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Abstract: Head-Related Transfer Function (HRTF) depicts the reflection and scattering effects of the 
environment and the human body on sound during the transmission of sound signals from the sound 
source to the human ear and contains a large amount of auditory cue information for auditory 
localization. Due to the high-dimensional complexity and nonlinear nature of the sample data of HRTF 
itself, it creates difficulties in analyzing the relationship between the auditory localization cues of HRTF 
and the spatial orientation and morphological features of the human body. The traditional low-
dimensional representation makes it difficult to effectively deal with the complex nonlinear relationships 
between multiple auditory cues in HRTF, resulting in performance degradation. To solve this problem, 
this study proposes a low-dimensional representation method for HRTF based on a deep convolutional 
autoencoder. The method considers that HRTF spectral features have the property of continuous 
variation in three-dimensional space and integrates the nonlinear relationships of full-space HRTF 
features by modeling the natural spatial attributes of the HRTF ensemble data. Firstly, the attention 
mechanism is introduced in the encoder, which solves the bias caused by mapping HRTF to a 3D tensor 
for convolution operation and mines the intrinsic features implied between the spatial orientations of 
HRTF neighborhoods and neighboring spectra, which improves the low-dimensional representation 
ability of the network. Secondly, the combination of dense connectivity and attention mechanism in the 
decoder according to the characteristics of different levels guarantees the effective delivery of low-
dimensional features. Experimental results on several publicly available HRTF datasets show that the 
proposed model outperforms traditional methods in the low-dimensional representation and 
reconstruction of HRTFs and realizes high-performance low-dimensional representation and 
reconstruction of HRTFs. 

Keywords: Head-related Transfer Functions, Convolutional Auto Encoder, Attention Mechanism, 
Spatial Audio 

1. Introduction 

Head-Related Transfer Function (HRTF) depicts sound's reflection and scattering effects by the 
environment and the human body while transmitting sound signals from the source to the human ear. It 
contains much information about auditory cues used for auditory localization. In many immersive 
multimedia applications, such as virtual reality, gaming, and spatial music[1, 2, 3], HRTF is applied to render 
three-dimensional audio accurately. However, HRTFs are highly personalized and closely related to 
human physiomorphological features. Using non-personalized HRTFs can lead to front-back confusion, 
up-down confusion, and inaccurate localization in auditory perception, thus affecting the rendering of 
3D audio. 

In 3D audio synthesis, personalized HRTFs are ideally required. Although experimental 
measurements are the most accurate way to obtain personalized HRTFs, they are more difficult to 
implement due to the need for complex equipment. Therefore, past research has focused on investigating 
the "mapping relationship" between a user's human morphological features and HRTFs and 
implementing a modeling approach from human morphological features to personalized HRTFs by 
establishing a mapping model between these two variables. 

HRTFs are continuous functions related to direction, distance, and frequency. Typically, they are 
stored as a set of Head-Related Impulse Response (HRIR) corresponding to a particular orientation, from 
which HRTFs are then obtained by Fourier transform.HRTFs are inherently high-dimensional, complex, 
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and nonlinear and are relatively large and complex datasets, typically consisting of hundreds of thousands 
of samples. This makes it difficult to analyze the relationship between the auditory localization cues of 
HRTF and the morphological features of the human body. Therefore, many low-dimensional 
representation models have been developed to simplify HRTF while retaining its features related to 
auditory localization. 

In recent years, low-dimensional representation methods for HRTF based on deep learning have 
become increasingly popular among researchers. One of the most popular is the AutoEncoder (AE) 
framework[4], such as the multilayer perceptron (MLP)-based autoencoder, which learns the feature 
representations of the input data through unsupervised learning and thus realizes the low-dimensional 
representation of HRTFs. In addition, since Convolutional Neural Network (CNN) have advantages in 
processing data with spatial structure, researchers have also attempted to apply CNN to HRTF data to 
extract a more representational low-dimensional representation of HRTFs. For example, Chen et al. 
trained self-encoders to reconstruct HRTFs along the horizontal plane[5]. In their approach, they 
represented HRTFs as a special kind of 2D image, where the combination of azimuth and frequency 
serves as the coordinate axis, and each pixel represents the amplitude of the spectrum. The relationship 
between neighboring HRTFs is learned by 2D convolution. 

