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Abstract: The application of artificial intelligence (AI) methods to grid analysis has been extensively 
studied. The distribution characteristics of the power flow dataset required for the training of AI methods 
will affect the performance of AI models. The power flow data accumulated for offline analysis are 
manually adjusted limit operation mode and distributed at the grid operation boundary, so the power 
flow dataset for offline analysis has good distribution characteristics. However, its small number and 
low manual generation efficiency make it difficult to exploit the advantages of this distributed 
characteristic dataset. In this paper, a power flow dataset sample supplementation method based on 
Wasserstein-gradient flow is proposed to realize the adjustment of the power flow dataset considering 
the distribution characteristics by solving the dynamic process of the dataset for Wasserstein-gradient 
flow. It is also tested on the CEPRI-36 node grid power flow dataset, and the generated supplemental 
data all have similar distribution characteristics with the target dataset, which verifies the effectiveness 
of the method. 
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1. Introduction  

AI methods applied to power grid analysis require training of power flow datasets. The existing 
sources of power flow data are mainly generated by offline simulation and online data collection, but 
both the online and offline power flow datasets accumulated in the past cannot directly meet the 
requirements. The power flow data for online analysis is the actual operation mode collected, which 
constitutes a large amount of sample data, but the distribution is not uniform and there are many similar 
samples, which cannot meet the requirements of covering comprehensively and clear boundary; the 
power flow data for offline analysis is the extreme operation mode manually adjusted, which constitutes 
a strong sample typicality and is distributed at the stable boundary of the grid operation, which helps to 
achieve the requirement of clear boundary, but the data volume is small and it is difficult to cover all the 
typical working conditions of the grid operation, which cannot meet the requirement of covering 
comprehensively. If the dataset is supplemented by targeting the distribution characteristics of the data 
for offline analysis, the obtained dataset will satisfy the two requirements mentioned above. Since the 
research on data set adjustment methods considering distribution characteristics is relatively weak, it is 
difficult to take full advantage of the distribution characteristics of the data for offline analysis. 

Optimal transport theory is the study of the relationship between distributions and distributions. 
Gradient flow based on optimal transport theory is an important tool in applied mathematics for 
constructing dynamic models in feature spaces [1], gradient flow has been extensively studied in the 
context of metric spaces [2] and has been found to be deeply related to partial differential equations (PDEs) 
[3]. 

In view of this, we study a power flow dataset supplementation method considering the distribution 
characteristics, which transforms the power flow dataset data into Wasserstein space in the form of 
distribution, then transforms the power flow dataset adjustment problem into the problem of solving the 
extreme value of the energy functional by constructing the functional, then solves the curve evolution 
equation by using the variational method, and finally solves the evolution equation to obtain a set of 
power flow dataset series labeled by process time. This paper is organized as follows: Section 2 presents 
the relevant technical background, including optimal transmission theory and gradient flow; Section 3 
introduces the Wasserstein-gradient flow based power flow dataset supplementation method. Section 4 
verifies the effectiveness of the method by testing it in the power flow dataset of the CEPRI 36 node 
power grid model. 
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2. Technical Background 

2.1. Optimal Transport and the Optimal Transport Dataset Distance 

Optimal transport theory is the study of the problem of interconversion between distributions, where 
the optimal transport distance (also known as the Wasserstein distance) is a quantitative tool to describe 
the degree of variation between distributions. For two subsets of measures  and the 
transport cost function , the optimal transport problem is 

                     (1) 

where  and  are features from the samples in the two measures, and  is the set of 
transport schemes between  and , i.e., the coupling with these two measures as marginal measures: 

                  (2) 

Where  for p ≥ 1,  is called the p-Wasserstein distance. As 
the name suggests,  defines a true distance on  [4]. Thus, with the former as the distance 
configuration is the metric space , called the (p-)Wasserstein space. In practice, 
the solution method is often solved by a regularized version of Eq. (1) with an additional entropy term 

 [5]. 

The dual formula of the Kantorovich problem is 

                        (3) 

where  is called the Kantorovich potential function and  is its c-conjugate: 
. For ,  is the Fenchel conjugate. 

In the literature [6] it was demonstrated that there is also a dynamic formula for OT: 

                     (4) 

where the minimum is taken from the measure-domain pair satisfying  and the 
continuity equation: 

                               (5) 

This formulation corresponds to finding the shortest path satisfying the conservation of the mass 
constraint in the metric path  from  to  and the velocity field , even if the path length is the 
smallest (formally the integral of the metric derivative). Thus, in contrast to the global correspondence 
(via ) in the static formulation (Eq. (1)), the dynamic formulation focuses on the local transport (via 

). 

