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Abstract: This study aims to address the problem of semantic segmentation in complex road scenes, 
which has significant applications in fields such as autonomous driving, traffic monitoring, and urban 
planning. The methods investigated in our research primarily include key steps such as data collection, 
preprocessing, and annotation. We employ CNN models for data augmentation and introduce the 
DAFormer semantic segmentation algorithm. In the end, this paper proposes an enhanced DAFormer 
network architecture, incorporating techniques such as rare class sampling, Object Category 
ImageNet Feature Distance (FD), and learning rate warm-up. The application of these techniques 
enables DAFormer to better understand image content in complex road scenarios, providing a 
powerful tool to tackle real-world challenges. We evaluate its performance in this challenging task by 
comparing it with four traditional algorithms. Experimental results demonstrate a significant 
performance improvement in the enhanced DAFormer algorithm in complex road environments, 
achieving an average intersection over union (MIoU) of 0.82, pixel accuracy (PA) of up to 89%, and 
improved timeliness. Compared to other algorithms, the enhanced DAFormer exhibits superior 
performance in terms of accuracy, stability, and timeliness. 

Keywords: Semantic Segmentation, DAFormer Algorithm, Complex Road Scenes, Unsupervised 
Domain Adaptation 

1. Introduction 

Automated driving is a revolutionary transportation technology designed to enable vehicles to 
autonomously drive without human intervention. The development in this field involves the 
interdisciplinary application of computer vision, sensor technology, artificial intelligence, and machine 
learning. Automated driving vehicles gather information about their surrounding environment through 
sensors, utilizing complex algorithms and models to make driving decisions, including avoiding 
obstacles, adhering to traffic rules, and planning the optimal route. The application of automated 
driving technology spans personal vehicles, public transportation, logistics, and urban traffic 
management, with potential economic and societal impacts. Semantic segmentation is a crucial 
computer vision task in automated driving. It assigns each pixel in an image to a specific semantic 
category, such as road, pedestrian, vehicle, or building. This is essential for automated driving vehicles 
as they need to accurately understand and identify various elements in the road environment to make 
intelligent driving decisions.  

Firstly, Chen et al. [1] introduced "DeepLab," a semantic segmentation method that combines deep 
convolutional networks with atrous convolution and fully connected conditional random fields (CRF). 
The innovation of DeepLab lies in improving segmentation accuracy and effectively integrating CRF, 
providing support for precise segmentation. In [2], Ronneberger et al. proposed "U-Net: Convolutional 
networks for biomedical image segmentation," introducing the U-Net network structure, an innovative 
convolutional neural network for biomedical image segmentation. U-Net employs an encoder-decoder 
structure to efficiently handle segmentation tasks in medical images, becoming a crucial tool in the 
field of medical image analysis. In [3], Badrinarayanan et al. introduced "SegNet: A deep convolutional 
encoder-decoder architecture for image segmentation," presenting SegNet, a deep convolutional 
encoder-decoder architecture for image segmentation. The innovation of SegNet lies in its use of an 
efficient decoder to reduce network computational complexity, making it suitable for 
resource-constrained applications like embedded systems. In [4], Zhao et al. proposed "ICNet for 
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real-time semantic segmentation on high-resolution images," introducing ICNet, a method for real-time 
semantic segmentation. ICNet combines multiscale information, achieving fast semantic segmentation 
on high-resolution images, making it valuable for real-time image processing tasks.  

This paper aims to address the semantic segmentation problem in complex road scenes. We will 
first introduce the background and importance of image semantic segmentation tasks. Subsequently, we 
propose an improved DAFormer algorithm, where labeled images undergo data augmentation using 
CNN and then semantic segmentation using the DAFormer network architecture. We then perform a 
comprehensive performance comparison with four other classical algorithms. Our experimental results 
demonstrate a significant advantage of the improved DAFormer algorithm in complex road scenes, 
achieving an average intersection over union (MIoU) of 0.82, a pixel accuracy (PA) of up to 89%, and 
an improvement in timeliness [5-7].  

2. Image Semantic Segmentation Models 

Image semantic segmentation models are computer vision models designed to classify each pixel in 
an image, assigning it to a specific semantic category such as a person, car, tree, or building. This task 
requires the model not only to understand objects and regions in the image but also to accurately 
capture their contours and boundaries to achieve high-precision segmentation results.  

