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Abstract: Lung cancer is one of the cancers that seriously threaten human life, especially lung 

adenocarcinoma. Although various diagnostic and therapeutic methods continue to appear, the clinical 

outcomes are still gloomy. The gene coding and non-coding ribonucleic acid data of lung 

adenocarcinoma was analyzed by using the non-negative matrix factorization clustering, differential 

expression and survival analysis. Functional and pathway enrichment analysis was performed for each 

subtype. The computed tomography imaging features of lung adenocarcinoma were extracted and 

associated with weighted gene co-expression network analysis. All patients with lung adenocarcinoma 

could be significantly classified into three subtypes according to gene expression feature. The differential 

expressed genes were significantly enriched in biological processes including lung development, 

morphogenesis of an epithelium, receptor-mediated endocytosis for subtype 1, subtype 2, subtype 3, 

respectively. The number of special molecules is 340, 71, 109 for subtype 1, subtype 2, subtype 3, 

respectively. Some of them such as neuroendocrine convertase 1 for subtype 3, has_mir_10b for subtype 

2, parathyroid hormone-related protein for subtype 1 and so on, were strongly associated with the 

integrate density feature in region of interest of computed tomography imaging. Subtypes of patients with 

lung adenocarcinoma could be accurately stratified by investigating the multi-omics data features, and 

several computed tomography imaging features are closely associated with the special molecules of each 

subtype, which is useful for selecting diagnosis and therapeutic methods. 

Keywords: Multi-omics; Lung cancer; Molecular subtype; Weighted gene co-expression network 
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1. Introduction 

With an estimated 2.2 million (approximately 11.4%) new cancer diagnosed cases and 1.8 million 

(approximately 18.0%) deaths, lung cancer is the second most frequently diagnosed cancer and the major 

cause of cancer-related death in 2020 year [1]. About 85% lung cancers are divided into non–small cell 

lung cancer such as lung adenocarcinoma, squamous cell carcinoma and large cell carcinoma histologic 

subtypes, and the other 15% as small cell lung cancer [2]. Lung adenocarcinoma is the most common 

type of lung cancer, which is further classified into several subtypes and variants by distinct cellular and 

molecular features. The recent development of sequencing technology has enabled us to carry out large-

scale detection by RNA sequencing, whole-exon sequencing or whole-genome sequencing, which have 

identified significantly altered genes in lung adenocarcinoma. Several named driver genes serve as an 

essential role in oncogenic activity among those genes. Molecular-targeted therapy using particular 

inhibitors for driver gene aberrations has shown positive efficacy [3]. Advanced therapies such as 

selective inhibitor of epidermal growth factor receptor's tyrosine kinase domain (EGFR-TKIS) and 

programmed death-ligand 1 (PD-L1) have been applied to clinical treatment for lung cancer in recent 

years [4, 5].  

MicroRNAs are also served as promising targets for treatment of various cancers, and miRNA-based 

lung cancer therapy has been performed in many emerging studies. Some potential miRNAs work as 

oncogenic and/or metastasis-promoting role such as miR-125b, miR-21, miR-135b, and some play tumor 

suppressor role such as miRNAs Let-7 family, miR133b, miR-181 [6]. Compared to the miRNAs, only 

a small proportion of lncRNAs has been uncovered to be biologically relevant although accumulating 

evidence indicating that the majority of them are likely to be functional [7]. According to recent 

evidences, lncRNAs are continuously reported to be involved in transcriptional regulation. The 

expression of lncRNAs is misregulated in various types of cancers, such as non-small cell lung cancer 
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[8]. Although the last decade has yielded encouraging results with lung cancer screening and systemic 

therapies, 5-year survival rates vary from 4-17% depending on stage and regional differences. Moreover, 

the lung cancer has long been a disease characterized by late-stage diagnosis [9]. Imaging-based 

biomarkers have been evaluated for performance in early diagnosis technology of lung cancer by low-

dose computed tomography as well as an ability to predict the malignancy of it [10]. However, the 

prolongation of survival overall is limited because of the drug resistance, radio-resistance, and the serious 

side effects after various treatments for lung cancer. 

In this work, the subtypes and biomarkers of lung adenocarcinoma were identified by rigorous 

bioinformatics and statistical analyses based on the data of expression of mRNA, miRNA and lncRNA. 

Imaging biomarkers were also identified for lung adenocarcinoma in computed tomography with 

biological interpretation by associating imaging features and biological molecule modules. 