It is appealing to use OT to define a distance between datasets, but this is non-trivial for labeled 
datasets. The main issue is that problem (1) would require an elementwise metric , which for labeled 
datasets means defining a distance between pairs of feature-label pairs. For the general case where  
might be a discrete set (i.e., classification), this seems daunting. In recent work, researchers [7] propose a 
hybrid metric on this joint space that relies on representing the labels  as distributions over features 

. E.g., for a digit classification dataset,  would be a distribution over images with label . 
With this, they define a metric on  as . Using  as the 
ground cost in eq. (1) yields a distance between measures on , and therefore between datasets, 
which they refer to as the Optimal Transport Dataset Distance (OTDD): 



Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.6, Issue 7: 18-23, DOI: 10.25236/AJETS.2023.060704 

Published by Francis Academic Press, UK 
-20- 

.                (6) 

The main appeal of this distance is that it is defined even if the label sets of the two data sets are non-
overlapping, or if there is no explicit known correspondence between them (e.g., digits to letters). It 
achieves this through a purely geometric treatment of features and labels. Another advantage is its 
computational scalability, which relies on using a Gaussian approximation on the per-label distributions, 
i.e., modeling each  as , whose mean and covariance are estimated from samples. In that 
case, the distances  can be computed in closed form, so no optimization is needed to 
evaluate  inside problem (6). 

2.2. Grandient Flows 

Consider a functional  and a point . A gradient flow is an absolutely continuous 
curve  that evolves from  in the direction of steepest descent of . When  is Hilbertian 
and  is sufficiently smooth, its gradient flow can be succinctly expressed as the solution of a 
differential equation  with initial condition . Different 
discretizations of this equation yield popular gradient descent schemes, such as momentum and 
acceleration [8]  

3. Wasserstein-Gradient Flow Based Sample Replenishment Method for Power Flow Datasets 

The power flow dataset data are transformed into Wasserstein space, and then the power flow dataset 
adjustment problem is transformed into the problem of solving the extreme value of the energy 
generalization function by constructing the energy generalization function, and then the curve evolution 
equation is obtained by using the variational method, and finally the evolution equation is solved to 
obtain a set of power flow dataset series labeled by process time. The distribution difference between 
this serial dataset and the target distribution dataset gradually decreases with the increment of the time 
principal scale, and finally an adjusted dataset with controllable distribution difference is obtained. 

The main problem that needs to be solved for a specific implementation is how to choose the objective 
functional. 

3.1. Functional Minimization via Gradient Flows 

Given a dataset objective expressed as a functional  : , we seek a joint measure 
 realizing: 

                                (7) 

We propose to approach this problem via gradient flows, i.e., by moving along a curve of steepest 
descent starting at  until reaching a solution . Unlike Euclidean settings, here the underlying 
space  is infinite-dimensional and non-Hilbertian, thus requiring stronger tools. 

First, the notion of derivative can be extended to functionals on measures through the first variation, 

denoted by . With this, we characterize the gradient flow  of  as the solution of: 

                     (8) 

which can also be seen as a continuity equation (4) for the measure  and the velocity field 

. 

Our main functional of interest will be the Wasserstein distance to a target distribution: 



Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.6, Issue 7: 18-23, DOI: 10.25236/AJETS.2023.060704 

Published by Francis Academic Press, UK 
-21- 

, which we realize using the OTDD (Section 2.1).  

Hence, we assume the objective of interest can be cast as: 

 

The numerical solution of the functional can be found in the literature [9]. 

4. Experimental Validation 

4.1. Example Introduction 

The samples in the power flow dataset of this paper describe various modes of operation of the grid 
model CEPRI36, and the grid structure is shown in Figure 1, where some nodes are connected to 
capacitors or reactors that are not involved in regulation, and there are 18 nodes of generating units or 
loads involved in regulation, with the nodes injecting power as the input feature values, for a total of 36 
variables, i.e., the sample contains a feature dimension of 36 dimensions. 

 
Figure 1: CEPRI36 grid model topology connection diagram 

For sample supplementation of the target distribution dataset using a Wasserstein gradient flow 
method. Among them, the target distribution dataset uses 5000 manually generated samples with 
distribution characteristics similar to those of the power flow dataset for offline analysis, whose samples 
are mainly distributed near the stability boundary. The initial dataset for the sample adjustment generation 
process is chosen from the randomly generated dataset. 

