Linux Programming Teaching for Computer Related Majors in the Era of Robotics

Zhiguo Yang, Gengyu Ge^{*}, Maoqiang Yang

School of Information Engineering, Zunyi Normal University, Zunyi, China *Corresponding author: gegengyu 2021@163.com

Abstract: The traditional teaching content of Linux courses for computer majors involves the basic commands, operations, Shell script programming, and network management. However, these teaching contents cannot meet the needs of enterprises and technology in the era of robotics, autonomous driving, and artificial intelligence. In this paper, an improved teaching content is proposed to fit the technique learning of robotics which refers to desktop and embedded system applications development. In addition, some teaching methods and forms are proposed to improve the learning and teaching effectiveness. Through practical teaching verification, the students are attracted to new teaching content and modes. There are significant improvements in learning motivation and mastery of skills.

Keywords: Linux OS; Teaching content; Computer; Robotics

1. Introduction

Linux originates from UNIX, inherits the progressiveness of UNIX from the beginning, and is a real multi task, multi-user, complex kernel operating system (OS). Due to its specific advantages, Linux OS is widely used in the fields of big data, cloud computing, and servers ^[1]. However, the Linux has been widely applied in the desktop and embedded fields. Based on the teaching content of the Linux programming course in the second semester of the third year of university, students will have a basic understanding of the usage and programming methods of Linux systems. The main content is not focused on server and network management, but on software development applications for desktop operating systems. Consequently, the contents are improved and listed in table1.

Teaching Item	Main Content		
From do no control o of One constitue of Secretaria	Basic knowledge related to operating systems, includes		
Fundamentals of Operating System	hardware and software		
Basic Concept of Linux	The history of Linux OS and the distributions		
Basic Commands of Linux	Basic operation of the shell command, includes ls, cd,		
Basic Commands of Linux	pwd, help, man, apt install, etc.		
Text Edition of Linux	Usage of Vim, Nano, gedit and other text editing tools		
Operation of Files and Directories	Usage of commands such as touch, mv, cp, rm, mkdir,		
Operation of Thes and Directories	rmdir, chown, chmod, ln and others		
User and Usergroup	Usage of commands such as useradd, userdel, usermod, su,		
	sudo, history,		
Process and Permote Login	Usage of commands such as ps, top, lsof, kill, nice, ssh		
	and others. Details of PID, /proc and VNC, SSH		
Shell Script Programming	Regular expression, variables, operators, script execution		
Shen Seript i togramming	and control structure		
C/C++ Programming in Linux	Usage of compile tools such as gcc, g++ and gdb. The		
	method of code editing and compile.		
Make and Makefile Pulse	Makefile rules and the coding method of the Makefile		
	document, example analysis of Linux kernel code		
Cmake and Cmakelists Pules	Cmakelists rules and the example of project which		
Chiake and Chiakelists Rules	includes cmakelists document		

Table 1:	Teaching	Contents	Linux	Distributions.
----------	----------	----------	-------	----------------

The previous part pertains to the basic operating methods of Linux systems and the latter part focuses on programming and running methods under Linux systems. Since the course on programming will be

offered separately, we will not spend too much time on programming methods. Shell script programming is a unique feature of Linux systems, so we will focus on teaching it ^[2]. The code editing and compilation methods of C/C++programming are the focus of the course, especially the automated code compilation tools for large-scale projects ^[3,4].

2. Basic Teaching Content Design

2.1. Distributions of Linux Operating System

Due to the characteristics of GNU free software, there are over 50 different Linux distributions in the world ^[5,6]. Table 2 shows the ten most popular Linux distributions and their official websites. Most distribution versions are actively implemented by volunteers from the open-source community, relying on donations from funds and other forms of support. Some have formed companies and earn profits by providing technical support to other companies. However, these distributions are all based on the same kernel modification implementation ^[7].

Distribution	Website
RHEL/Red Hat	https://www.redhat.com/
CentOS	https://www.centos.org/
Debian	https://www.debian.org/
Ubuntu	https://ubuntu.com/
Fedora	https://fedoraproject.org/
Arch Linux	https://archlinux.org/
SUSE	https://www.suse.com/
Linux Mint	https://www.linuxmint.com/
Gentoo	https://www.gentoo.org/
Kali Linux	http://www.kali.org/

Table 2: Partial Classical Cases of Linux Distributions.

In China, there are several domestic open-source operating systems which is modified based on the Linux kernel codes. Table 3 shows the famous six distributions which are used in areas with high demands for network and information security.