2. Materials and Methods 

2.1 Data source and preprocessing 

The expression of mRNA and miRNA profiles of lung adenocarcinoma patients were downloaded 

from The Cancer Genome Atlas (TCGA) data portal (https://tcga-data.nci.nih.gov/tcga/) by the 

TCGAbiolinks package of R language. The data of lncRNA and clinical trait were downloaded from 

TCGA data portal by SangerBox tool. The dataset of mRNA profile contained 519 primary solid tumor 

samples and 58 solid tissue normal samples. The dataset of miRNA profile contained 504 primary solid 

tumor samples and 19 solid tissue normal samples. The dataset of lncRNA profile contained 516 primary 

slid tumor samples and 60 solid tissue normal samples. The number of common primary solid tumor 

samples is 504 and common solid tissue normal samples is 19 in these three datasets.  

Computed tomography (CT) imaging of lung adenocarcinoma is acquired from The Cancer Imaging 

Archive (TCIA) (https://public.cancerimagingarchive.net/ncia/login.jsf), which is a medical cancer 

imaging archive that contains imaging corresponding to the TCGA patients. 25 patients are selected in 

radiogenomic analysis by the molecule expression data matching the primary solid tumor images for 

each patient sample. 

2.2 Cluster analysis based on nonnegative matrix factorization 

All analyses in this work are performed using R language unless otherwise mention. The row 

molecule is removed when the expression value of it is zero in more than 100 samples for these three 

datasets. Missing value of molecule expression is supplied by the estimation methods based on K Nearest 

Neighbors (KNN) algorithm with the impute package of R language (number of neighbors=10). The next 

molecules are selected when the coefficient of variation of molecules is beyond 1.5. Subsequently, a total 

of 2535 molecules of 504 primary solid tumor samples were used as the input dataset of the non-negative 

matrix factorization (NMF). NMF was performed with the NMF package and standard method. The 

negative values of the dataset were zeroed to give a non-negative matrix, and the NMF was performed 

for ranks 2 to 10 by the Brunet algorithm. The dispersion, silhouette and cophenetic correlation 

coefficient score were computed, and were directly obtained using the plot function of the NMF package 

for each rank. The differences of subtypes were analyzed among the clusters using sigclust package, 

which assesses the significance of clustering by simulation from a single null Gaussian distribution. 

Statistical significance was set at p-value < 0.01. 

2.3 Differential expression analysis 

According to the results of cluster analysis based on NMF, the tumor samples are divided into 3 

subtypes which respectively conclude 60, 148, 296 tumor samples. Differential expression analysis is 

accomplished with multiple linear regression by the limma package of R language. It estimates the fold 

changes and standard errors by fitting a linear model for every molecule by lmFit and the empirical Bayes 

statistics implemented by eBayes (adjust method=’false discovery rate’). Statistical significance was set 

at p-value < 0.01 and absolute value of log2-fold change (log2|FC|) > 1 for 2535 molecules of each 

subtype. 
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2.4 Survival analysis 

The samples are divided into high expression group and low expression group according to the 

expression value of significantly differentially expressed genes with a median value as the cutoff. The 

tumor samples are divided into three subtypes (groups) according to the results of cluster analysis based 

on NMF. The survival time and status data are from the clinical trait data. The log-rank test compares 

the survival times of two groups and the p-value is calculated using the chi-squared distribution by the 

survival package of R language. Statistical significance was set at p-value < 0.01. 

2.5 Functional and pathway enrichment analysis 

The database for annotation, visualization and integrated discovery (DAVID, https://david. 

ncifcrf.gov/) was used to classify significantly differential expression genes of each subtype by their 

biological processes, cellular components, and molecular functions using gene ontology (GO) and the 

significant transcripts (p-value <0.05) were identified by the functional annotation clustering tool. The 

DAVID database was also used to carry out pathway enrichment analysis with reference from kyoto 

encyclopedia of genes and genomes (KEGG) database website and p-value <0.05 as a cut-off point. 

