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ABSTRACT：In this project, we look at variants of the Pythagorean theorem. The 

Pythagorean theorem says that in a in a right angled triangle, a²+b²=c². In this 

project, we will use the Pythagorean theorem in the two dimensional rectangular 

coordinate system and The three dimensional coordinates system to solve specific 

mathematic problem. 
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1. Background of the Pythagorean Theorem 

1.1 History 

In China, the first person who put forward the Pythagorean theorem was Shang 
Gao from the Zhou dynasty who come up with the theory of "three Hooks, four 
shares sad five strings"[1]. In the West, the first person who put forward and prove 
this theorem was Pythagorean in ancient Greece in the 6th century BC, who proved 
by deductive method that the square of the hypotenuse of a right triangle is equal to 
the sum of the squares of the two sides[2][3]. 

1.2 Summary  

In a right angled triangle, the longest side of the 
triangle with is also corresponding to the right angle 
( the 90 degree angle ) is the side which will be 
named ‘c’. In the Pythagorean theorem, the two 
right-angle sides which are named ‘a’ and ‘b’ are 
not important, they can either be called ’a’ or ‘b’, but the side ‘c’ is always the 
longest side that correspond to the right angle. 
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Consider that there are 8 congruent triangles and they are divided into two group. 
Let the shorter right-angle side equals to ‘a’ and the longer right-angle side equals to 
‘b’. The first 4 congruent triangles make up a square that all of its 4 sides equals to 
‘a + b’. The second 4 congruent triangles also make up a square that its 4 sides also 
equals to ‘a + b’, but they were formed in different ways. Most importantly, since 
both of the two squares have the same side length which is ‘a + b’ so they have the 
same area. 

     a×a + b×b + 4×a×b×1
2
 = 4×a×b× 1

2
 + c×c 

                     a² + b² + 2ab = 2ab + c² 

                           a² + b² = c² 

 

 

 

2.Primitive Triples 

Definition: a primitive integers triple is a set of 3 integers with could be written 
as a form that a² + b² = c², which integer a and integer b are the two smaller integers 
among the three integers. Most importantly, there does not exists an integer d that 
could exact divide both a b c except 1.  

We could also link primitive integers triple with the Pythagorean theorem. We 
can use a right angled triangle to explain this concept. 
In a right angled triangle we could proof that the 
square of the sum of the two right-angled sides equals 
to the square of the hypotenuse. Primitive integers 
triple is a special condition in the Pythagorean 
theorem which the three integers have no other 
common factor except 1.  
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Example:   

1. Integers 3, 4, 5 forms a primitive integer triple because 3² + 4² = 5²  

2. Integers 5, 12, 13 forms a primitive integer triple because 5² + 12² = 13² 

 

We could notice from these two examples that in the first example, the three 
numbers could not be divided by another integer except . In example 2 we could 
notice that 5, 12 ,13 do not have a common factor except 1.  

 

Lemma there are infinite primitive integers that could satisfied a² + b² = c². 

Proof. Divide both side of the equation by c². Let 𝑎𝑎²
𝑐𝑐²

 equals to x² Let 𝑏𝑏²
𝑐𝑐²

 equals 

to y²,  

then the equation equals to x² + y² = 1. 

Select the point A (0,1) on the curve. Let B (p, 0) be a point on the x axis which 
p is a rational number. Connect point A and Point B. The line that connects point 

AB equals to y= -1
𝑝𝑝
x +1. Substitute y=− 1

𝑝𝑝
𝑥𝑥 + 1 into x² + y² = 1, then x² + (− 1

𝑝𝑝
𝑥𝑥+ 

1)² = 1.So （ 1
𝑝𝑝²

+1）x² + − 2
𝑝𝑝
𝑥𝑥 = 0. 

According to Vieta’s formulas, the solution except 0 equals to 2𝑝𝑝
1+𝑝𝑝2

. Since it is 

also on the line, so the other coordinate equals to 𝑝𝑝
2−1

𝑝𝑝2+1
. 

