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Abstract: Visible-Infrared Person Re-identification serves as a core technology in surveillance systems,
enabling accurate identification of individuals across different times and locations while breaking
through the constraints of lighting conditions. In contrast, traditional methods exhibit poor performance
in low-light environments, making it difficult to support the advancement of relevant research. To address
the inter-modal and intra-modal differences between infrared and visible light modalities, this paper
proposes an Attention and Feature Enhancement Network (AFEN). The network incorporates a median-
enhanced spatial-channel attention module, which can effectively capture multi-scale features. The
designed feature enhancement module is capable of reducing the distribution gap between modal
features, enhancing the discriminative power, robustness, and generalization ability of features, thereby
improving the accuracy of cross-modal matching.
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1. Introduction

In the field of pedestrian re-identification (RelD), the core objective is to accurately match pedestrian
images captured by different cameras. Most of the current ReID methods focus primarily on RGB images
captured by visible light cameras during the day. However, in complex scenarios such as nighttime or
low-light conditions, visible light cameras often struggle to effectively capture pedestrian image
information, leading to a significant drop in the performance of these methods. To address this, the
academic community has proposed Visible-Infrared Pedestrian Re-identification (VIReID) methods,
which aim to perform pedestrian retrieval based on infrared (visible) images in the corresponding visible
(infrared) images. Compared to traditional pedestrian RelID tasks, VIReID faces a more challenging
problem, as there exists a significant cross-modal discrepancy between visible and infrared images.

Currently, there are two main approaches to address the cross-modal discrepancy issue. One approach
is feature-level methods, which focus on mapping both visible and infrared features into a shared
embedding space in order to minimize the modality gap within that space. However, due to the significant
differences between visible and infrared images, directly projecting cross-modal images into the same
feature space presents substantial challenges. The other approach is image-level methods, which mainly
leverage Generative Adversarial Networks (GANs) to convert infrared (or visible) images into the
corresponding visible (or infrared) images, thereby eliminating the modality discrepancy. Although such
methods can reduce the modality gap to some extent, the generated cross-modal images often suffer from
noise issues due to the lack of large-scale paired visible-infrared image data. However, due to an
excessive focus on extracting modality-shared features and reducing modality discrepancies, the
aforementioned methods inadequately explore fine-grained details, resulting in difficulty extracting
discriminative pedestrian features.

To address the aforementioned challenges, this paper proposes a cross-modal person re-identification
framework that leverages attention mechanisms and feature enhancement techniques. The method
integrates a Median-Enhanced Spatial-Channel Attention module (MECS) and a Feature Enhancement
Module (FEM) to achieve discriminative and robust cross-modal feature extraction. Specifically, the
MECS module first exploits fine-grained pedestrian details, thereby strengthening the discriminability of
the extracted pedestrian representations. Subsequently, the FEM preserves both high- and low-frequency
components within the images, capturing richer cross-modal feature representations while accentuating
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object boundaries. This dual-frequency preservation enhances feature distinctiveness and robustness
against modality discrepancies.

2. Related Works

The primary challenge in visible-infrared (VI) cross-modality person re-identification lies in the
significant modality discrepancy between the two image types. Visible images consist of three color
channels (red, green, and blue), whereas infrared (IR) images contain only a single channel, and the two
are generated based on fundamentally different wavelength spectra. This inherent heterogeneity leads to
considerable appearance differences across modalities. To address this issue, most existing approaches
aim to reduce the modality gap and learn modality-invariant representations. Currently, convolutional
neural network (CNN)-based[1] dual-stream architectures serve as the mainstream backbone, wherein
modality-specific features are independently extracted from visible and infrared images, followed by a
modality-shared layer with shared weights to align the extracted features and mitigate cross-modality
discrepancies. Building upon this foundation, various strategies have been proposed to further bridge the
modality gap and enhance retrieval accuracy for cross-modality person re-identification, which can
generally be categorized into image-level and feature-level methods. In recent years, Transformer-
based[2] approaches have also attracted increasing attention due to their powerful representation
capabilities and have demonstrated promising performance in this field.

Image-level approaches aim to unify modalities at the image space by performing modality
transformation or fusion to reduce modality discrepancies. Modality transformation methods convert one
modality into another to bridge the gap, while modality fusion methods coordinate the relationship
between modalities at the pixel level to generate new fused images. For instance, the D2RL framework[3]
employs an image-level subnetwork for modality translation, but suffers from high computational cost
and the introduction of noise in the generated images. In contrast, the HAT method[4] captures structural
information by generating auxiliary grayscale images, avoiding the need for complex image generation
processes. The tri-modal learning framework proposed in[5] adopts a lightweight self-supervised
network to generate X-modality images, effectively mitigating pathological generation issues. The
channel-enhanced joint learning strategy in[6] enhances robustness and reduces overhead by performing
color channel exchange and random grayscale transformations. Similarly, the SMCL model[7] promotes
feature sharing by generating assimilated modalities, thereby improving performance. However, image-
level methods often unify modalities at a coarse pixel level, making them sensitive to noise and prone to
introducing new artifacts during the transformation process.

