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Abstract: Transmission line maintenance is crucial for the stable operation of power systems, as any 
faults can lead to severe consequences. With the increasing complexity of power systems, traditional 
fault diagnosis methods are no longer applicable. Based on this, the article explores the possibility of 
using machine learning techniques for transmission line fault diagnosis. By analyzing historical fault 
data, machine learning models can identify complex patterns and correlations to achieve fault 
prediction and diagnosis. Firstly, different types of short-circuit faults are analyzed, including 
three-phase short circuits, two-phase short circuits, two-phase ground short circuits, and single-phase 
ground short circuits, and a classification algorithm based on Linear Discriminant Analysis (LDA) is 
proposed. Secondly, the Box-Muller transformation is used to generate Gaussian distributed random 
variables from a uniform distribution to simulate fault data. The algorithm validation results show that 
the proposed method can effectively diagnose transmission line faults and provide strong technical 
support for the stable operation of power systems. 
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1. Introduction 

As a critical component of the power system, the stability of transmission lines is directly related to 
the normal operation of socio-economic activities. Any faults may lead to severe socio-economic 
consequences, including but not limited to industrial production disruptions, traffic congestion, 
communication interruptions, and even affecting medical and rescue services. Therefore, ensuring the 
reliability of transmission lines is the top priority for power engineers and researchers. With 
technological advancements, traditional fault diagnosis methods are gradually becoming inadequate for 
modern power systems. These methods often rely on expert systems and rule engines, but their 
efficiency and accuracy are limited when dealing with large-scale, multivariable, and nonlinear 
problems. Furthermore, as the complexity of power systems increases, the response speed and accuracy 
requirements for fault diagnosis systems are also becoming higher. In this context, machine learning 
techniques exhibit tremendous potential. By leveraging historical data, machine learning models can 
identify complex patterns and correlations, enabling the prediction and diagnosis of potential faults. 
This data-driven approach not only improves diagnostic accuracy but also allows for real-time 
processing of large amounts of sensor data, enabling rapid response[1]. For example, deep learning 
algorithms can automatically extract fault features by analyzing historical fault data and establish 
predictive models. These models can provide predictions and warnings before faults occur, enabling 
operation and maintenance personnel to take prompt measures to avoid or mitigate the impact of faults. 
Machine learning models can continuously learn and adapt to changes in the power system, constantly 
improving their diagnostic capabilities. Fault diagnosis of transmission lines based on machine learning 
is crucial for the stable operation of power systems[2]. 

2. Classification and Characteristics of Transmission Line Short-Circuit Faults 

2.1. Three-Phase Short Circuit 

A three-phase short circuit fault is one of the most severe types of faults in transmission lines, 
involving all three phases simultaneously coming into contact with the ground or each other. This leads 
to a sudden increase in current and a decrease in voltage, posing a serious threat to the stability and 
safety of the power system. When a three-phase short circuit fault occurs, there is a sudden increase in 
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current in all three phases, with the amplitude of the three-phase currents being close to each other. This 
is because the resistance at the short-circuit point is very small relative to the power source and can 
almost be considered zero. Instantaneously after the fault occurs, the three-phase voltage drops sharply 
to near zero due to the voltage reduction at the short-circuit point and the increased voltage drop along 
the line caused by the increased current. A three-phase short circuit fault introduces high-frequency 
components into the power system's frequency spectrum, which can be analyzed using methods such as 
Fourier transforms. 

2.2. Two-Phase Short Circuit 

A two-phase short circuit fault is a common type of fault in transmission lines, occurring between 
two phase lines. It is typically caused by aging of insulation materials, intrusion of external objects, or 
other mechanical damage. This fault results in unbalanced operation of the power system, affecting grid 
stability[3]. When a two-phase short circuit fault occurs, the currents in the affected two phases increase 
significantly, while the current in the unaffected phase may decrease slightly or remain unchanged. The 
voltages of the affected two phases decrease, while the voltage of the unaffected phase may increase 
due to the relationship between phase voltage and line voltage in the power system. Additionally, a 
two-phase short circuit fault causes changes in the energy distribution of the power system, often 
manifesting as energy concentration near the fault point[4]. 

2.3. Two-Phase to Ground Short Circuit 

A two-phase to ground short circuit fault occurs when two phase lines simultaneously short-circuit 
to the ground. This fault leads to imbalance in the power system, causing malfunction of protective 
devices. During a two-phase to ground short circuit, the currents in the two affected phases rise sharply, 
and the ground current increases as the fault current needs to flow back through the ground. The 
voltages of the affected two phases drop significantly, while the voltage of the unaffected phase may 
rise. 

