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Abstract: LncRNAs are crucial in gene regulation and associated with diseases and biological processes. 
Predicting their subcellular localization accurately remains a challenge due to sequence complexity and 
data imbalance. We propose a graph neural network method based on LncRNA sequence features, 
emphasizing enhanced prediction accuracy through optimized graph structure and attention mechanisms. 
Our approach addresses data imbalance by introducing a weighted graph attention mechanism and a 
corrective network for improved generalization with fewer samples. This study introduces a potential 
method for LncRNA subcellular localization prediction, highlighting GNN applicability in 
bioinformatics tasks. These innovations contribute to biological data analysis and understanding 
LncRNA function, with practical applications in experimental validation. 
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1. Introduction 

Long non-coding RNA (lncRNA) is a type of RNA molecule that does not encode proteins and has a 
length of over 200 nucleotides. It plays crucial roles in various key biological processes, including gene 
expression regulation and cell differentiation. An increasing number of studies have revealed the 
relevance of lncRNAs to the pathogenesis of numerous diseases, especially in cancer, cardiovascular, 
and neurodegenerative diseases. Unlike coding RNAs, the functions of lncRNAs are often closely linked 
to their subcellular localization within cells, making accurate subcellular localization prediction essential 
for understanding their functions and associated disease mechanisms. 

When exploring the subcellular localization of lncRNAs, understanding their sequence features 
significantly contributes to localization prediction. Sequence features provide foundational clues to 
reveal the structure and function of lncRNAs, and they are core executors of various key biological 
processes within cells, such as transcriptional regulation, gene silencing, and chromatin remodeling. 
Therefore, accurate extraction and interpretation of these sequence features play a pivotal role in 
predicting the subcellular localization of lncRNAs. 

However, predicting the subcellular localization of lncRNAs using computational models is a highly 
challenging bioinformatics task, primarily due to two major difficulties: first, compared to coding RNAs, 
there is often a lack of sufficient and balanced training data available for lncRNAs; second, although 
existing studies have attempted to alleviate these issues through techniques such as sampling algorithms, 
they still struggle to effectively avoid risks such as overfitting. These circumstances greatly limit the 
accuracy and reliability of lncRNA localization prediction models. 

To address these challenges, we employ deep learning technologies, especially the powerful 
processing capabilities of Graph Neural Networks (GNNs), to delve into the hidden, deep-level features 
within lncRNA sequences. GNNs can efficiently encode complex sequence data and capture the intrinsic 
relationships between lncRNAs through their graph structure. Furthermore, our proposed model 
combines graph attention mechanisms and weighted loss strategies to mitigate the adverse effects of 
sample imbalance on prediction models, aiming to enhance the accuracy and generalization performance 
of the model to the fullest extent without expanding the overall sample size. Through this innovative 
approach, we aim to provide a more reliable and precise computational prediction tool for understanding 
the complex functions of lncRNAs and their disease mechanisms. 
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2. Experiment and Methods 

2.1. Dataset 

In the implementation of LncRNA subcellular localization research, a large amount of experimental 
data was obtained, primarily sourced from the well-known RNA subcellular localization database 
RNALocate (http://www.rna-society.org/rnalocate/)[1]. This database provides researchers with an 
interactive platform that records extensive RNA subcellular localization information and allows users to 
query and browse detailed data in a concise and intuitive manner. In conducting LncRNA localization 
research, we adhered to a core principle, the richer the data, the more meaningful the research results. 

Following this principle, we constructed an initial five-class dataset containing 612 LncRNA 
sequences, referred to as Dataset1. To improve data quality, we proactively removed sequences that could 
lead to information redundancy and noise interference. Specifically, an abnormally long LncRNA 
sequence (length of 91,671 nucleotides) was removed, and 11 LncRNA sequences containing non-
standard nucleotide symbols (such as “N”, “R”, “S”, “Y”) were filtered out. Through this cleaning step, 
we obtained the refined dataset Dataset2, which consists of 600 high-quality LncRNA sequences. These 
sequences were classified into five categories based on their subcellular localization, with the specific 
distribution as follows: Cytoplasm 292 sequences, Nucleus 149 sequences, Cytosol 91 sequences, 
Ribosome 43 sequences, Exosome 25 sequences, as shown in Table 1. 

Table 1: Benchmark dataset 

 Dataset1(original) Dataset2(after filter) 
Cytoplasm 301 292 

Nucleus 152 149 
Cytosol 91 91 

Ribosome 43 43 
Exosome 25 25 

Total 612 600 

2.2. Sequence Feature Extraction: k-mer Method 

The k-mer method is a popular technique in feature extraction, where “k-mer” refers to all possible 
combinations of nucleotide sequences with a length of k. By counting the frequencies of various k-mers 
in a given sequence, it can be converted into quantitative features, which can then be used for training 
graph neural network models. For example, in the case of k equals 3 (i.e., 3-mer), all possible 
combinations of three nucleotides (such as AAA, AAC, AAG, …, TTT) will be counted for their 
occurrences in the LncRNA sequence. 

