal 
features, enhancing the discriminative power, robustness, and generalization ability of features, thereby 
improving the accuracy of cross-modal matching. 
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1. Introduction 

In the field of pedestrian re-identification (ReID), the core objective is to accurately match pedestrian 
images captured by different cameras. Most of the current ReID methods focus primarily on RGB images 
captured by visible light cameras during the day. However, in complex scenarios such as nighttime or 
low-light conditions, visible light cameras often struggle to effectively capture pedestrian image 
information, leading to a significant drop in the performance of these methods. To address this, the 
academic community has proposed Visible-Infrared Pedestrian Re-identification (VIReID) methods, 
which aim to perform pedestrian retrieval based on infrared (visible) images in the corresponding visible 
(infrared) images. Compared to traditional pedestrian ReID tasks, VIReID faces a more challenging 
problem, as there exists a significant cross-modal discrepancy between visible and infrared images. 

Currently, there are two main approaches to address the cross-modal discrepancy issue. One approach 
is feature-level methods, which focus on mapping both visible and infrared features into a shared 
embedding space in order to minimize the modality gap within that space. However, due to the significant 
differences between visible and infrared images, directly projecting cross-modal images into the same 
feature space presents substantial challenges. The other approach is image-level methods, which mainly 
leverage Generative Adversarial Networks (GANs) to convert infrared (or visible) images into the 
corresponding visible (or infrared) images, thereby eliminating the modality discrepancy. Although such 
methods can reduce the modality gap to some extent, the generated cross-modal images often suffer from 
noise issues due to the lack of large-scale paired visible-infrared image data. However, due to an 
excessive focus on extracting modality-shared features and reducing modality discrepancies, the 
aforementioned methods inadequately explore fine-grained details, resulting in difficulty extracting 
discriminative pedestrian features. 

To address the aforementioned challenges, this paper proposes a cross-modal person re-identification 
framework that leverages attention mechanisms and feature enhancement techniques. The method 
integrates a Median-Enhanced Spatial–Channel Attention module (MECS) and a Feature Enhancement 
Module (FEM) to achieve discriminative and robust cross-modal feature extraction. Specifically, the 
MECS module first exploits fine-grained pedestrian details, thereby strengthening the discriminability of 
the extracted pedestrian representations. Subsequently, the FEM preserves both high- and low-frequency 
components within the images, capturing richer cross-modal feature representations while accentuating 
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object boundaries. This dual-frequency preservation enhances feature distinctiveness and robustness 
against modality discrepancies. 

2. Related Works 

The primary challenge in visible-infrared (VI) cross-modality person re-identification lies in the 
significant modality discrepancy between the two image types. Visible images consist of three color 
channels (red, green, and blue), whereas infrared (IR) images contain only a single channel, and the two 
are generated based on fundamentally different wavelength spectra. This inherent heterogeneity leads to 
considerable appearance differences across modalities. To address this issue, most existing approaches 
aim to reduce the modality gap and learn modality-invariant representations. Currently, convolutional 
neural network (CNN)-based[1] dual-stream architectures serve as the mainstream backbone, wherein 
modality-specific features are independently extracted from visible and infrared images, followed by a 
modality-shared layer with shared weights to align the extracted features and mitigate cross-modality 
discrepancies. Building upon this foundation, various strategies have been proposed to further bridge the 
modality gap and enhance retrieval accuracy for cross-modality person re-identification, which can 
generally be categorized into image-level and feature-level methods. In recent years, Transformer-
based[2] approaches have also attracted increasing attention due to their powerful representation 
capabilities and have demonstrated promising performance in this field. 