The robustness and generalization ability of current deep learning-based low-dimensional 
representation models for HRTFs is limited and unsatisfactory. This limitation stems from the fact that 
although deep learning-based methods can better capture the nonlinear relationships between different 
spatial orientations of HRTFs, they tend to ignore the fact that the spatial distribution of HRTF sample 
data has the property of spatial inhomogeneity due to the constraints of data collection conditions. The 
feature extraction solutions based on convolutional neural networks are often oriented to problems with 
uniform data distribution, so using such solutions directly for HRTF may lead to cutting the feature 
relationships between the near-neighbor data samples, resulting in certain intrinsic features that are 
difficult to capture. 

To address the above problems, this paper proposes a low-dimensional representation model for 
HRTF based on a deep convolutional self-encoder and an attention mechanism. The method considers 
that the spectral features of HRTF in 3D space have the property of continuous variation with spatial 
orientation and starts from the natural spatial attributes of the HRTF ensemble data to model the nonlinear 
relationships of the full-space HRTF features as a whole. In the encoder, we design a module based on 
the attention mechanism, called the spectral space attention module(SSAM), which can help the encoder 
calculate the importance of each spectral channel and collect global information. In the decoder network, 
we introduce dense connections to realize the multilayer direct connection of low-dimensional features 
and screen the effective features through different attention mechanisms, which guarantees the effective 
delivery of low-dimensional features and improves the accuracy of low-dimensional reconstruction of 
the model. 

2. Proposed Method 

Most research on low-dimensional feature extraction of HRTF uses methods based on principal 
component analysis (PCA)[5, 6, 7]. However, such methods are difficult to effectively express the complex 
nonlinear relationships among low-dimensional features of HRTF[8]. For this reason, some scholars have 
proposed using CNN, LSTM, and other methods to study the low-dimensional expression of HRTF[9, 10]. 
HRTFs in a specific spatial range while ignoring the spatially similar correlation properties of HRTFs. 
Considering the above reasons, this paper proposes a low-dimensional feature expression model for 
HRTF based on a 3D convolutional self-encoder, and the overall structure is shown in Figure 1. The 
model incorporates the spatially proximate correlation property of HRTF into the examination at the 
same time can effectively express the complex nonlinear relationship among the low-dimensional 
features of HRTF. 
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Figure 1: Overall structure of the proposed network. 

2.1. Attention-Guided Encoder Network Design 

Owing to constraints in data acquisition conditions, the spatial distribution of HRTF sample data 
exhibits uneven characteristics, with data from specific spatial orientations even missing. Classical 
feature extraction schemes based on CNN typically aim at problems with uniform data distributions. 
Therefore, directly applying these solutions to HRTFs might sever the feature relationships between 
neighboring data samples, making it difficult to capture certain intrinsic features. Consequently, most 
studies employ spatial fine interpolation techniques on HRTF samples prior to low-dimensional 
representation to ensure that the spatial organizational structure of the sample data meets the processing 
requirements of CNNs. However, spatial interpolation increases data volume, leads to information 
redundancy, and introduces interpolation errors, degrading the model's performance. 

To address the issues above, this paper proposes an SSAM. By incorporating a hybrid attention 
module that combines spatial and channel attention into the encoder model for HRTF's low-dimensional 
representation, the model can assign higher weights to certain parts of the input data, thus better focusing 
on the critical information. 

In the design of SSAM, this paper adopts a serial form of channel and spatial attention mechanisms, 
as shown in Figure 2. The extracted feature maps in the encoder contain a wealth of information, such as 
the subtle differences in HRTF data or specific textures. However, not all features significantly contribute 
to the low-dimensional representation of HRTFs. Hence, by assigning different weights to different 
channel features, the channel attention mechanism effectively helps the model reduce the redundancy 
introduced by interpolation, allowing the model to focus more on those features that aid in the low-
dimensional representation of HRTFs. The spatial attention mechanism, on the other hand, concentrates 
on capturing spatial auditory localization cues from specific directions or locations. 
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Figure 2: Spectral Space Attention Module (SSAM). 