As a result, all numbers that satisfy the condition that ( 2𝑝𝑝
1+𝑝𝑝2

, 𝑝𝑝
2−1

𝑝𝑝2+1
  ) could be a 

solution for the equation, as a result, there are infinite solutions. 
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3.Derived problems 

3.1 There are infinite primitive integers quadruples (a, b, c, d) satisfying a² + b² + 
c² = d². 

Proof. Since a² + b² + c² = d² 

Divide both side by d² then the equation equals 

𝑎𝑎²
𝑑𝑑²

+𝑏𝑏²
𝑑𝑑²

+𝑐𝑐²
𝑑𝑑²

= 𝑑𝑑²
𝑑𝑑²

 

Let 𝑎𝑎²
𝑑𝑑²

 = x² , 𝑏𝑏²
𝑑𝑑²

=y² , 𝑐𝑐²
𝑑𝑑²

=z² , so x²+y²+z²=1.We can say 

that the 

 image of the equation x²+y²+z²=1 is a sphere in a three  

dimensional coordinate system. 

Let point A = (1, 0, 0). Since 1²+0²+0²=1, point A is on the equation x²+y²+z²=1. 

Let point B = (p, q, 0),which is on the xy-plane. Variables p and q are rational.By 
connecting point A with point P, we get a line AB. It can be written as 

�
 𝑥𝑥 = 𝑝𝑝𝑝𝑝
𝑦𝑦 = 𝑞𝑞𝑞𝑞
𝑧𝑧 = 1 − 𝑡𝑡

, 𝑡𝑡 ∈ 𝑅𝑅 

Substitute this into the equation 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 1. We have  
(𝑝𝑝𝑝𝑝)2 + (𝑞𝑞𝑞𝑞)2 + (1 − 𝑡𝑡)2 = 1 

Solve this equation. We obtain the other intersection point, whose coordinate is 

𝑥𝑥 =
2𝑝𝑝

𝑝𝑝2 + 𝑞𝑞2 + 1
 

𝑦𝑦 =
2𝑞𝑞

𝑝𝑝2 + 𝑞𝑞2 + 1
 

𝑧𝑧 =
𝑝𝑝2 + 𝑞𝑞2 − 1
𝑝𝑝2 + 𝑞𝑞2 + 1
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Since p and q are both rational numbers, and there are infinite rational numbers, 
so the number of rational solution for a² + b² + c² = d². are supposed to be infinite. 

Module  

Definition: A fundamental algebraic structures used in abstract algebra. If “a ÷ 
b=c……d”, we could say that a= b mod d. In the equation “a ÷ b=c……d” all of the 
number a, b, c, d should be integers, In module, the answer c is not important, since 
it is always written as ‘remainder’ mod ‘devisor’. Most importantly, all numbers 
divided by b that has a remainder d could be written as ‘d mod b’. 

Example: 1. 5÷3=1……2 .In this case, the divisor is “3” and the remainder is 
“2”, so it could be written as “2 mod 3”.  

            2. 23÷3=7……2. In this case, the divisor is “3” and the remainder is 
“2”, so it could be written as “2 mod 3” 

As a result, we can see from this 2 examples that even though this two equations 
have different dividend and different answer. However, both of them could be 
written as “2 mod 3”. We know that module is only related to the divisor and the 
remainder. 

3.2. x² + y² = 3 has no rational solution. 

Proof. Assume that x² + y² = 3 has rational solution. Let x=(𝑎𝑎
𝑏𝑏
) y=(𝑑𝑑

𝑐𝑐
),where 𝑎𝑎

𝑏𝑏
 

and 𝑑𝑑
𝑐𝑐
 are irreducible Since (𝑎𝑎

𝑏𝑏
)²+(𝑑𝑑

𝑐𝑐
)²=3. 

a²c² + d²b² = 3b²c² 

Since 3b²c² ≡ 0 mod 3, a²c² + d²b² ≡0 mod 3. There are 2 conditions : 

1. Both a²c² and b²d² ≡ 0 mod 3 

   2. a²c² equals mod 3 and d²b² ≡ 2 mod 3 or a²c² ≡2 mod 3 and d²b² equals 1 
mod 3  

However, square numbers only ≡ 1 mod 3 or 0 mod 3, so only condition 1 is 
possible.  
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Both a and d ≡ 0 mod 3. So a²c² and b²d² ≡ 0 mod 9, but 3b²c² could not be 
written as 0 mod 9 since neither b or c could be written as 0 mod 3 or it would 

contradict that  𝑎𝑎
𝑏𝑏
 and 𝑑𝑑

𝑐𝑐
 are irreducible. So there exists no rational solution for x² 

+ y²= 3. 

3.3 If there exists a rational solution of the equation Ax² + By² = 1 for A, B being 
non-zero numbers, then there exists infinitely many. 

Proof. The image of Ax² + By² = 1 is a conic in the rectangular coordinate 
system. Assume that point P with coordinates (a, b) is a point on the function Ax² + 
By² = 1, both c and d are rational number. Point Q is a point on the x-axis with 
coordinate (c, 0). Connect point A with point P, assume the function that connect the 
two points equal to y. 