2.6 Imaging feature extraction 

A total number of 261 imaging features of the 25 samples were evaluated, which include first order 

statistics, geometry features, and textural features. The first-order statistics feature is quantified tumor 

intensity characteristics and calculated from the histogram of all tumor voxel intensity values. Geometry 

feature consists of size-based tumor volume. Detailed descriptions of the imaging features extracting are 

described in the Supplementary Methods. For each patient sample, the CT image is selected when it 

contains region of interest (ROI), and the feature values of the whole image (512×512) and the ROI are 

extracted respectively. Each feature is expressed as the average value exclude tumor volume. For the 

whole image, 11 feature algorithms were implemented in Matlab software (version 2020a) and described 

in the Supplementary Methods. For the ROI, also called tumor outline was drawn and 7 features (area, 

standard deviation, mean gray value, perimeter, integrate density, skewness, kurtosis) of it were measured 

using the ImageJ tool after the selected CT image was converted from 16-bit to 8-bit (Figure 1). 

 

Figure 1: The figures of consecutive computed tomography slices for TCGA-50-5941 patient sample. 

First row, the whole image contains region of interest. Second row, red color circle represents the 

region of interest. 

2.7 Weighted correlation network analysis and key module identification 

Weighted correlation network analysis (WGCNA)is constructed by the WGCNA package for the 

dataset, which includes 2535 molecules. The clinical traits dataset are the above 19 CT image features. 

First, the molecular expression data combined with clinical CT traits information to compute multiple 

soft-thresholding powers. Second, 6 is selected as the soft-thresholding power which can increase co-

expression similarity to accomplish consistent scale free topology in the dataset. Third, the automatic 

network construction and module detection are performed with the major parameters (power = 6, 

TOMType = "unsigned", minModuleSize = 30, mergeCutHeight = 0.25). Finally, the correlation among 

modules and clinical traits is determined by correlation test, and the correlation values are displayed 

within a heatmap plot including p-value. Gene significance is calculated as the absolute value of the 

relationship between molecule expression profile and each imaging trait. Module membership is defined 

as the relativity of molecule expression profile and each module eigengene. The hub molecules are picked 



Frontiers in Medical Science Research 

ISSN 2618-1584 Vol. 4, Issue 5: 1-9, DOI: 10.25236/FMSR.2022.040501 

Published by Francis Academic Press, UK 

-4- 

out in key module when the value of module membership is more than 0.8 and the value of gene 

significance is more than 0.6. 

2.8 Identification of special molecules for each subtype 

The molecules are selected with significant differences in differential expression analysis and survival 

analysis for each subtype. The degree of overlap of them between subtypes was showed with venn 

diagram using VennDiagram package. Similarly, venn diagram also display the special feature-

associated molecules for each subtype between the special molecules of subtype and the hub molecules 

of key module. 

3. Results 

3.1 Molecular subtypes identification 

The molecular subtype of lung adenocarcinoma is identified based on multi-omics data (2535 

molecules containing mRNA, miRNA, lncRNA) by NMF clustering algorithm in 504 samples. The 

values of k=3 is regarded as the optimal clustering number according to the cophenetic and silhouette 

values because of the first rank value for which the cophenetic and dispersion coefficient starts decreasing, 

and the effect of molecular clustering is better when rank value is 3 (Figure 2). The first, second, third 

subtype contains 60, 148, 296 different samples, respectively. The difference between these three 

molecular subtypes is significant (p < 0.01). Besides, the difference of survival analysis between subtype 

1 and subtype 2 is notable (p < 0.05), which also appear between subtype 2 and subtype 3 (Figure 3). 

 

 

Figure 2: Cluster analysis based on nonnegative matrix factorization. 

 (A) cophenetic correlation coefficient at different k value. (B) dispersion correlation coefficient at 

different k value. (C) silhouette correlation coefficient at different k value. (D) consistency matrix of 

multi-omics clusters when k=3. 

 

Figure 3: The difference of survival analysis among subtypes. 

 (A) subtype 1 versus subtype 2. (B) subtype 1 versus subtype 3. (C) subtype 2 versus subtype 3. 
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3.2 Identification of differential expression molecules 

The significantly differentially expressed molecules are 694 including 387 up-regulated molecules 

and 307 down-regulated molecules for the subtype 1 group. The significantly differentially expressed 

molecules are 642 including 363 up-regulated molecules and 279 down-regulated molecules for the 

subtype 2 group. The significantly differentially expressed molecules are 608 including 349 up-regulated 

molecules and 259 down-regulated molecules for the subtype 3 group (Table 1, top 3 only). 