Specifically, the encoder network is divided into four distinct stages, each consisting of several 
SSAMs, with a ratio of 1:1:3:1 in this paper. Each SSAM is divided into a main branch and a residual 
branch. The main branch comprises depth-wise convolution, point-wise convolution, layer normalization, 
and an activation function. In the main branch, the input features are first processed using depth-wise 
convolution with a kernel size 7. To maintain the consistency in the feature input and output size, two 
point-wise convolutions are used after the depth-wise convolution to restore the channel count, resulting 
in the feature x′ , as shown in Equation (1). 

7 7 7( ( ( ( ( )))))pw pw dwx f GELU f LN f x× ×′ =                         (1) 

In this context, dw ( )f ⋅ represents the depth-wise convolution operation, ( )LN ⋅ denotes the layer 
normalization operation, ( )pwf ⋅ signifies the point-wise convolution operation, and ( )GELU ⋅ indicates 
the activation function. 

In the residual branch, the input features are processed through the Channel Attention Module (CAM) 
and Spatial Attention Module (SAM) to obtain the feature x′′ , as illustrated in Equation (2). 
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In this context, cM  and sM represent the channel attention map and spatial attention map, 
respectively. The symbol σ  denotes the sigmoid activation function, and ( )MLP ⋅  stands for a multi-
layer perceptron with one hidden layer. ( )AvgPool ⋅  and ( )MaxPool ⋅  refer to average pooling and 
max pooling operations, respectively. The term ( )f ⋅  signifies a standard convolution operation, and 
⊗  indicates element-wise multiplication. Ultimately, the feature obtained through the encoder module 
is represented as ( )SSAM x x x′ ′′= + . 
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To facilitate downsampling between different stages, the model incorporates a convolution operation 
with a kernel size of 2 and a stride of 2 between these stages. Additionally, layer normalization is applied 
both before and after downsampling to maintain the model's stability. After undergoing downsampling 
and feature extraction through four stages, a low-dimensional feature vector of size 2592 is ultimately 
obtained. 

2.2. Attention Dense Decoder Network Design 
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Figure 3: Multi-Scale Attention Dense Decoder Network(MSADN) 

In the specific application of binaural three-dimensional audio, performing a high-dimensional 
reconstruction of the low-dimensional representation of HRTF is necessary. The key to ensuring 
reconstruction accuracy is effectively utilizing the low-dimensional characteristics of HRTF.  

For the classical autoencoder model based on U-Net[11], improved high-dimensional reconstruction 
can be achieved by establishing feature connections between the encoder and the decoder, such as the 
mapping information of the max-pooling layer. However, in the practical application of HRTF, the 
features of the encoder are inaccessible. In this study, dense connections[12] were introduced between the 
layers of the decoder to enhance the decoder's ability to interpret low-dimensional features. 

The dense connections among features in the decoder may lead to information redundancy and 
obscure critical feature information. Therefore, addressing how to ensure the transmission of more 
valuable feature information is a focal issue. In this research, the effectiveness of feature transmission in 
dense connections is ensured by employing a channel attention mechanism for high-level features and a 
spatial attention mechanism for low-level features based on the characteristics of different layers of 
features. 

Similar to the design of the encoder, the decoder is also composed of four stages, each consisting of 
a densely connected convolutional module, attention mechanisms, and an upsampling layer, as shown in 
Figure 3. Through the restoration by the decoder, the reconstructed HRTF of size 48×144×96, denoted 
as Ĥ , is finally obtained. 

2.3. Loss Function 

This paper employs the Minimum Absolute Error (MAE) to calculate the difference between the 
reconstructed HRTF and the original HRTF, with the loss calculation as shown in Equation (3). 
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In this Equation, ( ), mH fϕ ϑ  represents the amplitude value at frequency mf  of the HRTF 

measured at spatial orientation ( ),  ϕ ϑ . ( ),
ˆ

mH fϕ ϑ  represents the amplitude value of the 
corresponding frequency reconstructed from the low-dimensional features. 