2.1. Data Collection, Preprocessing, and Annotation 

The data collection, preprocessing, and annotation operations in the field of image semantic 
segmentation are of significant importance. Data collection aims to construct an extensive and diverse 
dataset of images that cover various scenes, lighting conditions, and object categories. This helps in 
training models with better generalization capabilities. Preprocessing operations typically involve 
resizing images and adjusting brightness and contrast to ensure that the input data aligns with the 
model's requirements. The most crucial operation is annotation, where each pixel is assigned the correct 
semantic category label. This provides the model with information about object boundaries and regions 
in the image, enabling it to perform segmentation tasks accurately. Specifically, this paper conducts 
data collection, preprocessing, and annotation through the following steps: 

1) Data Collection: The data collection phase involves obtaining a large amount of image data that 
covers the diversity required for the task. This typically includes using cameras, remote sensing devices, 
or online image repositories to capture images. In the field of automated driving, data is often collected 
through sensors such as in-car cameras or LiDAR to obtain real-world data of road scenes. For 
convenience in subsequent operations, we utilize the ACDC dataset [8-9]. The ACDC dataset 
comprises 4006 images evenly distributed across four common adverse conditions: fog, nighttime, rain, 
and snow, as shown in Fig.1. 

 
Figure 1: Four Common Adverse Conditions Schematic Diagram 

2) Data Preprocessing: The collected images typically undergo preprocessing to ensure their 
suitability for training segmentation models. Preprocessing steps may involve resizing images, 
standardizing color spaces, denoising, and adjusting brightness, among others. This helps reduce noise 
and inconsistencies in the data, thereby enhancing the stability of the model. 

3) Data Annotation: Data annotation is a time-consuming and complex task that involves assigning 
a semantic category label to each pixel in every image. These labels typically represent objects or 
regions in the image, such as roads, pedestrians, vehicles, etc, as shown in Fig.2. 
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Figure 2: Diagram Illustrating Data Annotation Results 

4) Data Augmentation: To increase the diversity of training data, data augmentation techniques 
such as random rotation, flipping, scaling, and brightness adjustment are commonly applied. This helps 
the model generalize better to different scenes and conditions. 

5) Data Splitting: The training set is used for model training, the validation set is used for tuning 
hyperparameters and monitoring model performance, and the test set is used for the final evaluation of 
the model's performance. We specify that 70% of the data from the ACDC dataset is used as the 
training set for training, while the remaining 30% serves as the validation set for validation. 

These data collection, preprocessing, and annotation steps are crucial for training effective image 
semantic segmentation models. They require careful planning and strict quality control to ensure the 
model can accurately understand and segment semantic information in the images. 

2.2. Image Data Preprocessing and Data Augmentation 

Image transmission is susceptible to the interference of noise. Noise refers to undesirable random 
variations in an image and can be caused by various factors such as signal interference during 
transmission, electromagnetic radiation, and electronic noise from electronic devices. This type of 
noise can result in random and undesirable changes in pixel values, thereby reducing the quality and 
readability of the image's information content.  

In the ACDC dataset, images are captured by in-car cameras, and the predominant types of noise 
are Gaussian noise and salt-and-pepper noise. Salt-and-pepper noise manifests as sudden bright or dark 
pixel points scattered across the image, resembling salt and pepper. This is often caused by abrupt 
errors during data transmission or storage processes. Gaussian noise, on the other hand, is a uniformly 
distributed random noise that causes pixel values in the image to fluctuate randomly within a certain 
range. It is typically introduced by weak random interference from electronic devices or environmental 
factors. Commonly used image denoising algorithms include mean filtering, Gaussian filtering, and 
median filtering, with median filtering being effective against salt-and-pepper noise, and Gaussian 
filtering primarily targeting Gaussian noise [10-11]. 

After denoising, we need to perform data augmentation. Unsupervised domain adaptation often 
faces the challenge of mismatched data distributions between the source and target domains, meaning 
differences in image characteristics and statistical information between the two domains. Data 
augmentation introduces diversity and richness, making the images in the target domain more similar to 
the distribution of the source domain, thereby improving the model's performance in the target domain. 
In this paper, Convolutional Neural Networks (CNNs) are used for image data augmentation, mainly 
involving the following steps: 

1) Data Collection and Preparation: Firstly, the denoised images mentioned above need to be 
annotated and then serve as the raw image dataset, including images from both the source and target 
domains. 