The advantages of the k-mer method lie in its simplicity and directness. It can reveal inherent patterns 
in sequences without the need for complex biological annotations. k-mer features can capture local 
sequence information and can be used to train models to identify sequence feature patterns related to 
specific subcellular localization. 

2.3. Building Graph Structure 

Through k-mer feature extraction, we obtain high-dimensional vectors that reflect the properties of 
LncRNA sequences. The next step is to construct a graph structure to convert this high-dimensional data 
into a representation of LncRNA similarity or connection. In this graph, each node represents an LncRNA, 
and edges connect LncRNA nodes that are similar or functionally related. 

The process of constructing the graph is as follows: 

Node Definition: Each node in the graph represents an LncRNA sequence, and the node’s features 
are represented by the k-mer vector of that LncRNA. 

Edge Construction: The establishment of edges is based on the similarity of features between nodes, 
which can be calculated using cosine similarity. The edges between nodes directly reflect the degree of 
similarity between two nodes. In this experiment, we consider the top m nodes with the highest cosine 
similarity to each node as neighbor nodes. 

Through this approach, we not only extract the base-level associations between LncRNAs but also 
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capture the complex network among them. This provides an information-rich platform for predictive 
models based on graph neural networks to identify the subcellular localization of LncRNAs. 

2.4. Weighted Graph Attention Network 

In this study, we designed a Weighted Graph Attention Network (R-GAT) to more effectively address 
the issue of class imbalance in LncRNA subcellular localization problems. By introducing attention 
mechanisms, our network can assign different importance weights to each node during the training 
process, combined with weighted losses to guide the model to focus more on nodes belonging to the 
minority classes. 

Attention Mechanism 

Graph Attention Networks are an effective architecture of graph neural networks that can adaptively 
learn the weights between nodes[2]. The attention mechanism calculates the attention weights between 
nodes based on the features of each node and its neighbors. This dynamically highlights important nodes 
and suppresses less important nodes, thereby improving the model learning process. 

Weighted Loss 

In R-GAT, we have enhanced traditional attention mechanisms to address the issue of class imbalance 
among nodes. Specifically, we modulate the attention weights to reflect the distribution of classes. 

Weight Calculation: To alleviate data imbalance issues, class-balanced weights are calculated 
inversely proportional to the effective number of samples, connecting each sample with a small 
neighborhood region. By combining the optimal balancing loss from the uneven margins of the 
imbalanced dataset, and minimizing the generalized boundary based on margins, a larger margin is 
provided for minority classes[3]. In this experiment, compared to existing inverse class frequency 
weighting methods, this approach demonstrates better performance. 

Weight =
1 − ∂

1 − ∂nc
 

Representing the number of samples for class c, hyperparameters, in most experiments are typically 
set to [0.9, 1) for optimal results, as in this experiment. 

Attention Layer: We designed multiple weighted attention layers that refine the representation of 
nodes. These layers learn complex node representations by adaptively reorganizing node features and 
information from neighbors.Adjusting Attention Mechanism，In R-GAT, the attention weight of each 
node towards its neighbors is defined by the following formula: 

𝜃𝜃𝑖𝑖𝑖𝑖 =
𝑒𝑒𝑒𝑒𝑒𝑒 �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 �𝛿𝛿�𝑊𝑊𝑥𝑥𝑖𝑖 ,𝑊𝑊𝑥𝑥𝑗𝑗���

∑ 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 �𝛿𝛿�𝑊𝑊𝑥𝑥𝑖𝑖 ,𝑊𝑊𝑥𝑥𝑗𝑗���𝑘𝑘∈𝑣𝑣𝑖𝑖

 

In the above formula,k ∈ virepresents the neighboring nodes of i node, the weight matrix W ∈ RF∗F′ 
implements a linear transformation from input features to output features,δ represents a learnable weight 
vector, with LeakyReLU acting as a non-linear activation function. 

Through the above design, R-GAT can maintain the flexibility and strong representational power of 
graph attention networks while mitigating information loss and overfitting issues during training caused 
by class imbalance. This design not only helps improve predictive performance for minority classes but 
also aims to enhance the overall model’s generalization ability, thereby achieving more accurate results 
in predicting the subcellular localization of LncRNAs. 

3. Experimental Results 

3.1. Evaluation Metrics 

To facilitate comparison with other methods, the models will be evaluated using a 5-fold cross-
validation approach to assess accuracy, recall, and three other metrics. Accuracy (Acc) is computed by 
dividing the number of correctly classified samples by the total number of samples, and it serves as an 
intuitive performance metric. Recall measures the extent of coverage, quantifying how many positive 
instances are correctly identified as positive. 
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Recall(i) =
TP(i)

TP(i) + FN(i)         Recall =
1
c
�Recall(i)   
c

i=1

 

The F1 Score is an index used in statistics to measure the accuracy of binary classification models. It 
takes into account both the precision and recall of the classification model. The F1 Score can be seen as 
a weighted average, or harmonic mean, of the model’s precision and recall, where its maximum value is 
1, and the minimum is 0: 

Precision(𝑖𝑖) =
TP(i)

TP(i) + FP(i) 

F1 =
1
c
�

2 × Precision(𝑖𝑖) × Recall(i)

Precision(𝑖𝑖) + Recall(i)

c

i=1

 

Where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false negatives. 