Image-level approaches aim to unify modalities at the image space by performing modality 
transformation or fusion to reduce modality discrepancies. Modality transformation methods convert one 
modality into another to bridge the gap, while modality fusion methods coordinate the relationship 
between modalities at the pixel level to generate new fused images. For instance, the D2RL framework[3] 
employs an image-level subnetwork for modality translation, but suffers from high computational cost 
and the introduction of noise in the generated images. In contrast, the HAT method[4] captures structural 
information by generating auxiliary grayscale images, avoiding the need for complex image generation 
processes. The tri-modal learning framework proposed in[5] adopts a lightweight self-supervised 
network to generate X-modality images, effectively mitigating pathological generation issues. The 
channel-enhanced joint learning strategy in[6] enhances robustness and reduces overhead by performing 
color channel exchange and random grayscale transformations. Similarly, the SMCL model[7] promotes 
feature sharing by generating assimilated modalities, thereby improving performance. However, image-
level methods often unify modalities at a coarse pixel level, making them sensitive to noise and prone to 
introducing new artifacts during the transformation process. 

Feature-level methods aim to achieve modality alignment and transformation through strategies such 
as feature extraction and enhancement, architectural innovations, and contrastive learning. For example, 
the DDAG approach[8] and MPANet[9] improve performance by enhancing feature representation and 
mitigating modality discrepancies, respectively. PSFLNet[10] introduces a novel architecture with 
parameter sharing to integrate modality information from the early stages of feature extraction. Although 
these methods effectively improve feature discriminability and modality robustness, their performance 
may still be limited under complex conditions due to the inherent physical differences in imaging 
between modalities. Recently, contrastive learning-based approaches have emerged as promising 
alternatives. For instance, [11] enhances modality adaptation and generalization by incorporating 
modality-aware learning and centroid-based negative sampling, which significantly narrows the modality 
gap and boosts model performance in challenging scenarios involving illumination variation, occlusion, 
and viewpoint changes. 

Transformer-based cross-modality person re-identification methods leverage the global attention 
mechanism to extract pedestrian image features and capture complex relationships between different 
modalities, thereby enhancing model stability under challenging conditions such as occlusion, varying 
viewpoints, and illumination changes. The self-attention layers in Transformers dynamically adjust their 
weights according to the input data, enabling flexible adaptation to modality differences. For instance, 
[12] introduces a modality embedding module along with a modality-aware enhancement loss to learn 
modality-invariant representations, while[13] employs grayscale images as an auxiliary modality and 
adopts a progressive learning strategy to reduce modality discrepancies. Both approaches improve the 
discriminability and robustness of cross-modality features. However, despite the superior performance 
of Vision Transformers over CNNs in single-modality person re-identification tasks, their effectiveness 
in cross-modality settings remains limited. This is mainly due to their weaker capability in capturing 
fine-grained local features and their reliance on large-scale labeled data, which often leads to inferior 
performance compared to contemporary CNN-based methods in cross-modality scenarios. 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 10: 1-7, DOI: 10.25236/AJCIS.2025.081001 

Published by Francis Academic Press, UK 
-3- 

3. Proposed method 

As shown in the figure1, the proposed Attention Feature Enhancement Network (AFEN) employs a 
dual-stream ResNet-50 network as the backbone. The AFEN network incorporates the Median Enhanced 
Spatial Channel Attention Mechanism (MECS), which effectively enhances feature extraction 
capabilities. The MECS module combines both channel attention and spatial attention mechanisms, 
enabling the network to capture and integrate features at different scales. Additionally, a Feature 
Enhancement Module (FEM) is introduced to effectively address the modality discrepancy between 
visible and infrared images, enhancing the discriminative power, robustness, and generalization ability 
of the features. This, in turn, significantly improves the performance and reliability of the re-
identification system. During the training phase, all features before and after the batch normalization (BN) 
layers are input into different loss functions to jointly optimize the AFEN network. 

 
Figure 1: Network architecture. 

3.1 Median-Enhanced Spatial and Channel Attention Mechanism 

This paper designs a Median-Enhanced Spatial and Channel Attention Module (MECS), which 
combines both channel attention and spatial attention mechanisms with the goal of improving feature 
extraction effectiveness and robustness. The channel attention mechanism extracts global statistical 
information through global pooling operations, while the spatial attention mechanism captures spatial 
features at different scales through multi-scale deep convolution. The overall design aims to provide 
richer feature representations, thereby enhancing the model's performance. The structure of this MECS 
module is shown in Figure 2. 