2) Establish CNN Model: Researcher should choose an appropriate CNN architecture, which can be 
a pre-trained model (such as a model trained on ImageNet) or a custom model tailored to the specific 
task, ensure that the model has sufficient depth and complexity to effectively learn and generalize 
image features. 

3) Data Augmentation Layer: The experimenter should be in in the CNN model, add a data 
augmentation layer for online data augmentation. These layers apply predefined augmentation 
operations to modify input images in real-time. Common augmentation operations include: 

- Random Rotation: Randomly rotate the image by a certain angle. 

- Random Flip: Horizontally or vertically flip the image with a certain probability. 
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- Random Scaling: Randomly scale the image by a certain factor. 

- Brightness and Contrast Adjustment: Randomly adjust the brightness and contrast of the image. 

- Random Cropping: Randomly crop a portion of the image. 

4) Train the Model: Computer trained CNN model using augmented image data. The augmentation 
operations are applied in each training batch to introduce diversity and richness. This helps improve the 
model's robustness and generalization capability. 

5) Validation and Adjustment: During the training period, validation and evaluation of the model 
performance are performed regularly. Based on the validation results, the model architecture and 
hyperparameters are adjusted to achieve better performance. 

6) Application to the Target Domain: The relevant person will apply the trained CNN model to the 
images in the target domain once the training is complete. The model has already acquired adaptability 
and can better handle data from the target domain. 

By using CNN for data augmentation, diversity and richness can be effectively introduced, 
enhancing the model's generalization capability and making it better suited for different domains of 
image data.  

2.3. Unsupervised Domain Adaptation (UAD) 

Unsupervised Domain Adaptation (UDA) is a machine learning technique aimed at addressing the 
challenge of generalizing models across different data domains without labeled data. Widely applied, 
especially in tasks involving mismatched data distributions between source and target domains, UDA is 
highly useful in natural language processing, image processing, and various other domains.  

In the context of road image data, significant distribution differences may arise due to variations in 
geographical locations, climate conditions, seasonal changes, and traffic situations [11]. Unsupervised 
Domain Adaptation helps the model learn useful features from a known road image domain (source 
domain) and apply these features to road images in unknown geographic regions or different conditions 
(target domain), thereby enhancing semantic segmentation performance for road information. By 
adapting to distribution differences between different road image domains, the model can more 
accurately identify various elements on the road, such as vehicles, pedestrians, and traffic signs. This is 
crucial for applications like autonomous driving, traffic monitoring, and urban planning.  

In UDA, there are typically two key domains: 

1) Source Domain: This is the domain where we have labeled data, typically used for training the 
model. This is the model's source. 

2) Target Domain: This is the domain where we want the model to generalize in real-world 
applications but often lacks labeled data. The target domain is our area of interest. 

The goal of Unsupervised Domain Adaptation is to leverage data from both the source and target 
domains to enable the model to perform well in the target domain, even when the data distribution in 
the target domain does not perfectly match that of the source domain. The specific model workflow is 
illustrated as shown in Fig.3. 

 
Figure 3: Unsupervised Domain Adaptation Workflow Diagram 
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3. DAFormer Network Architecture 

Past Unsupervised Domain Adaptation (UDA) methods, when evaluated, typically employed earlier 
model architectures, primarily based on a (simplified) DeepLabV2 network. These methods may have 
become relatively outdated and might not fully meet the complex demands of domain adaptation at that 
time. Therefore, to enhance model performance, this paper adopts the DAFormer Network Architecture 
to satisfy their dual requirements in terms of supervised performance and domain adaptation. 
Structurally, the DAFormer Network Architecture is an improvement based on DACS, incorporating 
three training strategies: Rare Class Sampling, Thing-Class ImageNet Feature Distance, and Learning 
Rate Warmup for UDA [12-13]. 

3.1. Rare Class Sampling 

Rare Class Sampling (RCS) is a technique used to address imbalanced datasets, based on the 
principle of oversampling samples from rare classes to balance the distribution of samples across 
different classes in the dataset. In binary classification problems, it typically involves increasing the 
number of samples for rare classes to bring it closer to the number of samples for common classes. This 
can be achieved by duplicating samples from rare classes, generating synthetic samples, or employing 
other methods. RCS helps improve the model's performance on imbalanced datasets, reducing 
classification errors for rare classes, and thus better adapting to real-world applications [14]. 