3. Experiment and Analysis of Results 

3.1. Dataset and Data Preprocessing 

In this section, the HRTFs employed are sourced from the Spatially Oriented Format for Acoustics 
(SOFA) database[13]. The model proposed in this paper will be trained on the ARI dataset[14] and evaluated 
on the validation set of ARI, as well as the CIPIC[15], HUTUBS[16, 17], and BiLi[18] datasets, with detailed 
information presented in Table 1. 

Table 1: Detailed information on the HRTF dataset. 

Database Number of Subjects Number of Directions Sampling Rate 

ARI 220 1550 48000 

CIPIC 45 1250 44100 

HUTUBS 96 440 44100 

BiLi 52 1680 96000 

Due to the varying spatial distributions of HRTF samples provided by different HRTF databases, 
spatial fine interpolation of HRTF data was initially performed to ensure a consistent spatial distribution 
of HRTF samples in the experiments. This process enabled the HRTF samples to uniformly cover a 
spatial orientation within the horizontal azimuth from 0° to 360° and the vertical azimuth from -30° to 
87.5° at 2.5° intervals. This coverage includes 48 vertical azimuths and 144 horizontal azimuths. Each 
HRTF data point comprises 96 frequency values, corresponding to a frequency range from 200Hz to 
18kHz, covering the normal hearing range for adults. The HRTF data for all subjects were organized into 
a three-dimensional tensor of 48×144×96 and normalized to be expressed as 64-bit double-precision 
floating-point numbers. 

3.2. Experimental Environment 

The experiments were conducted on a Ubuntu 20.04 operating system, an NVIDIA A100 Tensor Core 
GPU, and a device configured with the Pytorch deep learning framework. During the training process, 
the batch size was set to 4, and the epoch was chosen to be 200. The gradient descent optimization 
algorithm used was Adam, with an initial learning rate set at 0.001. An exponential decay strategy was 
utilized to adjust the learning rate to ensure more stable and rapid network convergence. The 
multiplicative factor gamma for the learning rate in each epoch was set to 0.95. 

3.3. Evaluation Metrics 

To quantitatively assess the low-dimensional representation performance of different methods for 
HRTF, this paper employs the Average Spectral Distortion (ASD) between measured HRTF and 
reconstructed HRTF as the evaluation metric for HRTF reconstruction accuracy. For a given spatial 
direction ( ),  ϕ ϑ , the spectral distortion (SD) between the measured HRTF and the reconstructed HRTF 
is calculated as shown in Equation (4). 
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where ( ), mH fϕ ϑ  represents the amplitude value of the measured HRTF at spatial orientation 

( ),  ϕ ϑ  corresponding to frequency mf , and ( ),
ˆ

mH fϕ ϑ  represents the amplitude value of the 
corresponding frequency reconstructed from the low-dimensional features. The average spectral 
distortion ASD for D spatial orientations for N test samples can be expressed as 

,
1 1

1 1N D

n d
n d

ASD SD
N D= =

 
=  

 
∑ ∑ . Where ,n dSD  is the spectral distortion for the dth spatial orientation for 

the nth sample. 

3.4. Experiment and Results Analysis 

The proposed method in this paper is compared with a principal component analysis (PCA)-based 
model[19, 20], which is commonly used in many HRTF-based applications and is often considered a 
baseline in related research. 

 
Figure 4: Comparison of the reconstruction effects of different HRTF low-dimensional representation 
models (azimuthal 0° is directly in front, 90° is ipsilateral to the ear, and 270° is contralateral to the 

ear). 

The reconstruction accuracy of the PCA model is closely related to the number of selected principal 
components (PCs). Generally, the higher the number of selected PCs, the higher the reconstruction 
accuracy of the PCA model. However, this also leads to retaining more low-dimensional data, thereby 
reducing the compression capability of the original data. Therefore, in the comparative experiments with 
the PCA method, we followed the algorithm in reference[7] to perform PCA analysis on the HRTF samples 
in the training set, obtaining principal component information that expresses 82%, 90%, and 95% of the 
overall variance, respectively. Subsequently, using the obtained principal component information, we 
examined the HRTF samples in the ARI dataset, analyzing the low-dimensional data quantity and high-
dimensional reconstruction accuracy achievable under different principal component conditions. 
Additionally, before any training procedures, the test subjects were separated from the training set to 
ensure the reliability of the experimental results. 
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Table 2: Comparative results of different low dimensional expression models. 