3.1.1 Median-Enhanced Channel Attention 

The channel attention module optimizes the channel relationships of features by selecting more 
meaningful channels in the RGB-IR feature maps. Existing channel attention mechanisms typically use 
global average pooling and global max pooling to extract global statistical information from feature maps. 
However, these methods perform inadequately when dealing with noise, especially when significant 
noise is present in the input feature maps, which may affect the quality of feature extraction. Median 
pooling is widely used in image processing tasks for noise removal because it can eliminate noise while 
preserving important feature information. To address the noise issue and enhance the robustness of the 
channel attention mechanism, we introduce a median pooling operation into the channel attention 
mechanism, combining it with global average pooling and global max pooling to form a more robust 
channel attention mechanism. The specific process is as follows: 

First, the input feature map undergoes global average pooling (AvgPool), global max pooling 
(MaxPool), and global median pooling (MedianPool), resulting in three different pooling outputs. The 
size of each pooled output is 𝑅𝑅𝐶𝐶×1×1, where C is the number of channels. Each pooling output is then 
passed through a shared multi-layer perceptron (MLP), which consists of two 1×1 convolutional layers 
and a ReLU activation function. The first convolutional layer reduces the feature dimension from C to 
C/r, where r is the reduction ratio, and the second convolutional layer restores the feature dimension back 
to C. Finally, a Sigmoid activation function is applied to compress the output values within the range of 
[0, 1], producing three attention maps. The attention maps from the three pooling outputs are then 
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element-wise summed to obtain the final channel attention map. The channel attention map is then 
element-wise multiplied with the original input feature map to obtain the weighted feature map. The 
formula is as follows: 

𝐹𝐹𝑐𝑐 = 𝜎𝜎 �MLP�AvgPool(𝐹𝐹)�� + 𝜎𝜎 �MLP�MaxPool(𝐹𝐹)�� + 𝜎𝜎 �MLP�MedianPool(𝐹𝐹)�� (1) 

𝐹𝐹′ = 𝐹𝐹𝑐𝑐 ⊙ 𝐹𝐹 (2) 

Here, σ denotes the Sigmoid function, and ⊙ represents element-wise multiplication. 

 
Figure 2: MECS Module. 

3.1.2 Spatial Attention 

To capture the spatial relationships of features, this paper further adopts a spatial attention module to 
emphasize feature information, serving as complementary information to the channel attention. First, the 
input feature map passes through a 5×5 convolutional layer to extract basic features. These basic feature 
maps are then processed through multiple depthwise convolution layers of varying sizes, including 
different kernel sizes, to further extract multi-scale features. Finally, these multi-scale features are 
element-wise summed, and a 1×1 convolutional layer is applied to generate the spatial attention map. 
The weighted feature map is then element-wise multiplied with the spatial attention map to obtain the 
final output feature map. The formula is as follows: 

𝐹𝐹𝑠𝑠 = �𝐷𝐷𝑖𝑖(𝐹𝐹′)
𝑛𝑛

𝑖𝑖=1

(3) 

𝐹𝐹′′ = Conv1×1(𝐹𝐹𝑠𝑠) ⊙𝐹𝐹′ (4) 

Here, n denotes the number of depthwise convolutions, and Conv1×1 represents the 1×1 convolution 
operation. 

3.2 Feature Enhancement Module 

This paper proposes a Feature Enhancement Module (FEM), which consists of three key components: 
Convolutional Embedding (CE), Feature Refinement Module (FRM), and Convolutional Multi-Layer 
Perceptron (ConvMLP). The focus of this module is to adaptively capture the rich features of cluttered 
backgrounds, making the object boundaries more distinguishable, and perform feature enhancement to 
preserve both high-frequency and low-frequency components in the image. 

First, the input features are processed through LayerNorm and Convolutional Embedding (CE) to 
learn generalization and discriminative abilities. The output of CE is passed to a 1x1 convolutional layer, 
which compresses the channels by half. Channel compression helps reduce computational overhead and 
encourages the model to mix features based on their shape. The compressed features are then fed into the 
Feature Refinement Module (FRM) to refine the features. The output of FRM is fused and projected 
through a 1x1 convolutional layer and ConvMLP to further enhance the representation. 