Specifically, for rare classes in the original dataset, the performance of Unsupervised Domain 
Adaptation (UDA) varies significantly across different executions. To better learn rare classes, Rare 
Class Sampling (RCS) more frequently selects images from rare classes in the source domain, allowing 
for earlier modeling of these rare classes. The frequency fc of each class c in the source dataset can be 
calculated based on the number of pixels for that class: 

𝑓𝑓𝑐𝑐 =
∑  𝑁𝑁𝑆𝑆
𝑖𝑖=1 ∑  𝐻𝐻×𝑊𝑊

𝑗𝑗=1 [𝑦𝑦𝑆𝑆
(𝑖𝑖,𝑗𝑗,𝑐𝑐)]

𝑁𝑁𝑆𝑆⋅𝐻𝐻⋅𝑊𝑊
                              (1) 

The sampling probability P(c) for a particular class c is defined as a function of its frequency f (c): 

𝑃𝑃(𝑐𝑐) = 𝑒𝑒(1−𝑓𝑓𝑐𝑐)/𝑇𝑇

∑  𝐶𝐶
𝑐𝑐′=1 𝑒𝑒

(1−𝑓𝑓𝑐𝑐′)/𝑇𝑇                             (2) 

The sampling probability is higher for classes with smaller frequencies. The temperature T controls 
the smoothness of the distribution. 

3.2. Thing-Class ImageNet Feature Distance (FD) 

Thing-Class ImageNet Feature Distance (FD) is a method used to measure the feature distance 
between object categories. It involves training a neural network on the ImageNet dataset and then using 
the network's activation features to calculate the similarity between different object categories. FD can 
be employed to assess the similarity between object categories, aiding in the identification and 
classification of different objects. This method contributes to improving the performance of object 
classification and recognition tasks in computer vision. 

Typically, the initial parameters of the segmentation model we use are pretrained on the ImageNet 
dataset. However, ImageNet sometimes contains real-world images where certain categories (such as 
buses and cars) are challenging for unsupervised domain adaptation (UDA) models to distinguish. 
Therefore, this algorithm proposes a hypothesis that features in ImageNet may contain useful guidance 
information not covered in regular pretraining. 

The ImageNet model is primarily trained on thing-classes (object categories with well-defined 
shapes) rather than stuff-classes (abstract categories like roads and skies). Therefore, when calculating 
the FD loss, it is necessary to use \(M_{thing}\) to exclude the influence of specific classes. 

ℒ𝐹𝐹𝐹𝐹
(𝑖𝑖) =

∑  𝐻𝐻𝐹𝐹×𝑊𝑊𝐹𝐹
𝑗𝑗=1 𝑑𝑑(𝑖𝑖,𝑗𝑗)⋅𝑀𝑀𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑖𝑖,𝑗𝑗)

∑  𝑗𝑗 𝑀𝑀𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)                             (3) 

Where: 

𝑀𝑀𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗) = ∑  𝐶𝐶

𝑐𝑐′=1 𝑦𝑦𝑆𝑆,𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖,𝑗𝑗,𝑐𝑐′ ⋅ [𝑐𝑐′ ∈ 𝒞𝒞𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]                     (4) 
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This ensures that only bottleneck feature pixels containing dominant thing classes are considered in 
the feature distance. The overall training loss is then: 

ℒ = ℒ𝑆𝑆 + ℒ𝑇𝑇 + 𝜆𝜆𝐹𝐹𝐹𝐹ℒ𝐹𝐹𝐹𝐹                            (5) 

These are the losses on the source domain, losses on the target domain, and Thing-Class ImageNet 
Feature Distance, respectively. 

3.3. Learning Rate Warmup for UDA 

Learning Rate Warmup for UDA helps the model better adapt to the data distribution of the target 
domain by gradually increasing the learning rate in the early stages of training, improving UDA 
performance. Warming up the learning rate can reduce instability in the early stages of training, 
assisting the model in converging faster to an appropriate parameter state, thereby enhancing domain 
adaptation effectiveness. During the warm-up period, the learning rate at iteration t is set to: 

𝜂𝜂𝑡𝑡 = 𝜂𝜂𝑏𝑏𝑠𝑠𝑖𝑖𝑒𝑒 ⋅ 𝑡𝑡/𝑡𝑡𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠                               (6) 

4. Conclusion 

We applied the improved DAFormer algorithm to compute the ACDC dataset images. The 
performance of the algorithm needs to be evaluated from multiple perspectives, as elucidated by the 
confusion matrix. In the context of lane line segmentation, TP represents the number of pixels where 
lane lines are correctly predicted, TN indicates the number of pixels in the background that are 
correctly predicted, FP denotes the number of background pixels incorrectly predicted as lane lines, and 
FN signifies the number of lane line pixels incorrectly predicted as background, as illustrated in the 
table 1 below. 