Method Cumulative Variance 

Percentage of Low-

Dimensional Features 

Size of Low-

Dimensional Features 

Compression 

Ratio 

Average Spectral 

Distortion 

PCA (3 PCs) 82.56% 20,736 3.12% 5.38 dB 

PCA (5 PCs) 90.48% 34,560 5.20% 5.16 dB 

PCA (8 PCs) 95.38% 55,296 8.33% 3.08 dB 

Ours - 2592 0.39% 1.56 dB 

Table 2 presents a comparison between the proposed model and PCA-based models with different 
numbers of principal components. Experimental results on the validation set of the ARI database show 
that the proposed model achieves an average spectral distortion of 1.56dB with only 2592 low-
dimensional features and a compression ratio of 0.39%. In contrast, even with eight principal components, 
PCA only achieves an average spectral distortion of 3.08dB at a compression ratio of 8.33%. The 
experiments demonstrate that the proposed method outperforms PCA on the ARI database by 
approximately 49.35%. 

 
Figure 5: Comparison of the reconstruction effects of different HRTF low-dimensional representation 

models (upper median sagittal plane, lower ear plane). 

For a detailed analysis of the reconstruction quality of HRTF by the convolutional autoencoder under 
different spatial orientation conditions, this paper compares the spectral curves of the reconstructed 
HRTF with the original HRTF. Diffuse field equalization is applied to remove non-spatial components in 
HRTF for clearer observation of the directional characteristics of HRTF. Figure 4 illustrates the results 
of processing the left ear HRTF of object 10 in the ARI database using different low-dimensional 
representation methods. 

It can be observed that the PCA-based model performs well in reconstructing the most prominent 
peaks and valleys in the original HRTF spectrum. However, in other parts, it tends to be smooth and lacks 
detailed information in the HRTF. This may be because PCA focuses more on major features with 
significant influence, neglecting subtle features with less impact on the overall characteristics. 

In contrast, the proposed model successfully reconstructs the most prominent peaks and valleys in 
the original HRTF and preserves more detailed information, as shown more clearly in Figure 5. 

By mapping Head-Related Transfer Functions (HRTFs) onto the ear plane and mid-sagittal plane, it 
can be observed that the HRTFs generated by the model proposed in this paper preserve more spectral 
peaks, resembling "islands." While there are still some errors in amplitude compared to the original 
HRTFs, this may not necessarily reflect proportional losses in auditory localization performance. 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 2: 1-11, DOI: 10.25236/AJCIS.2024.070201 

Published by Francis Academic Press, UK 
-9- 

Existing studies suggest that fluctuations in the spectral amplitude of HRTFs have a limited impact on 
human auditory perception. In contrast, the spatial relationships between spectral peaks and valleys in 
HRTFs, as they vary with the spatial orientation of sound sources, play a more crucial role in spatial 
localization perception. 

 
Figure 6: Reconstruction error distribution of HRTF under different spatial orientation conditions. 

To analyze the reconstruction errors of the proposed method under different spatial orientations, this 
paper compares and analyzes the reconstruction errors of the PCA-based low-dimensional representation 
model (5PCs) and the proposed method at four crucial auditory orientations (mid-sagittal plane, 
ipsilateral sagittal plane, contralateral sagittal plane, and ear plane). As illustrated in Figure 6, on the 
ipsilateral sagittal plane within the elevation angle range of -30° to 87.5°, the average spectral distortion 
is 0.61dB. However, on the contralateral sagittal plane, the average spectral distortion is 2.66dB. It can 
be observed that reconstruction errors consistently occur on the contralateral side of the ears. This may 
be attributed to the fact that the HRTF on the contralateral side of the ears has fewer energy components 
due to the obstructive effect of the head, leading even small errors to result in significant distortion, 
making it more challenging to accurately express its intrinsic characteristics. Particularly notable is the 
pronounced effect of reconstruction errors on the model based on principal components, as principal 
component analysis tends to preserve features with greater variance, making it difficult to precisely 
express features on the contralateral side of the ears. 