For this purpose, the experimental design is as follows: 

1) The original random dataset is denoted as , the target distribution dataset is denoted as , 
and then four randomly generated data sets are denoted as , where i=1,2,3,4. 

2) Using the four data sets  as the initial data set and  as the target data set, a gradient flow 
operation is performed to select the appropriate four data sets according to OTDD, denoted as , where 
i=1,2,3,4, and there is a correspondence with i in . 

(3) The generated new datasets are then merged into the original dataset separately to form two 
datasets with increasing sample capacity and maintaining the original distribution characteristics, 
denoted as  and , where i=1,2,3,4 and have correspondence with i in . The formation can 
be expressed as follows: 

                               (9) 

                              (10) 

It should be noted that the "+" operator here does not indicate the operation of a set, but the direct 
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merging of data sets. The sample sizes of , , , and  are 10,000, 15,000, 20,000, and 
25,000, respectively. Similarly, the data set sequence  also has the same sample size. The  is 
the data set of the target distribution after supplementation. 

The experimental hardware environment is 3.30 GHz, the CPU is AMD Ryzen9 5900HS, and the 
GPU is RTX-3060. in the Wasserstein gradient descent flow procedure in part 1 of the experiment, the 
optimal transmission distance of the power flow dataset is computed with the help of solvers for the 
optimal transmission distance provided by the geomloss [10] and POT [11] libraries, and the above Both 
libraries have the option of CUDA acceleration, which accelerates the solution of the Wasserstein 
distance using GPU parallel computing. One of them is the Compute Unified Device Architecture 
(CUDA), a computing platform introduced by NVIDIA, a graphics card manufacturer. 

4.2. Results and Discussion 

The effect of the power flow dataset supplementation method is analyzed using the optimal transport 
distance calculation method for power flow datasets given in Section 2.1. Comparing the distribution 
differences between the four randomly sampled datasets  used as initial values and the four target 
distribution datasets  generated by the method in this paper, the  between the two 
datasets is found, where  takes the value of the 1st column and  takes the value of the 1st row, 
the result is shown in Table 1 and Table 2 as follows: 

Table 1:  values between  

     
 0 1.59 1.57 1.93 
 1.59 0 1.76 1.48 
 1.57 1.76 0 1.61 
 1.93 1.48 1.61 0. 

Table 2:  values between  

     
 0 0.58 0.64 0.63 
 0.58 0 0.67 0.66 
 0.64 0.67 0 0.78 
 0.63 0.66 0.78 0. 

Where  is also at the same level as ,  and  with . Based on the above results, 
it can be seen that: 

1) It is logical that the  between the initial randomly sampled distributed datasets of the motion 
is larger than the  between the generated datasets, whose distribution properties dictate that the 
samples will appear randomly in a smaller range. This is also a side verification that the Wasserstein 
gradient flow method generates indeed datasets with the target distribution. 

2) The values of  between two  are at the same order of magnitude level, and there are no 
values that are significantly smaller than others and converge to zero. This phenomenon reflects the 
significance of initial dataset selection in Wasserstein gradient flow, setting different initial datasets, and 
the datasets of the final generated target distribution will not be exactly the same, still maintaining the 
same distribution but the data are not duplicated. 

5. Conclusions 

In order to take full advantage of the distribution characteristics of the power flow data for offline 
analysis and adjust the dataset flexibly and efficiently, this paper investigates the method of adjusting the 
power flow dataset considering the distribution characteristics. The Wasserstein gradient flow-based 
sample supplementation method for power flow datasets is proposed to convert the dataset generation 
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process into a generalized optimization problem of finding extrema, and our goal is to obtain the complete 
motion trajectory of the dataset under the gradient flow. The motion trajectory can provide a sequence of 
datasets with progressively decreasing variance from the target dataset distribution, in which we can 
select the datasets with the appropriate degree of variance to add to the original data set as needed, where 
the initial value of the evolution equation also has an important influence on this process. This operation 
also enables a sample supplementation method that maintains the distribution properties, i.e., the 
supplemented samples still maintain the same or similar distribution properties but are not simple 
duplicates of the data in the original dataset. Finally, the effectiveness of the Wasserstein gradient flow 
method is verified by experimental examples. 
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