Table 1: Analysis of molecules differentially expressed in multi-omics data (top 3 in each subtype data) 

Subtype category Ensembl ID Gene name logFC P-value 

Subtype 1 ENSG00000168484 SFTPC -8.8326 4.00E-11 

hsa-mir-9-1 - 6.8588 8.03E-17 

hsa-mir-9-2 - 6.7476 1.41E-16 

Subtype 2 ENSG00000168484 SFTPC -7.5545 2.55E-12 

ENSG00000066405 CLDN18 -6.0755 3.44E-17 

ENSG00000204305 AGER -5.8004 2.89E-22 

Subtype 3 ENSG00000168484 SFTPC -6.9661 3.62E-11 

ENSG00000066405 CLDN18 -6.4538 6.69E-17 

ENSG00000204305 AGER -5.7795 2.82E-20 

3.3 GO functional pathway enrichment analysis 

It shows that the differential expressed genes are significantly enriched in biological processes 

including lung development, morphogenesis of an epithelium, receptor-mediated endocytosis for subtype 

1, subtype 2, subtype 3, respectively. For cell component and molecular function, the different GO terms 

emerge among the three subtypes and the same GO terms also emerge. Although the results of KEGG 

signaling pathway analysis showed that the differential expressed genes were significantly enriched in 

complement and coagulation cascades for these subtypes, the different signaling pathways emerge among 

the three subtypes. 

3.4 Survival analysis 

The log-rank test for difference in survival gives a p-value of p < 0.01, indicating that it differs 

significantly between the high and low expression molecule groups in survival, assuming an alpha level 

of 0.05. These molecules include such as collagen alpha-1 (COL7A1) and protein aster-B (GRAMD1B) 

for subtype 1, igLON family member 5 (IGLON5) and homeobox protein Hox-D9 (HOXD9) for subtype 

2, dickkopf-related protein 1 (DKK1) and protein fosB (FOSB) for subtyped 3 (Table 2, top 5 only). 

Table 2: Survival analysis of multi-omics data of lung adenocarcinoma (top 3 in each subtype data) 

Subtype category Ensembl ID Gene name P-value 

Subtype 1 ENSG00000114270 COL7A1 1.0231E-05 

ENSG00000023171 GRAMD1B 1.0696E-05 

ENSG00000104140 RHOV 1.4343E-05 

Subtype 2 ENSG00000142549 IGLON5 5.6739E-04 

ENSG00000128709 HOXD9 9.8562E-04 

ENSG00000139292 LGR5 1.9400E-03 

Subtype 3 ENSG00000107984 DKK1 2.6009E-06 

ENSG00000125740 FOSB 9.1589E-06 

ENSG00000163687 DNASE1L3 1.0257E-05 

3.5 Construction of the CT image feature-associated molecules co-expression network 

2535 molecules and 19 CT image features are used to build gene co-expression network identify the 

image feature-associated module hub molecules in lung adenocarcinoma. Hierarchical clustering 
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dendrogram is established based on the topology overlap matrix dissimilarity, and the dynamically cut 

modules with similar expression profiles are combined by the defined parameter (Figure 4A). The 

correlation of modules with various CT image features is calculated, such as kurtosis, skewness, volume, 

mean, uniformity, energy, integrate density, area, standard deviation, perimeter. The results showed that 

the highest positive correlation occurred between ROI integrate density and blue module (p < 0.01). 

Besides, the strongly positive correlation occurred between area or volume of ROI and cyan module (p 

< 0.01) (Figure 4B). The blue module contains 289 molecules such as parathyroid hormone-related 

protein (PTHRP), homeobox protein Hox-A7 (HOXA7), histamine H2 receptor (HRH2), hsa_mir_10b, 

hsa_mir_134 and so on. 

 

 

Figure 4: Construction of weighted gene co-expression network analysis. 

(A) consensus gene dendrogram and module colors are showed correspondingly. (B) the module-trait 

relationship is displayed by correlation values and p values (p value is in parenthesis). Each row 

represents the named module and each column represents the traits. Red color represents positive 

correlation and green color represents negative correlation. 

3.6 Identification of characteristic molecules of subtypes 

The number of special molecules is 340, 71, 109 for subtype 1, subtype 2, subtype 3, respectivel. The 

characteristic molecules of subtype 1 are such as gastricsin (PGC) and hsa-mir-224. The characteristic 

molecules of subtype 2 are such as cytokine receptor-like factor 1 (CRLF1) and hsa-mir-34c. The 

characteristic molecules of subtype 3 are such as calpain-9 (CAPN9) and hsa-mir-136 (Figure 5A). In 

these characteristic molecules, the clinical CT imaging feature ROI integrate density is closely associated 

with has_mir_10b, protein AF1q (MLLT11) for subtype 2, with neuroendocrine convertase 1 (NEC1) 

for subtype 3, with parathyroid hormone-related protein (PTHLH) and so on for subtype 1 (Figure 5B). 
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Figure 5: Identification of special molecules for the three subtypes. 