The Feature Refinement Module (FRM) serves as a critical component in our network for enhancing 
high-frequency details and capturing low-frequency contextual information. Let the input feature map be 
denoted as 𝐹𝐹 ∈ 𝑅𝑅𝐶𝐶×𝐻𝐻×𝑊𝑊. We first pass F through a deep convolutional layer to obtain a downsampled 
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feature map 𝑃𝑃 ∈ 𝑅𝑅𝐶𝐶×𝐻𝐻/2×𝑊𝑊/2, simulating a blurred version of the original input. This feature map P is 
then upsampled to match the spatial resolution of F, resulting in a smoothed feature map Q. 

To highlight high-frequency details, we compute the difference between F and Q, yielding a refined 
feature embedding R. Meanwhile, the FRM incorporates a second branch designed to capture low-
frequency components. Specifically, an element-wise multiplication between F and Q is performed to 
obtain the low-frequency feature representation S. 

Next, the high-frequency component R and the low-frequency component S are concatenated along 
the channel dimension and further processed by a depthwise convolution to extract a fused representation 
T. Finally, this output is passed through a projection layer to restore the original channel dimension, 
producing the enhanced feature map 𝐹𝐹�. 

3.3 Loss Function 

This paper adopts a combined optimization model of identity loss 𝐿𝐿𝑖𝑖𝑖𝑖  and enhanced weighted 
regularized triplet loss 𝐿𝐿𝑠𝑠𝑠𝑠. The identity loss 𝐿𝐿𝑖𝑖𝑖𝑖  constrains the gap between image representations of the 
same person across different scenarios, typically using the cross-entropy function, as shown below: 

𝐿𝐿𝑖𝑖𝑖𝑖 = −
1
𝑁𝑁
�𝑙𝑙𝑙𝑙𝑙𝑙 �𝑃𝑃� 𝑙𝑙𝑖𝑖 ∣∣ 𝐶𝐶( 𝑓𝑓𝑖𝑖 ∣∣ 𝜃𝜃 ) ��
𝑁𝑁

𝑖𝑖=1

(5) 

In the equation, N represents the number of images in the current batch, li denotes the corresponding 
label value of the feature fi , and 𝜃𝜃 represents the parameters of the classifier. 

The weighted regularized triplet loss 𝐿𝐿wrt combines the triplet loss function and a regularization term. 
By weighting the distances between different samples, the model focuses more on hard samples during 
training, thereby improving accuracy and generalization ability. Based on this, the optimized squared 
error is used instead of the l1 norm difference, which better optimizes the model's efficiency. This is the 
enhanced weighted regularized triplet loss 𝐿𝐿sq, as shown below: 

𝐿𝐿𝑠𝑠𝑠𝑠 =
1
𝑁𝑁
�𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝑒𝑒𝑒𝑒𝑒𝑒(𝜑𝜑[𝑢𝑢𝑖𝑖]))
𝑁𝑁

𝑖𝑖=1

(6) 

𝑢𝑢𝑖𝑖 = �𝑤𝑤𝑖𝑖𝑖𝑖
𝑝𝑝𝑑𝑑𝑖𝑖𝑖𝑖

𝑝𝑝

𝑖𝑖𝑖𝑖

−�𝑤𝑤𝑖𝑖𝑘𝑘𝑛𝑛 𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖𝑖𝑖

(7) 

φ[𝑢𝑢𝑖𝑖] =  �
𝑢𝑢𝑖𝑖2,          𝑢𝑢𝑖𝑖 > 0            
−𝑢𝑢𝑖𝑖2,             𝑢𝑢𝑖𝑖 > 0       

(8) 

In the equation, (i, j, k) represents a triplet in each training batch, where xi and pi correspond to the 
positive pair, and ni corresponds to the negative pair, dij

p/ dikn  represents the Euclidean distance between 
the positive/negative sample pairs. 