The deep learning approach has demonstrated unique advantages in the low-dimensional 
representation of HRTFs, particularly in nonlinear expression and spatial information capture. However, 
some currently proposed methods are trained on small-scale datasets (approximately dozens of subjects), 
posing a risk of overfitting. This is because their low-dimensional representations are limited by specific 
spatial sampling schemes in the HRTF training data, making it challenging to generalize across datasets 
with different sampling schemes. To further validate the generality of the proposed model, this section 
conducts low-dimensional representation and reconstruction of HRTFs on datasets with different 
sampling schemes, posing a challenge to the model's generalizability. 

Table 3: Performance of the proposed model on different datasets. 

Dataset Average Spectral Distortion 

ARI 1.53 dB 

CIPIC 1.96 dB 

HUTUBS 2.27 dB 

BiLi 3.19 dB 

Firstly, the methods described in Section 3.1 were applied to preprocess the ARI, CIPIC, HUTUBS, 
and BiLi databases to ensure compliance with the model's input requirements. Subsequently, the model 
was trained on the ARI dataset and evaluated on the validation sets of CIPIC, HUTUBS, BiLi, and ARI 
for its reconstruction ability, as shown in Table 3. 

The model performed optimally on the ARI validation set, with an average spectral distortion of only 
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1.53 dB. This is because the model was trained on the ARI dataset, and deep learning models perform 
better on similar datasets. On the CIPIC and HUTUBS datasets, the average spectral distortion was 
slightly higher at 1.96dB and 2.27dB, respectively, indicating a slight decrease in performance. This may 
be attributed to the similarity in sampling rates between the CIPIC and HUTUBS datasets, with the CIPIC 
dataset having more sampling points and experiencing less interpolation influence, resulting in better 
performance. The BiLi dataset exhibited the poorest results, with an average spectral distortion reaching 
3.19 dB. This is likely due to significant sampling rate differences and the lack of preprocessing for 
varying sampling rates, ultimately leading to suboptimal model performance. 

Table 4: This caption has one line so it is centered. 

Encoder Attention 
Module 

Decoder Attention 
Module 

Low-Dimensional 
Feature Size 

Average Spectral 
Distortion 

- - 7796 1.63 dB 

- - 2592 1.77 dB 

√ - 2592 1.59 dB 

√ √ 2592 1.53 dB 

Finally, the paper evaluated the role of attention mechanisms in this model, as shown in Table 4. 
According to the data in the table, it is evident that when attempting to encode HRTF into a smaller space, 
the reconstruction error increased by 0.11 dB. With the addition of an attention module in the encoder, 
the model's low-dimensional representation capability was enhanced, and spectral distortion decreased 
by 0.18 dB, indicating improved learning of correlations between certain points in space. When both 
encoder and decoder attention modules were employed simultaneously, the average spectral distortion 
was further reduced to 1.53 dB. Compared to the model without any attention mechanisms, this 
represented a decrease of 0.24 dB in average spectral distortion. 

4. Conclusions 

This paper introduces a neural network model for the low-dimensional representation and 
reconstruction of HRTFs. The network utilizes an attention-guided feature encoder model to address 
biases introduced by mapping HRTFs to a three-dimensional tensor for convolutional operations. It 
explores the inherent features in the adjacent spatial orientations and spectral frequencies of HRTFs, 
enhancing the network's capability for low-dimensional representation. Additionally, this paper 
introduces dense connections in the decoder network to establish direct connections between layers of 
low-dimensional features. Considering the characteristics of features at different levels, effective features 
are selectively filtered, ensuring the efficient transmission of low-dimensional features and improving 
the accuracy of the model's low-dimensional reconstruction. 

Experimental results on the ARI datasets demonstrate that the average spectral distortion can be 
reduced to as low as 1.53 dB compared to classical PCA models. 