2.4. Single-Phase to Ground Short Circuit 

A single-phase to ground short circuit is typically caused by insulation damage or external objects, 
resulting in contact between one phase line and the ground. This fault leads to asymmetrical loading of 
the power system. During a single-phase to ground short circuit, the current in the faulted phase 
increases significantly, while the currents in the other two phases remain largely unchanged. 
Simultaneously, the ground current increases as the fault current needs to flow back through the ground. 
The voltage of the faulted phase drops to near zero, while the voltages of the other two phases rise. 

3. Dataset for Transmission Line Faults 

The first step in fault diagnosis lies in constructing a fault feature dataset. Sensor data such as 
voltage and current from transmission line short-circuit faults need to be aggregated and transmitted to 
the main station through substation communication interfaces, forming a feature value dataset and an 
expected result dataset. Through data analysis, key factors that contribute to building dataset features 
and state identification can be extracted[5]. Constructing an accurate dataset is crucial for transmission 
line fault diagnosis. The dataset construction process typically involves the following steps: 

(1) Data Source Collection: Firstly, raw data is collected from various substations (such as 
Substation 1 to Substation N) located in different locations. These data sources may include voltage, 
current, temperature, and other sensor data. 

(2) Feature Extraction: After preliminary processing of the raw data, the next step is to extract key 
feature quantities. These feature quantities serve as inputs to the fault diagnosis model and need to 
accurately reflect the operating state of the system[6]. 

(3) State Variable Set: In addition to feature quantities, it is also necessary to determine the state 
variables of the system, which may include normal operation, various types of faults, and other states. 

(4) Secondary Processing: The extracted feature quantities and state variables undergo secondary 
processing to form a data format suitable for use in machine learning models. This may include data 
cleaning, normalization, encoding, and other steps[7]. 
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(5) Dataset Integration: Finally, the feature quantities from multiple sensors are combined with the 
expected results (i.e., state variables) to form a complete dataset. This dataset will be used to train 
machine learning models for automatic fault diagnosis and classification. The specific steps are 
illustrated in Figure 1: 

 
Figure 1: Construction process of fault feature dataset 

After the dataset construction steps, a feature matrix containing multi-sensor information and fault 
states is finally formed. Assuming that the dataset contains N records, M features, and K states, the 
dataset Y can be represented by the following mathematical expression: 
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Where nmx  represents the mth eigenvalue of the nth record, and nks  represents the kth state 
identifier of the nth record. 

4. Transmission Line Fault Feature Classification Algorithm Based on Machine Learning 

In the field of machine learning, Linear Discriminant Analysis (LDA) is an important classification 
algorithm that distinguishes different categories by projecting data from a high-dimensional space to a 
low-dimensional space. The core idea of LDA is to maximize the between-class scatter matrix and 
minimize the within-class scatter matrix, so that the projected data has better classification results in the 
low-dimensional space.The mathematical expression of the LDA algorithm can be simplified as 

Ty W X=  
Where W is the dimensionality reduction matrix and X is the feature vector of the training set. In 

practical fault diagnosis, there are usually multiple feature vectors and multiple categories of fault 
states, so it is necessary to construct a matrix containing all features and states[8]. 

The Fisher discriminant is the key to the LDA algorithm, and its goal is to find the optimal 
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projection direction so that the distribution of data from different categories has the maximum 
difference in this direction. This can be achieved by solving the following optimization problem:
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Where SB is the between-class scatter matrix and SW is the within-class scatter matrix. 

The between-class scatter matrix SB is defined as: 
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The within-class scatter matrix SW is defined as: 
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The overall expectation μ of the dataset is calculated as follows: 
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The formula for calculating the mean μi of category (i) is: 
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where C is the total number of categories, Ni is the number of samples in category i, μi is the 
expectation of category i, μ is the overall mean of all samples, x is the sample point, and ωi is the 
sample set of category i. 

To solve this optimization problem, it is necessary to calculate the overall expectation μ of the fault 
feature dataset, the expectation μi of each class, and the corresponding scatter matrix. To obtain the 
maximum value of Fisher's discriminant, let: 
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Obtain: 

1
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The final solution W is the optimal dimensionality reduction matrix, where λ is the largest 
eigenvalue and matrix W* is used to project high-dimensional data into a low-dimensional space for 
effective classification. 

In power system fault diagnosis, the LDA algorithm can project multi-dimensional fault data into a 
lower-dimensional space. The reduced data is assumed to follow a Gaussian distribution, allowing the 
calculation of the probability density function (PDF) of the projected data based on mathematical 
expectations and variances. From the projected data in the test set, the type of short-circuit fault and its 
confidence level can be inferred[9]. For example, a dataset consisting of three fault states would be 
projected into a two-dimensional space by the LDA algorithm. In this two-dimensional space, data 
points for each fault state would cluster around the center of their respective categories, forming a 
Gaussian distribution. By leveraging the characteristics of these distributions, the probability of a new 
test data point belonging to each fault state can be calculated, thereby diagnosing the fault type. 