Distribution	Website
Kylin	https://www.kylinos.cn
RedFlag	https://www.chinaredflag.cn
Deepin	https://www.deepin.org/index/zh
UbuntuKylin	https://www.ubuntukylin.com/
StartOS	https://www.startos.com/

Table 3: Partial Cases of Linux Distributions in China.

Due to the widespread application of Ubuntu distribution, especially in the desktop level application development, the whole teaching contents are based on Ubuntu Linux OS^[8].

2.2. Linux Operating System Installation

Due to the user-friendly graphical interface and simple usability of Windows, most laptops or desktop computers default to installing the Windows operating system. Therefore, the first thing to consider when learning Linux is how to install a distribution version of Linux. There are four commonly used installation methods shown in table 4. For professional programming techniques in desktop application development, Linux operating system is usually installed on bare metal device or physical machine. The advantage of this installation method is that it does not require additional system switching. For users whose host operating system is Windows, it is necessary to install a third-party software to simulate physical machine functionality, and then install the Linux operating system in the virtual software. The most popular method is to use virtual machine software, such as VirtualBox and VMware ^[9]. Among them, VirtualBox is free of charge and VMware also has free version. For Windows users, Windows 10 and later versions have a novel feature which is WSL, namely, the Windows Subsystem for Linux ^[10].

If users only want to experience and learn Shell commands and script programming methods, they do not need to install the Linux operating system. Tools like online shell environments can simulate the desired functionality.

Installation Carrier	Description			
Physical Machine	ne Media installation required, such as USB disk			
Virtual Machine	Oracle VirtualBox https://www.virtualbox.org/ VMware https://www.vmware.com/			
WSL	Windows Subsystem for Linux			
Others (Online shell)	https://www.tutorialspoint.com/unix_terminal_online.php https://www.jyshare.com/compile/18/			

Table 4: Partial Cases of Linux Distributions in China.

2.3. Basic Commands of Linux

Due to the frequent exposure of students to the Windows system in their daily lives, they are accustomed to the mouse click window operation interface and feel unfamiliar with the terminal command line interaction mode of Linux. Table 5 lists the commonly used commands of Linux OS.

Catagonias	Commanda		
Categories			
File operation	arj, basename, bzip2, chgrp, chmod, chown, cat, cut,		
	cmp, col, cpio, compress, dd, diff, dump, emacs, ed,		
	ex, sort, touch, tail, tee, tar, find, file, gzip, grep,		
	head, ln, less, mv, more, od, sed, unzip, wc, wc, zip		
Directory operation	cd, cp, dirname, dirs, ls, mkdir, pwd, pushd, popd,		
Directory operation	rm, rmdir		
	alias, bg, bind, builtin, command, declare, echo, env,		
Shell operation	exit, export, enable, exec, fg, fc, help, logout, read,		
	set, type, unset, umask, unalias		
	batch, chpasswd, crontab, hroot, depmod, free,		
	groupadd, groupdel, gpasswd, groupmod, halt, init,		
System management operation	ipcs, killall, lsmod, last, logsave, logwatch, mpstat,		
	newusers, nologin, nice, ps, pstree, reboot, su, sudo,		
	top, time, uname, watch, runlevel, poweroff		
Drint operation	accept, cancel, cupsdisable, cupsenable, dmesg, lp,		
i init operation	lpr, lpc, lpq, lpadmin, reject		
	At, atq, qtrm, chattr, dumpe2fs, e2image, edquota,		
File System Management	fsck, findfs, lsattr, mount, mkfs, mke2fs, quotaoff,		
	quotacheck, mountpoint, stat, service, sysctl, sync		
	apt-get, apt, aptitude, apt-key, apt-sortpkgs,		
Software package management	chkconfig, dpkg, dpkg-deb, dpkg-divert, dpkg-query,		
	rpmdb, rpmquery, rpmsign, yum, snap		
	arp, arping, ping, ipconfig, arpwatch, arpd, arptables,		
	ab, apachectl, dhclient, dig, elinks, elm, exportfs, ftp,		
Natwork management	ftpcount, ftpshut, ftptop, ftpwho, hostname, host,		
Network management	httpd, htpasswd, htdigest, ifcfg, ifdown, ifup, ipcale,		
	iptables, ip, iptraf, mail, netstat, nmap, route, rsh, ssh,		
	scp, sftp, tftp, telnet, wget		
Programming development	as, expr, gcc, gdb, gcov, ld, ldd, make, cmake,		
Flogramming development	mktemp, nm, perl, php, protoize, test, python, lua		
	badblocks, bolockdev, df, eject, fdisk, grub, hwclock,		
Hardware operation	hdparm, lsusb, lspci, lilo, lvcreate, pvscan, pvdisplay,		
	pvremove, pvck, pvchange, septic, systool, volname,		
	lvscan, mkfs, mkinitrd, mknod, mkswap		
Practical tools	bc, cksum, cal, clear, date, info, login, man, md5sum,		
I factical tools	sum, sleep, stty, sln, talk, whatis, who, whoami, wall		

Table 5: MOOC course resources in China.