References  

[1] TECHNOLOGIES O. Facemisc. 3d audio spatialization. [EB]. 2020. https://developer.oculus. 
com/resources/audio-intro-spatialization/ 
[2] STEAM A. A benchmark in immersive audio solutions for games and vr. [EB]. 2020. 
https://valvesoftware.github.io/steam-audio/ 
[3] MICROSOFT. Spatial sound. [EB]. 2020. https://learn.microsoft.com/en-us/windows/win32/ 
coreaudio/ spatial-sound 
[4] HOGG A O, JENKINS M, LIU H, et al. HRTF upsampling with a generative adversarial network 
using a gnomonic equiangular projection [J]. arXiv preprint arXiv: 230605812, 2023. 
[5] Chen T Y, Kuo T H, Chi T S. Autoencoding HRTFs for DNN based HRTF personalization using 
anthropometric features[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP). IEEE, 2019: 271-275. 
[6] Hu H, Zhou L, Ma H, et al. HRTF personalization based on artificial neural network in individual 
virtual auditory space [J]. Applied Acoustics, 2008, 69(2): 163-172. 
[7] Meng L, Wang X, Chen W, et al. Individualization of head related transfer functions based on radial 
basis function neural network[C]//2018 IEEE International Conference on Multimedia and Expo (ICME). 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 2: 1-11, DOI: 10.25236/AJCIS.2024.070201 

Published by Francis Academic Press, UK 
-11- 

IEEE, 2018: 1-6. 
[8] Chun C J, Moon J M, Lee G W, et al. Deep neural network based HRTF personalization using 
anthropometric measurements[C]//Audio Engineering Society Convention 143. Audio Engineering 
Society, 2017. 
[9] Schmidhuber J. Deep learning in neural networks: An overview[J]. Neural networks, 2015, 61: 85-
117. 
[10] Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 
349(6245): 255-260. 
[11] Huang H, Lin L, Tong R, et al. Unet 3+: A full-scale connected unet for medical image 
segmentation[C]//ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal 
processing (ICASSP). IEEE, 2020: 1055-1059. 
[12] Iandola F, Moskewicz M, Karayev S, et al. Densenet: Implementing efficient convnet descriptor 
pyramids [J]. arXiv preprint arXiv:14041869, 2014. 
[13] Majdak P, Noisternig M, Wierstorf H, et al. SOFA (Spatially Oriented Format for Acoustics) [EB]. 
Obtenido de https://www. sofaconventions. org. 2017 
[14] Austrian Academy of Sciences. Ari HRTF database[EB]. [2020-10-11]. http://www. kfs.oeaw. 
ac.at/hrtf. 
[15] Algazi V R, Duda R O, Thompson D M, et al. The cipic hrtf database[C]//Proceedings of the 2001 
IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No. 01TH8575). 
IEEE, 2001: 99-102. 
[16] Brinkmann F, Dinakaran M, Pelzer R, et al. The hutubs hrtf database[J]. DOI, 2019, 10: 14279. 
[17] Brinkmann F, Dinakaran M, Pelzer R, et al. A cross-evaluated database of measured and simulated 
HRTFs including 3D head meshes, anthropometric features, and headphone impulse responses[J]. 
Journal of the Audio Engineering Society, 2019, 67(9): 705-718. 
[18] Rugeles Ospina F, Emerit M, Katz B F G. The three-dimensional morphological database for spatial 
hearing research of the BiLi project[C]//Proceedings of Meetings on Acoustics. AIP Publishing, 2015, 
23(1). 
[19] Zhang M, Qiao Y, Wu X, et al. Distance-dependent modeling of head-related transfer 
functions[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP). IEEE, 2019: 276-280. 
[20] Lu D, Zeng X, Guo X, et al. Personalization of head-related transfer function based on sparse 
principle component analysis and sparse representation of 3D anthropometric parameters[J]. Acoustics 
Australia, 2020, 48: 49-58. 


	2.1. Attention-Guided Encoder Network Design
	2.2. Attention Dense Decoder Network Design
	2.3. Loss Function
	3.1. Dataset and Data Preprocessing
	3.2. Experimental Environment
	3.3. Evaluation Metrics
	3.4. Experiment and Results Analysis