Feature-level methods aim to achieve modality alignment and transformation through strategies such
as feature extraction and enhancement, architectural innovations, and contrastive learning. For example,
the DDAG approach[8] and MPANet[9] improve performance by enhancing feature representation and
mitigating modality discrepancies, respectively. PSFLNet[10] introduces a novel architecture with
parameter sharing to integrate modality information from the early stages of feature extraction. Although
these methods effectively improve feature discriminability and modality robustness, their performance
may still be limited under complex conditions due to the inherent physical differences in imaging
between modalities. Recently, contrastive learning-based approaches have emerged as promising
alternatives. For instance, [11] enhances modality adaptation and generalization by incorporating
modality-aware learning and centroid-based negative sampling, which significantly narrows the modality
gap and boosts model performance in challenging scenarios involving illumination variation, occlusion,
and viewpoint changes.

Transformer-based cross-modality person re-identification methods leverage the global attention
mechanism to extract pedestrian image features and capture complex relationships between different
modalities, thereby enhancing model stability under challenging conditions such as occlusion, varying
viewpoints, and illumination changes. The self-attention layers in Transformers dynamically adjust their
weights according to the input data, enabling flexible adaptation to modality differences. For instance,
[12] introduces a modality embedding module along with a modality-aware enhancement loss to learn
modality-invariant representations, while[13] employs grayscale images as an auxiliary modality and
adopts a progressive learning strategy to reduce modality discrepancies. Both approaches improve the
discriminability and robustness of cross-modality features. However, despite the superior performance
of Vision Transformers over CNNs in single-modality person re-identification tasks, their effectiveness
in cross-modality settings remains limited. This is mainly due to their weaker capability in capturing
fine-grained local features and their reliance on large-scale labeled data, which often leads to inferior
performance compared to contemporary CNN-based methods in cross-modality scenarios.
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3. Proposed method

As shown in the figurel, the proposed Attention Feature Enhancement Network (AFEN) employs a
dual-stream ResNet-50 network as the backbone. The AFEN network incorporates the Median Enhanced
Spatial Channel Attention Mechanism (MECS), which effectively enhances feature extraction
capabilities. The MECS module combines both channel attention and spatial attention mechanisms,
enabling the network to capture and integrate features at different scales. Additionally, a Feature
Enhancement Module (FEM) is introduced to effectively address the modality discrepancy between
visible and infrared images, enhancing the discriminative power, robustness, and generalization ability
of the features. This, in turn, significantly improves the performance and reliability of the re-
identification system. During the training phase, all features before and after the batch normalization (BN)
layers are input into different loss functions to jointly optimize the AFEN network.
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Figure 1: Network architecture.
3.1 Median-Enhanced Spatial and Channel Attention Mechanism

This paper designs a Median-Enhanced Spatial and Channel Attention Module (MECS), which
combines both channel attention and spatial attention mechanisms with the goal of improving feature
extraction effectiveness and robustness. The channel attention mechanism extracts global statistical
information through global pooling operations, while the spatial attention mechanism captures spatial
features at different scales through multi-scale deep convolution. The overall design aims to provide
richer feature representations, thereby enhancing the model's performance. The structure of this MECS
module is shown in Figure 2.

3.1.1 Median-Enhanced Channel Attention

The channel attention module optimizes the channel relationships of features by selecting more
meaningful channels in the RGB-IR feature maps. Existing channel attention mechanisms typically use
global average pooling and global max pooling to extract global statistical information from feature maps.
However, these methods perform inadequately when dealing with noise, especially when significant
noise is present in the input feature maps, which may affect the quality of feature extraction. Median
pooling is widely used in image processing tasks for noise removal because it can eliminate noise while
preserving important feature information. To address the noise issue and enhance the robustness of the
channel attention mechanism, we introduce a median pooling operation into the channel attention
mechanism, combining it with global average pooling and global max pooling to form a more robust
channel attention mechanism. The specific process is as follows:

First, the input feature map undergoes global average pooling (AvgPool), global max pooling
(MaxPool), and global median pooling (MedianPool), resulting in three different pooling outputs. The
size of each pooled output is R€***1, where C is the number of channels. Each pooling output is then
passed through a shared multi-layer perceptron (MLP), which consists of two 1x1 convolutional layers
and a ReLU activation function. The first convolutional layer reduces the feature dimension from C to
C/r, where r is the reduction ratio, and the second convolutional layer restores the feature dimension back
to C. Finally, a Sigmoid activation function is applied to compress the output values within the range of
[0, 1], producing three attention maps. The attention maps from the three pooling outputs are then
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element-wise summed to obtain the final channel attention map. The channel attention map is then
element-wise multiplied with the original input feature map to obtain the weighted feature map. The
formula is as follows:

F=c (MLP(Angool(F))) to (MLP(MaxPool(F))) ta (MLP(MedianPool(F))) )
FF=F.QF (2)
Here, ¢ denotes the Sigmoid function, and © represents element-wise multiplication.
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Figure 2: MECS Module.
3.1.2 Spatial Attention

To capture the spatial relationships of features, this paper further adopts a spatial attention module to
emphasize feature information, serving as complementary information to the channel attention. First, the
input feature map passes through a 5x5 convolutional layer to extract basic features. These basic feature
maps are then processed through multiple depthwise convolution layers of varying sizes, including
different kernel sizes, to further extract multi-scale features. Finally, these multi-scale features are
element-wise summed, and a 1x1 convolutional layer is applied to generate the spatial attention map.
The weighted feature map is then element-wise multiplied with the spatial attention map to obtain the
final output feature map. The formula is as follows:

E= ) D) 3)
i=1
F" = Convlx1(E,) ® F’ 4)

Here, n denotes the number of depthwise convolutions, and Conv1x1 represents the 1x1 convolution
operation.

3.2 Feature Enhancement Module

This paper proposes a Feature Enhancement Module (FEM), which consists of three key components:
Convolutional Embedding (CE), Feature Refinement Module (FRM), and Convolutional Multi-Layer
Perceptron (ConvMLP). The focus of this module is to adaptively capture the rich features of cluttered
backgrounds, making the object boundaries more distinguishable, and perform feature enhancement to
preserve both high-frequency and low-frequency components in the image.

First, the input features are processed through LayerNorm and Convolutional Embedding (CE) to
learn generalization and discriminative abilities. The output of CE is passed to a 1x1 convolutional layer,
which compresses the channels by half. Channel compression helps reduce computational overhead and
encourages the model to mix features based on their shape. The compressed features are then fed into the
Feature Refinement Module (FRM) to refine the features. The output of FRM is fused and projected
through a 1x1 convolutional layer and ConvMLP to further enhance the representation.

The Feature Refinement Module (FRM) serves as a critical component in our network for enhancing
high-frequency details and capturing low-frequency contextual information. Let the input feature map be
denoted as F € RE**W_We first pass F through a deep convolutional layer to obtain a downsampled
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feature map P € RC*H/2XW/2 gimulating a blurred version of the original input. This feature map P is
then upsampled to match the spatial resolution of F, resulting in a smoothed feature map Q.

To highlight high-frequency details, we compute the difference between F and Q, yielding a refined
feature embedding R. Meanwhile, the FRM incorporates a second branch designed to capture low-
frequency components. Specifically, an element-wise multiplication between F and Q is performed to
obtain the low-frequency feature representation S.

Next, the high-frequency component R and the low-frequency component S are concatenated along
the channel dimension and further processed by a depthwise convolution to extract a fused representation
T. Finally, this output is passed through a projection layer to restore the original channel dimension,
producing the enhanced feature map F.

3.3 Loss Function

This paper adopts a combined optimization model of identity loss L;; and enhanced weighted
regularized triplet loss Lg,. The identity loss L;4 constrains the gap between image representations of the
same person across different scenarios, typically using the cross-entropy function, as shown below:

N
ba =y 2 tog (P41 €5 16))) (5)

In the equation, N represents the number of images in the current batch, l; denotes the corresponding
label value of the feature f; , and 6 represents the parameters of the classifier.

The weighted regularized triplet loss L., combines the triplet loss function and a regularization term.
By weighting the distances between different samples, the model focuses more on hard samples during
training, thereby improving accuracy and generalization ability. Based on this, the optimized squared
error is used instead of the 1; norm difference, which better optimizes the model's efficiency. This is the
enhanced weighted regularized triplet loss L, as shown below:

sq»

L&
Leg = 9 10g (1 + exp(p[u,]) ©)

i=1
u; = Zwi’}’.dg- —zwgcdﬁc 2

ij ik
2
uj, Uu; >0

. = 8

In the equation, (i, j, k) represents a triplet in each training batch, where x; and p; correspond to the
positive pair, and n; corresponds to the negative pair, dﬁ/ dj} represents the Euclidean distance between
the positive/negative sample pairs.