The total loss function is represented as follows: 

𝐿𝐿 = 𝐿𝐿𝑖𝑖𝑖𝑖 + 𝐿𝐿𝑠𝑠𝑠𝑠 (9) 

4. Experimental Analysis 

4.1 Dataset 

The SYSU-MM01 dataset is a large-scale dataset collected using four visible-light cameras and two 
near-infrared (NIR) cameras, covering both indoor and outdoor environments. It contains images 
captured under varying camera views, environmental conditions, illumination, and modalities. The 
training set includes 22,258 RGB images and 11,909 IR images from 395 identities. The query and 
gallery sets consist of 3,803 IR images and 301 (or 3,010) RGB images randomly sampled from 96 
identities under single-shot or multi-shot settings. Specifically, camera 1, 2, 4, and 5 capture RGB images, 
while camera 3 and 6 capture IR images. 

The RegDB dataset is constructed using a pair of aligned cameras (one visible-light camera and one 
thermal camera). It contains 8,240 images corresponding to 412 identities, with each identity having 10 
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images captured by the visible camera and 10 images captured by the thermal camera. For training and 
testing, the dataset is randomly split into two subsets: images of 206 identities are used for training, and 
the remaining 206 identities are used for testing. 

4.2 Evaluation Metrics and Experimental Environment 

In this experiment, the model was implemented on the Windows 10 operating system using Python 
3.8 and the PyTorch deep learning framework. A NVIDIA RTX 3090 GPU with 24 GB of memory was 
employed for training and inference. For feature extraction, the ResNet-50 backbone pretrained on 
ImageNet[14] was adopted. Common data augmentation techniques, including random cropping, 
horizontal flipping, and channel enhancement, were applied during training. The initial learning rate was 
set to 0.1, and it was decayed by a factor of 0.1 and 0.01 at the 20th and 50th epochs, respectively. The 
total number of training epochs was 100. The SGD optimizer was used with a weight decay of 5×10⁻⁴ 
and a momentum of 0.9. 

For performance evaluation, the experiment adopted standard person re-identification metrics, 
including the Cumulative Matching Characteristic (CMC) curve, Rank-n accuracy, and mean Average 
Precision (mAP). The calculation of mAP follows the formula defined as follows. 

𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑁𝑁
�𝐴𝐴𝑃𝑃𝑘𝑘

𝑁𝑁

𝑘𝑘=1

(10) 

Here, n denotes the total number of query images, and AP𝑘𝑘 represents the average precision of the k-
th query image. 

4.3 Result 

The performance of the proposed method is compared with that of current mainstream visible-
infrared person re-identification approaches, and the results are presented in Table 1. 

Table 1: Comparison results on SYSU-MM01 and RegDB datasets 

Model SYSU-MM01 RegDB 
 All search Indoor search V to T T to V 
 Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP 

AGW 47.58   47.69 54.29 63.02 70.05    66.37 70.49 65.90 
Xmodal 49.92  50.73 - - 62.21  60.18 - - 
DDAG 53.61    52.02 58.37 65.44 69.34   63.19 64.77 58.54 
SPOT 65.34    62.25 69.42 74.63 80.35   72.46 79.37 72.26 
PMT 67.53   64.98 71.66 76.52 84.83   76.55 84.16 75.13 

DART 68.79    66.55 72.52 78.17 83.78   76.00 81.78 73.64 
CAJ 69.88    66.89 76.26 80.37 85.03    79.14 84.75 77.82 

AFEN 71.74   68.96 77.86 82.03 86.32    79.60 84.96 78.31 
Quantitative results in Table 1 reveal the relative strengths of the different networks: the proposed 

approach surpasses most existing methods under both the All-Search and Indoor-Search settings on 
SYSU-MM01. Specifically, under All-Search it improves Rank-1 by 1.86 % and mAP by 2.07 % over 
CAJ; under Indoor-Search the gains are 1.60 % in Rank-1 and 1.66 % in mAP. Entries marked “–” denote 
results not reported in the original paper. 