3. Extended Content for Robotics and Autonoumous Driving

With the continuous popularity of artificial intelligence research, applying it to specific scenarios is the future trend. A typical application is robotic which simulate human or animal intelligence and serve

humans. In recent years, mobile robots and robodogs have entered the commercial stage, especially hotel delivery robots, guide robots, factory warehousing robots, guide robots, etc. Autonomous driving can be seen as an outdoor version of mobile robot which needs more sensors and much more intelligence to perceive the surrounding environment. Both of them need Linux OS to manage the hardware resources and the fundamental software.

3.1. Linux Application in Robotics

Due to the fact that most of the previous robot operating systems (ROS) were based on Ubuntu Linux, the Linux OS is gradually popular in robot applications. In fact, the ROS is not an OS, but a fundamental software which provides communication mechanism for various basic modules ^[11]. Most academic or commercial robots are using ROS in the worldwide, namely, there are based on Linux OS. Figure 1(a) is an indoor mobile robot platform which is used for learning purpose. Figure 1(b) shows another popular robot which is the robodog or mechanical dog ^[12,13].

Figure 1: Robotics using Linux. (a) Mobile robot for studies. (b) Mechanical dog.

3.2. Linux Application in Autonomous Driving

In the outdoor environment, the mobile robots usually need more abundant sensors to achieve more information of the surroundings compared with indoor robots. Figure 2(a) shows a mobile robot in the outdoor environment with a 3D laser LiDAR sensor. The OS is ubuntu distribution of Linux which is not much different from the indoor version. Figure 2(b) is an autonomous driving car which can be thought of as an improved version of mobile robot. The driverless car is from Baidu Inc. and is based on the Apollo software ^[14]. It is worth noting that the Apollo is installed on ubuntu Linux OS.

Figure 2: Autonomous driving using Linux. (a) Outdoor mobile robot. (b) Driverless car.

Based on the above facts, the Linux course in Computer Science and Technology major should be aligned with frontier technology knowledge. In addition to learning basic commands, it should involve programming languages such as Shell, Python, C/C++, and introduce mobile robots into the classroom to attract students' interest in learning.

4. Course Resources

Different from traditional teaching modes, students can access various learning resources online through various channels in the era of artificial intelligence and internet information explosion. Those applied knowledge require students to practice hands-on, rather than just listening like learning humanities or science knowledge. For those who want to learn some extended application knowledge, official online resources such as MOOC are very good resources. As of May 2024, there are 19 Linux related courses are uploaded to online website https://www.icourse163.org. Among them, five courses are rated as a National Excellent Course ^[15]. Table 6 shows the course names and related information that different schools or majors have different teaching contents and focuses.

Course Name	University	National Premium Course	
Linux operating system	University of Electronic	Ves	
programming	Science and technology		
Linux network operating system	Xuchang Vocational and	Yes	
	Technical College		
Linux operating system	Zhejiang Industry & Trade	No	
	Vocational College		
Linux basics	Changzhou College of	No	
	Information Technology		
Linux system management	Ningbo City College of	Ves	
	Vocational Technology	105	
Linux server configuration and	Chongqing Vocational	Ves	
management	Institute of Engineering	103	
Linux operating system	Suzhou Institute of	No	
Linux operating system	Trade&Commerce	110	
Linux programming technology	Xi'an University of Posts &	No	
Linux programming technology	Telecommunications	110	
Operating system and Linux	Xi'an University of Posts &	Ne	
kernel	Telecommunications	INO	
T :	Nanjing Vocational College of	Ne	
Linux system applications	Information Technology	INO	
Linux system applications	Zhongyuan University of	No	
Linux system applications	Technology	INO	
Fundamentals of Linux	Jiangsu vocational college of	No	
Operating System	electronics and information	100	
Linux network operating system	Jiangsu College of Finance &	No	
Linux network operating system	Accounting	110	
Embedded Linux Application	Jiangsu Vocational College of	Ves	
and Development Practice	Information Technology	165	
Linux network management	Sichuan Vocational College of	No	
Linux network management	Information Technology	NO	
Operating System Principles	Zhejiang University of	No	
and Linux Practice	Science and Technology	110	
Linux system configuration and	Chongqing College of	No	
management	Electronic Engineering	110	
Learn Linux operating system	Changzhou University	No	
from scratch	Changzhou University	110	
Linux Application Programming	Jinling Institute of Technology	No	
Technology	similing institute of recimology	110	