The total loss function is represented as follows:

L=Liy+Lg, 9

4. Experimental Analysis
4.1 Dataset

The SYSU-MMO1 dataset is a large-scale dataset collected using four visible-light cameras and two
near-infrared (NIR) cameras, covering both indoor and outdoor environments. It contains images
captured under varying camera views, environmental conditions, illumination, and modalities. The
training set includes 22,258 RGB images and 11,909 IR images from 395 identities. The query and
gallery sets consist of 3,803 IR images and 301 (or 3,010) RGB images randomly sampled from 96
identities under single-shot or multi-shot settings. Specifically, camera 1, 2, 4, and 5 capture RGB images,
while camera 3 and 6 capture IR images.

The RegDB dataset is constructed using a pair of aligned cameras (one visible-light camera and one
thermal camera). It contains 8,240 images corresponding to 412 identities, with each identity having 10
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images captured by the visible camera and 10 images captured by the thermal camera. For training and
testing, the dataset is randomly split into two subsets: images of 206 identities are used for training, and
the remaining 206 identities are used for testing.

4.2 Evaluation Metrics and Experimental Environment

In this experiment, the model was implemented on the Windows 10 operating system using Python
3.8 and the PyTorch deep learning framework. A NVIDIA RTX 3090 GPU with 24 GB of memory was
employed for training and inference. For feature extraction, the ResNet-50 backbone pretrained on
ImageNet[14] was adopted. Common data augmentation techniques, including random cropping,
horizontal flipping, and channel enhancement, were applied during training. The initial learning rate was
set to 0.1, and it was decayed by a factor of 0.1 and 0.01 at the 20th and 50th epochs, respectively. The
total number of training epochs was 100. The SGD optimizer was used with a weight decay of 5x10~*
and a momentum of 0.9.

For performance evaluation, the experiment adopted standard person re-identification metrics,
including the Cumulative Matching Characteristic (CMC) curve, Rank-n accuracy, and mean Average
Precision (mAP). The calculation of mAP follows the formula defined as follows.

N
1
mAP = NZ AP, (10)
k=1

Here, n denotes the total number of query images, and AP, represents the average precision of the k-
th query image.

4.3 Result

The performance of the proposed method is compared with that of current mainstream visible-
infrared person re-identification approaches, and the results are presented in Table 1.

Table 1: Comparison results on SYSU-MMO01 and RegDB datasets

Model SYSU-MMO1 RegDB
All search Indoor search VtoT TtoV
Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP
AGW 47.58 47.69 54.29 63.02 70.05 66.37 70.49 65.90
Xmodal 49.92 50.73 - - 62.21 60.18 - -
DDAG 53.61 52.02 58.37 65.44 69.34 63.19 64.77 58.54
SPOT 65.34 62.25 69.42 74.63 80.35 72.46 79.37 72.26
PMT 67.53 64.98 71.66 76.52 84.83 76.55 84.16 75.13
DART 68.79 66.55 72.52 78.17 83.78 76.00 81.78 73.64
CAJ 69.88 66.89 76.26 80.37 85.03 79.14 84.75 77.82
AFEN 71.74 68.96 77.86 82.03 86.32 79.60 84.96 78.31
Quantitative results in Table 1 reveal the relative strengths of the different networks: the proposed
approach surpasses most existing methods under both the All-Search and Indoor-Search settings on
SYSU-MMO1. Specifically, under All-Search it improves Rank-1 by 1.86 % and mAP by 2.07 % over
CAJ; under Indoor-Search the gains are 1.60 % in Rank-1 and 1.66 % in mAP. Entries marked “—” denote
results not reported in the original paper.

5. Conclusions

This paper presents a cross-modal person re-identification framework that integrates attention
mechanisms with feature enhancement to extract fine-grained and highly discriminative representations
from heterogeneous pedestrian images. The architecture is composed of a median-enhanced spatial—
channel attention module (MECS) and a feature enhancement module (FEM), both embedded within a
two-stream network. The MECS module selectively amplifies subtle pedestrian details, thereby
reinforcing the intra-class consistency and inter-class separability of modality-specific features.
Subsequently, the FEM enriches the representation of cluttered backgrounds by jointly preserving high-
and low-frequency image components, yielding more comprehensive cross-modal features. The entire
model is optimized via a joint supervision of identity loss and an enhanced weighted regularization triplet
loss, which enlarges inter-class margins while increasing intra-class similarity across modalities.
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Extensive experiments demonstrate the effectiveness of the proposed approach.
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