5. Machine learning-based fault feature diagnosis algorithm for transmission lines 

Transmission line fault feature data can be modeled using Gaussian-distributed random variables, 
and fault diagnosis can be performed based on the LDA (Linear Discriminant Analysis) fault 
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classification and diagnosis algorithm. Data simulation can be used to generate Gaussian-distributed 
random variables from a uniform distribution using the Box-Muller transformation. The Box-Muller 
transformation is a statistical method used to generate random variables that follow a normal 
distribution from random variables that obey a uniform distribution. This transformation is particularly 
useful because many statistical algorithms and machine learning models assume that the data follows a 
normal distribution, whereas in practical applications, we can typically only easily generate uniformly 
distributed random numbers. Specifically, the Box-Muller transformation requires two independent 
random variables, U1 and U2, that follow a uniform distribution on the interval [0,1]. Then, through the 
following transformation formulas, two independent random variables, Z0 and Z1, that follow a 
standard normal distribution (with a mean of 0 and a variance of 1) can be generated: 

0 1 22 ln cos(2 )Z U Uπ= −  

1 1 22 ln sin(2 )Z U Uπ= −
 

This process can be visually understood as follows: Firstly, a random point is generated within a 
unit circle using U1 and U2. Then, through polar coordinate transformation, this point is mapped onto a 
two-dimensional Gaussian distribution. As a result, Z0 and Z1 become random variables that follow a 
two-dimensional standard normal distribution. By employing this method, samples that conform to the 
distribution of actual fault data can be simulated, enabling the testing and validation of the LDA 
algorithm. The basic flowchart is shown in Figure 2. 

 
Figure 2:Fault Diagnosis Algorithm Process 

6. Algorithm Verification 

Firstly, three sets of simulated fault state data are generated by setting specific expectation values 
and variances to ensure accurate simulation of system behavior under different fault conditions. These 
three sets of data represent the system's non-fault state, fault type A, and fault type B, respectively. The 
specific expectation values and variances are set as follows: 

The expectation value for the non-fault state is [2.5, 12.5], and the variance is [4.5, -0.5; -2.5, 2.5]. 
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The expectation value for fault type A is [2, 1], and the variance is [3.5, 0; 0, 3.5].The expectation value 
for fault type B is [11.5, 9.5], and the variance is [3, 0.5; 2.5, 2]. 

Secondly, the training dataset is used to calculate the maximum eigenvalue and its corresponding 
eigenvector. In this example, the maximum eigenvalue is (4945), and the corresponding eigenvector is 
[0.8932, 0.7343]. 

Thirdly, the test dataset is used to calculate the Probability Density Function (PDF) to determine the 
type of relay protection fault and its confidence level in the test data. 

Finally, the confidence level of each state is evaluated based on the calculated PDF, as shown in 
Table 1. 

Table 1: Confidence Levels in Three States 

   PDF 
Fault 
Probability 

Normal Fault State A Fault State B 

Normal (%) 99.78 0.21 0 
Fault State A (%) 0.15 97.86 2.02 

Fault State B (%) 0 2.84 97.59 
As can be seen from Table 1, in the normal state, the system correctly diagnoses the normal state 

with a high confidence level of 99.78%, while the probability of misdiagnosing the normal state as 
Fault State A or Fault State B is extremely low (0.21% and 0%, respectively). For Fault State A, the 
system correctly diagnoses it with a confidence level of 97.86%, with a 0.15% probability of 
misdiagnosis as normal and a 2.02% probability of misdiagnosis as Fault State B. In the case of Fault 
State B, the system also demonstrates a high confidence level (97.59%) in correctly diagnosing Fault 
State B, with only a 2.84% probability of misdiagnosing it as Fault State A and no misdiagnosis as 
normal. The transmission line fault diagnosis system exhibits high accuracy and reliability in various 
states. Especially in the normal state, there is almost no misdiagnosis, which is crucial for avoiding 
unnecessary maintenance and inspections. Meanwhile, even in fault states, the system can accurately 
diagnose the fault type with high confidence, which helps to quickly and accurately locate the problem 
for timely repair. 

7. Conclusion 

In summary, the fault diagnosis model based on machine learning can effectively identify and 
classify short-circuit faults in transmission lines, providing timely decision support for operation and 
maintenance personnel. Algorithms such as Linear Discriminant Analysis (LDA) and Box-Muller 
transformation can efficiently and accurately extract and classify fault features. Therefore, it is 
necessary to further explore the application of advanced algorithms such as deep learning in fault 
diagnosis to improve the generalization ability and accuracy of the model. Consider integrating the 
fault diagnosis system with other intelligent management systems of the power system to form a 
comprehensive smart grid management platform. 
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