(A) Venn diagram showing special molecules of each subtype. (B) Venn diagram showing the 

correlation of special molecules of each subtype and clinical trait such as region of interest integrate 

density (ROI_IntD). 

4. Discussion 

In this work, the molecular subtypes of lung adenocarcinoma patients are distinguished by clustering 

method in data mining based on the gene expression data, long non-coding RNA data, microRNA data. 

Patient samples with similar gene characteristics are divided into the same subtype. Our results show that 

the three subtypes of lung adenocarcinoma patients are identified by the multi-omics data, which are not 

only different in molecules expression data, but also different in their survival status. Moreover, these 

molecules include up-regulated and down-regulated molecules. The significant difference is displayed 

between these three molecular subtypes, suggesting that different subtypes are regulated by different 

molecules. 

This study shows that the differential expressed genes are significantly enriched in biological 

processes including lung development, morphogenesis of an epithelium, receptor-mediated endocytosis 

and so on. The determination of genes that have key effects in different biological processes contributes 

to locating markers on specific genes, which improve the efficiency of detection and provide direction 

for the development of new targeted drugs. Clinical trials have also been implemented by genomic data-

driven targeted treatment of lung cancer. Effectiveness-related molecular markers can also be identified 

through the analysis of genomic data. In recent years, some genomic detection methods have been applied 

to cancer prediction, early diagnosis and specific treatment in order to accurately evaluate the cancer 

status [11]. These methods include gene expression detection, gene mutation detection, genome 

sequencing, epigenetic detection and so on. The multi-omics data of cancer need to apply new 

technologies of machine learning and data mining to accurately classify, diagnose, test drug sensitivity 

and recommend treatment strategies. Some appealing progress has been obtained in this field. Study has 

reported that 60% of lung cancers generally occur genomic variations, which is critical to the selection 

of specific treatment interventions [12]. At the same time, the molecular level of tumor diagnosis 

gradually challenges the traditional diagnosis based on tissue section. It is showed that about 11 gene 

mutations occur in each cancer sample through genome sequencing technology [13]. The identification 

of these mutations can pick out genes related effects and may promote new therapeutic targets in the 

future. The relative size sorting marker of gene expression value and the proteomics research are also 

used to identify and obtain lung cancer markers and types.  

Radiogenomics can be used to explore imaging biomarkers that can identify the genomics of cancer 

without the use of a biopsy in imaging genomics. Various technologies for processing high-dimensional 

data are used to create statistically notable correlations between computed tomography, magnetic 

resonance imaging and positron emission tomography imaging features and the genomics of cancer. 

WGCNA can assist the clinic doctor to set up a connection between clinic features and gene expressions 

so as to analyze both the endo-pathogenetic and exo-pathogenetic mechanisms of cancer. The 

radiogenomics approach has proven successful in determining the relationship between semantic image 

features and metagenes that represented classical molecular pathways, and it can contribute to the non-

invasive identification of molecular properties of non-small cell lung cancer [14]. It has shown the 

potential to link imaging features of non-small cell lung nodules in CT scans to predict survival by 

publicly available gene expression data [15]. Similar studies in other cancers have successfully 

determined much of the cancer genome from non-invasive imaging features [16]. In this study, the result 

showed that the ROI integrate density feature of CT image is strongly associated with molecule 
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expression-based subtype in lung adenocarcinoma patients. Besides, the area and volume features of ROI 

also is closely related with some molecules. Several differences are generated in determining the tumor 

boundary when different operators manually sketch the region of interest of CT image because the 

boundary between most lung tumor and surrounding lung tissue is vague, which result in the bias of the 

extraction and collection of imaging features. Moreover, the accuracy of image feature-based prediction 

is related to the number of features, different extracting methods and different classifiers. Radiogenomics 

combines a variety of information such as image-omics, genomics and proteomics to provide extensive 

biological characteristics of tumor and provide a wealth of data of the precision medicine. 

5. Conclusions 

The three molecular subtypes are classified by multi-omics data of lung adenocarcinoma. The 

characteristic molecules such as NEC1 for subtype 3, has_mir_10b for subtype 2, PTHLH for subtype 1 

and so on. Additionally, these molecules are strongly associated with the ROI integrate density of clinical 

CT imaging feature. 
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