5. Conclusions 

This paper presents a cross-modal person re-identification framework that integrates attention 
mechanisms with feature enhancement to extract fine-grained and highly discriminative representations 
from heterogeneous pedestrian images. The architecture is composed of a median-enhanced spatial–
channel attention module (MECS) and a feature enhancement module (FEM), both embedded within a 
two-stream network. The MECS module selectively amplifies subtle pedestrian details, thereby 
reinforcing the intra-class consistency and inter-class separability of modality-specific features. 
Subsequently, the FEM enriches the representation of cluttered backgrounds by jointly preserving high- 
and low-frequency image components, yielding more comprehensive cross-modal features. The entire 
model is optimized via a joint supervision of identity loss and an enhanced weighted regularization triplet 
loss, which enlarges inter-class margins while increasing intra-class similarity across modalities. 
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Extensive experiments demonstrate the effectiveness of the proposed approach. 

References 

[1] Zhang Y, Zhao S, Kang Y, et al. Modality synergy complement learning with cascaded aggregation 
for visible-infrared person re-identification[C]//European conference on computer vision. Cham: 
Springer Nature Switzerland, 2022: 462-479. 
[2] Mukhtar H, Khan M U G. CMOT: A cross-modality transformer for RGB-D fusion in person re-
identification with online learning capabilities[J]. Knowledge-Based Systems, 2024, 283: 111155. 
[3] Ye M, Shen J, Shao L. Visible-infrared person re-identification via homogeneous augmented tri-
modal learning[J]. IEEE Transactions on Information Forensics and Security, 2020, 16: 728-739. 
[4] Wang Z, Wang Z, Zheng Y, et al. Learning to reduce dual-level discrepancy for infrared-visible 
person re-identification[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. 2019: 618-626. 
[5] Ye M, Ruan W, Du B, et al. Channel augmented joint learning for visible-infrared 
recognition[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 
13567-13576. 
[6] Li D, Wei X, Hong X, et al. Infrared-visible cross-modal person re-identification with an x 
modality[C]//Proceedings of the AAAI conference on artificial intelligence. 2020, 34(04): 4610-4617. 
[7] Wei Z, Yang X, Wang N, et al. Syncretic modality collaborative learning for visible infrared person 
re-identification[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 
225-234. 
[8] Ye M, Shen J, J. Crandall D, et al. Dynamic dual-attentive aggregation learning for visible-infrared 
person re-identification[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 
August 23–28, 2020, Proceedings, Part XVII 16. Springer International Publishing, 2020: 229-247. 
[9] Wu Q, Dai P, Chen J, et al. Discover cross-modality nuances for visible-infrared person re-
identification[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 
2021: 4330-4339. 
[10] Chan S, Du F, Tang T, et al. Parameter sharing and multi-granularity feature learning for cross-
modality person re-identification[J]. Complex & Intelligent Systems, 2024, 10(1): 949-962. 
[11] Cheng D, Wang X, Wang N, et al. Cross-modality person re-identification with memory-based 
contrastive embedding[C]//Proceedings of the AAAI conference on artificial intelligence. 2023, 37(1): 
425-432. 
[12] Liang T, Jin Y, Liu W, et al. Cross-modality transformer with modality mining for visible-infrared 
person re-identification[J]. IEEE Transactions on Multimedia, 2023, 25: 8432-8444. 
[13] Lu H, Zou X, Zhang P. Learning progressive modality-shared transformers for effective visible-
infrared person re-identification[C]//Proceedings of the AAAI conference on artificial intelligence. 2023, 
37(2): 1835-1843. 
[14] Deng J, Dong W, Socher R, et al. Imagenet: A large-scale hierarchical image database[C]//2009 
IEEE conference on computer vision and pattern recognition. IEEE, 2009: 248-255. 


	1. Introduction
	2. Related Works
	3. Proposed method
	3.1 Median-Enhanced Spatial and Channel Attention Mechanism
	3.2 Feature Enhancement Module
	3.3 Loss Function
	4. Experimental Analysis
	4.1 Dataset
	4.2 Evaluation Metrics and Experimental Environment
	4.3 Result
	5. Conclusions
	References