Table 5. MOOL course resources in Unin	Tahle	6.	MOOC	course	resources	in	China
--	-------	----	------	--------	-----------	----	-------

In addition to these official learning resource websites, some video websites and technical forums can also serve as channels for learning, such as bilibili and CSDN^[16,17].

5. Conclusion

In the era of artificial intelligence robotics, the Linux programming course for computer related majors should to keep up with the times. Different from the skill requirements of network engineering or data operation and maintenance majors, desktop level or embedded Linux program development should

be a priority. Introducing teaching equipment such as mobile robots will be a trend in future course teaching ^[18]. In addition, the teaching evaluation focuses more on students' mastery of knowledge rather than their ability to take exams.

Acknowledgements

This paper is supported by Ordinary Undergraduate Universities Research Project (Youth Project) of Guizhou Provincial Department of Education in 2023, (QJJ [2022] No.322).

References

[1] Singh P P. Performance Evaluation of Linux Operating Systems[J]. Global Journal of Computer Science and Technology, 2023, 23(H2): 33-40.

[2] Kidwai A, Arya C, Singh P, et al. A comparative study on shells in Linux: A review[J]. Materials Today: Proceedings, 2021, 37: 2612-2616.

[3] Deaton S. What Makefile? Detecting Compiler Information Without Source Using The Code Property Graph [C]//2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA). IEEE, 2022: 258-265.

[4] Nguyen K H, Nguyen T V, Phan Q S. Analyzing the cmake build system[C]//Proceedings of the 44th International Conference on Software Engineering: Software Engineering in Practice. 2022: 27-28.

[5] Giorgi R, Procaccini M, Khalili F. Analyzing the impact of operating system activity of different linux distributions in a distributed environment[C]//2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE, 2019: 422-429.

[6] https://distrowatch.com. Accessed on: May 2, 2024.

[7] https://www.linux.org. Accessed on: May 3, 2024.

[8] Ardana F, Kanedi I, Prasetyo E. Time Limit Based Wireless Network Design Using Linux Ubuntu Server 20.04[J]. Jurnal Komputer Indonesia, 2023, 2(2): 67–78.

[9] Blubaugh D A, Harbour S D, Sears B, et al. Installing Linux and Development Tools[M]//Intelligent Autonomous Drones with Cognitive Deep Learning: Build AI-Enabled Land Drones with the Raspberry Pi 4. Berkeley, CA: Apress, 2022: 57-105.

[10] Singh P, Singh P. Linux development on WSL[J]. Learn Windows Subsystem for Linux: A Practical Guide for Developers and IT Professionals, 2020: 131-168.

[11] Macenski S, Moore T, Lu D V, et al. From the desks of ROS maintainers: A survey of modern & capable mobile robotics algorithms in the robot operating system 2[J]. Robotics and Autonomous Systems, 2023, 168: 104493.

[12] Katz B, Di Carlo J, Kim S. Mini cheetah: A platform for pushing the limits of dynamic quadruped control[C]//2019 international conference on robotics and automation (ICRA). IEEE, 2019: 6295-6301. [13] Kim J, Chung D, Kim Y, et al. Deep learning-based 3D reconstruction of scaffolds using a robot

dog [J]. Automation in Construction, 2022, 134: 104092.

[14] Feng M, Zhang H. Application of Baidu Apollo open platform in a course of control simulation experiments [J]. Computer Applications in Engineering Education, 2022, 30(3): 892-906.

[15] https://www.icourse163.org/. Accessed online, May 29, 2024.

[16] https://www.bilibili.com/. Accessed online, May 29, 2024.

[17] https://www.csdn.net/. Accessed online, May 29, 2024.

[18] Hashim A S, Yusof M A M, Arshad N I, et al. Development of Robot to Improve Learning of Programming Skills among Students[J]. Iraqi Journal For Computer Science and Mathematics, 2023, 4(3): 1-11.