Table 1: Confusion Matrix 

Detection Results Positive instance Negative instance 
Detection result is positive. TP FP 
Detection result is negative FN TN 

The performance evaluation of the semantic segmentation model is primarily obtained through the 
combination of the four cases in the table above, resulting in the following evaluation metrics. 

"mIoU" stands for "Mean Intersection over Union" and is commonly used for performance 
evaluation in image segmentation tasks. It is a common metric for segmentation quality and is 
calculated as follows: 

IoU = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑁𝑁

                                  (7) 

For each category, calculate its Intersection over Union (IoU). IoU is the intersection of true 
positive pixels for that category divided by the union of true positive pixels and predicted positive 
pixels. 

Average the IoU values for all categories to obtain mIoU. 

MIoU =
� 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑁𝑁+

𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝐹𝐹𝑇𝑇�

2
                           (8) 

mIoU provides a global performance measure, assessing the segmentation quality of the model 
across different categories. Typically, mIoU values range from 0 to 1, with values closer to 1 indicating 
more accurate segmentation results. This is one of the widely used evaluation metrics in the field of 
image segmentation for comparing the performance of different models on segmentation tasks. 

Pixel accuracy is the proportion of correctly predicted samples to the total number of samples, 
calculated using the formula: 

PA = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇+𝐹𝐹𝑁𝑁

                                  (9) 

The category pixel accuracy is the proportion of pixels in each category that are correctly classified, 
calculated using the formula: 

CPA = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 or CPA = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁

                          (10) 
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Recall is the probability of a certain category being predicted correctly, calculated using the 
formula: 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

                                (11) 

The formula for calculating the F1 score evaluation criterion is as follows: 

F1 = 2 × 𝑇𝑇𝑤𝑤𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖×𝑅𝑅e𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇𝑤𝑤𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖+𝑅𝑅e𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠

                            (12) 

Among these metrics, average pixel accuracy, category pixel accuracy, average intersection over 
union (IoU), and category intersection over union are used as the evaluation indicators for this study. 
For the lane segmentation task, the IoU matching threshold is generally set to 0.5, representing strict 
matching. 

In this paper, FasterRCNN, FCN, DeepLabV2, SegFormer, and the proposed improved DAFormer 
semantic segmentation models were trained on the ACDC dataset, with a total of 4006 collected images. 
80% of the dataset was used as training samples, and 20% was used as validation samples. The initial 
learning rate was set to 0.001, and during training, the images were batch-normalized to an appropriate 
resolution. The positive sample IoU threshold was set to >0.5. 

Semantic segmentation can be understood as clustering pixels of different categories, distinguishing 
different categories of vehicles, lane lines, streetlights, pedestrians, and non-motorized vehicles in the 
road. This experiment verifies the lane data segmentation effect of FasterRCNN, FCN, DeepLabV2, 
SegFormer, and the proposed improved DAFormer semantic segmentation models in complex road 
scenes. The evaluation metrics include mean intersection over union (MIoU) and pixel accuracy (PA) 
to represent segmentation accuracy and precision. A higher value indicates a more accurate 
segmentation model, and the detection time represents the time taken to segment an image in seconds. 
The results of the performance comparison for the five semantic segmentation models according to the 
experimental design are shown in the table 2 below: 

Table 2: Performance Comparison of Five Semantic Segmentation Models. 

Detection Method 

Number of 
Training 
Samples 
(Images) 

Number of Test 
Samples 
(Images) 

MIoU PA Detection 
Time (s) 

FastRCNN 

3204 801 

0.7 84% 0.059 
FCN 0.66 84.5% 0.048 

DeepLabV2  0.6 84.9% 0.112 
SegFormer 0.75 85.6% 0.039 
Improved 
DAFormer 0.82 89% 0.054 

The improved DAFormer semantic segmentation algorithm demonstrates superior overall 
performance in complex road scenes, with an average intersection over union (MIoU) of 0.82, pixel 
accuracy (PA) of 89%, and improved efficiency. Compared to the other four algorithms, the improved 
DAFormer segmentation algorithm has advantages in terms of accuracy, stability, and efficiency in 
complex road scenarios. 
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