3.2. Proportion of Same-Class Samples in Neighbor Nodes in Graph Structure 

In graph neural networks, experiments show that graphs with high homogeneity are more conducive 
to performance, especially when there are many connections between samples of the same class, 
indicating a high proportion of same-class samples among neighboring nodes. Experimental results 
suggest that the performance is better when ( m = 20 ), meaning each node has 20 neighbor nodes. 
Statistical analysis reveals that when ( m = 20 ), the proportion of nodes in the 20 neighboring nodes that 
belong to the same class as the source node is relatively high, as shown in Table 2. 

Table 2: Proportion of Same-Class Samples 

K-mer Optimal Feature Number ( f ) Number of Edges ( m ) Proportion (%) 
 
 
 
 

6-mer 

 
2000 

20 
30 
40 

64.51 
61.44 

58 
 

2500 
20 
30 
40 

63.86 
59.54 
56.54 

 
3000 

20 
30 
40 

64.68 
61.03 
56.04 

3.3. Results Comparison and Analysis 

In the experiments targeting 5 cellular substructures, we evaluated the R-GAT model using 5-fold 
cross-validation method, and the results showed that the model performed outstandingly in predicting 
LncRNA subcellular localization. From the experimental data in Table 3, it can be seen that the model 
achieved satisfactory performance: the F1 score reached 0.851, indicating a good balance between 
precision and recall; the recall rate was as high as 0.859, demonstrating the model successfully identified 
85.9% of positive samples; while the accuracy reached 91.3%, indicating the model’s robust performance 
in overall classification tasks. Overall, the R-GAT model exhibited excellent classification and 
generalization capabilities in the LncRNA subcellular localization classification task, providing 
directions for further model optimization in the future. 

Table 3: Dataset with 5 subcellular compartments 

 F1 Recall Acc(%) 
R-GAT 0.851 0.859 91.3 

4. Results and Discussion 

Existing research models for the 5-classification of LncRNA subcellular localization include 
lncLocator[4] and DeepLncLoc[5]. As shown in Table 4, comparing based on the three metrics of F1, 
Recall, and Acc, the R-GAT model outperforms in all three indicators. The R-GAT model, based on graph 
neural networks, demonstrated significant superiority in the task of lncRNA sequence classification. 
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Compared to traditional methods based on sequence feature extraction and optimized selection, R-GAT 
extracts advanced features directly from the optimal features of lncRNA sequences to achieve more 
precise classification. The advantage of R-GAT is not only reflected in its capability; through learning 
and integrating rich sequence features using graph neural networks, it also leverages the advantage of 
neighboring node information, especially the enhancement of same-class sample information. 

In the experiments, R-GAT enhances connections between same-class samples to focus more on 
learning differences and commonalities from similar lncRNAs. This mechanism is manifested in the tight 
connections of same-class nodes in the graph structure, facilitating the flow and integration of highly 
relevant feature information. Additionally, R-GAT adopts a weighted loss strategy to address the issue of 
data imbalance, a common challenge in bioinformatics. By assigning higher loss weights to minority 
classes, the model can treat all classes more fairly during the learning process, thereby improving overall 
performance and sensitivity to minority classes. 

In summary, the advanced feature extraction capability of the R-GAT model, along with the enhanced 
utilization of same-class sample information and the weighted loss method for addressing data imbalance, 
collectively contribute to its superior performance in the precise classification of lncRNA sequences. 
Particularly in key metrics such as F1 score, recall, and precision, the R-GAT model significantly 
surpasses other existing classification methods. This performance improvement provides insights for its 
application in complex biological problems. 

Table 4: Comparison with the existing predictor(5 subcellular compartments). 

Method F1 Recall Acc(%) 
lncLocator[4] 0.367 0.363 59.1 

DeepLncLoc[5] 0.563 0.524 53.7 
R-GAT 0.851 0.859 91.3 

5. Conclusion 

The R-GAT model exhibits significant advantages and outstanding performance in the task of lncRNA 
subcellular localization. The model uses graph neural networks to extract underlying features for accurate 
classification; it also capitalizes on the information from neighboring nodes within the graph structure to 
reinforce connections among samples within the same class, aiding the identification of commonalities 
and variances among similar lncRNAs. Moreover, a weighted loss strategy is applied to tackle issues of 
data imbalance, increasing the model’s sensitivity to minority classes and thereby enhancing overall 
classification effectiveness. Experimental results show that the R-GAT model significantly outperforms 
traditional methods on critical metrics, offering an effective solution for predicting lncRNA subcellular 
localization, with broad prospects for application. 
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