Since it is a two dimensional rectangular coordinate and the line that connects 
the point is a straight line, so y=kx +t. Since the coordinates of point Q is (c, 0) and 
point P is (a,b). 

It is easy to reckon that 

k =  𝑏𝑏
𝑎𝑎−𝑐𝑐

, t=−𝑏𝑏𝑏𝑏
𝑎𝑎−𝑐𝑐

 and y = 𝑏𝑏
𝑎𝑎−𝑐𝑐

x- 𝑏𝑏𝑏𝑏
𝑎𝑎−𝑐𝑐

 

Substitute the line y into Ax²+ By² = 1 to get the equation 

Ax² + B×( 𝑏𝑏
𝑎𝑎−𝑐𝑐

×x- 𝑏𝑏𝑏𝑏
𝑎𝑎−𝑐𝑐

)² = 1 

Since the sum of the solution of the equation equals to (−1)×(𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑥𝑥)
𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑥𝑥²

, 

the sum of the solution = −2𝐵𝐵𝐵𝐵𝐵𝐵
𝐴𝐴+𝐵𝐵𝐵𝐵²

. As it had mentioned in the start, point A is a point 

of the function, so the other solution equals to −2𝐵𝐵𝐵𝐵𝐵𝐵
𝐴𝐴+𝐵𝐵𝐵𝐵²

 - a. Substitute 𝑥𝑥 = −2𝐵𝐵𝐵𝐵𝐵𝐵
𝐴𝐴+𝐵𝐵𝐵𝐵²

− 𝑎𝑎 

into line PQ. We have 𝑦𝑦 = − 2𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
(𝑎𝑎−𝑐𝑐)(𝐴𝐴+𝐵𝐵𝑘𝑘2)

− 𝑏𝑏(𝑎𝑎+𝑐𝑐)
𝑎𝑎−𝑐𝑐

. 

So the coordinate equals to (−2𝐵𝐵𝐵𝐵𝐵𝐵
𝐴𝐴+𝐵𝐵𝐵𝐵²

− 𝑎𝑎, − 2𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
(𝑎𝑎−𝑐𝑐)(𝐴𝐴+𝐵𝐵𝑘𝑘2)

− 𝑏𝑏(𝑎𝑎+𝑐𝑐)
𝑎𝑎−𝑐𝑐

). 
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Since a, b, c, k, t, A, B are all rational numbers and there exists infinity rational 
numbers, there exists infinitely many rational solutions. 

3.4 If 𝑑𝑑 ≡ 3(𝑚𝑚𝑚𝑚𝑚𝑚 4), then x²+y²=d have no integer solution. 

Proof. Since d ≡3 mod 4, so x²+y² ≡ 3 mod 4. The remainder of A square 
number divided by 4, could only be 1 or 0.  

As a result, 𝑥𝑥2  ≡ 0 𝑜𝑜𝑜𝑜 1( 𝑚𝑚𝑜𝑜𝑜𝑜 4) . there exists 2 conditions. 

𝑥𝑥2 ≡  1 𝑚𝑚𝑚𝑚𝑚𝑚 4 

𝑥𝑥2 ≡  0 𝑚𝑚𝑚𝑚𝑚𝑚 4 

In condition 1, if 𝑥𝑥2 ≡  1 (𝑚𝑚𝑚𝑚𝑚𝑚 4), in order to make x²+y² ≡  3 (𝑚𝑚𝑚𝑚𝑚𝑚 4), 
𝑦𝑦2 ≡  2 (𝑚𝑚𝑚𝑚𝑚𝑚 4). However, y² is also a square number, which it could only 
≡  0 𝑜𝑜𝑜𝑜 1 (𝑚𝑚𝑚𝑚𝑚𝑚 4) . As a result, condition 1 is not possible. 

In condition 2, if 𝑥𝑥2 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 4), in order to make 𝑥𝑥2 + 𝑦𝑦2 ≡ 3(𝑚𝑚𝑚𝑚𝑚𝑚 4),𝑦𝑦2 ≡
3(𝑚𝑚𝑚𝑚𝑚𝑚 4). However, y² is also a square number, which it could only equals to 
 0 𝑜𝑜𝑜𝑜 1 (𝑚𝑚𝑚𝑚𝑚𝑚 4) . As a result condition 2 is not possible. 

Since both of the two conditions are not possible, the statement is proved. 
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