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Abstract: In probability theory, the convergence of dependent random variables is an extremely crucial 
concept, Complete moment convergence plays an important role in complete convergence, as it 
provides a more precise characterization of the convergence rate by incorporating moment conditions. 
Many scholars have conducted research on classical probability limit theory and achieved significant 
results. Due to the uncertainty in actual events, limit theory in classical probability spaces is no longer 
applicable. Therefore, in recent years, the limit theory on nonadditive probabilities or nonlinear 
expectations is a challenging problem that has attracted many researchers, many scholars have 
extended their research to sublinear expectation space. In this paper, the weighted sums of Extended 
Negatively Dependent random variables in the sublinear expectation space are studied. Through 
making full use of the characteristics of sublinear expectation, some inequalities and local Lipschitz 
functions, the sufficient conditions for their complete moment convergence are explored. Some 
conclusions in reference twelve are extended by it from the classical probability spaces to the sublinear 
expectations space, so some conclusions in the literature are improved. 

Keywords: Extended Negatively Dependence; Complete Moment Convergence; Weighted Sum; 
Sublinear Expectation 

1. Introduction 

Limit theory in probability theory is a research focus. It can only study deterministic models in 
classical probability space, but in real life, many things are uncertain such as risk measurement, finance, 
and insurance. Since Peng Shige proposed the concept of sublinear expectation, this uncertainty 
problem has been solved [1]. It has effectively addressed uncertainty in probability. Since then, many 
scholars have begun to study it in sublinear expectation space and have achieved many results, for 
example, Li-Xin Zhang has obtained the law of iterated logarithm and the strong law of large numbers 
[2]. Shu-ting Pan studied several types of convergence [3]. Min-Zhou Xu focused negatively dependent 
random variables and obtained the conditions for their complete moment convergence [4 - 5]. Complete 
convergence and complete moment convergence are crucial areas on probability limit theory [6-9]. The 
concept of complete convergence was first proposed by MSU et al [10], and CHOW introduced the 
concept of complete moment convergence on the basis of complete convergence [11]. Subsequently, a 
great number of scholars have studied it in classical probability spaces. For example, Yan-Chun Yi have 
obtained the necessary and sufficient conditions of complete moment convergence by taking the 
weighted sums of Extended Negatively Dependent (END) random variable sequences as the research 
object [12]. In this paper, the complete moment convergence for weighted sums of END random 
variables under sublinear expectation is examined, aiming to establish the sufficient conditions for this 
convergence. Some of the conclusions in reference [12] are improved in the sublinear expectation 
space.  

2. Preliminary Knowledge 

2.1 The Relevant Definitions and Properties of Sublinear Expectations 

In this article, we utilize the theoretical knowledge proposed by Professor Peng Shige[1]. Suppose 
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that H is a linear space which is consist of all real functions defined on a measurable space ( ), FΩ
.It 

makes ( )1, , n Hϕ ξ ξ ∈

for any 1, , n Hξ ξ ∈ , ϕ belong to the linear space consisting of local 

Lipschitz functions denoted as , ( )n
l lipC R

, and it satisfies : 

( ) ( ) ( )( )1 , ,m m ns t C s t s t s t Rϕ ϕ− ≤ + + − ∀ ∈                 

For some Ν∈> mC ,0 , relying on ϕ . 

Definition 2.1[1] [ ]: ,E H R→ = −∞ +∞  is defined as a sublinear expectation, if for

, Hξ η∀ ∈ , the following conditions are satisfied:  

(1) Monotonicity: whenξ η≤ , we have [ ] [ ]E Eξ η≤ ; 

(2) Constant invariance: [ ]E C C= , for all C R∈ ; 

(3) Secondary additivity: [ ] [ ] [ ]E E Eξ η ξ η+ ≤ + ; 

(4) Homogeneity: [ ] [ ], 0E Eλξ λ ξ λ= ≥ . 

The ( ), ,H EΩ is called sublinear expectation space. For a given sublinear expectation E , We 

define the conjugate expectation of 𝐸𝐸 as ( ) ( ) ,E Hε ξ ξ ξ= − − ∀ ∈ . 

Definition 2.2[2] Assume FΓ ⊂ , the function [ ]: 0,1V Γ→  is said to capacity, if the following 
conditions are met: 

(1) ( ) ( )0, 1V Vφ = Ω = ; 

(2) When nξ ξ↑ , we have ( ) ( )nV Vξ ξ↑ ;when nξ ξ↓ , we have ( ) ( )nV Vξ ξ↓ , where

, nξ ξ ∈Γ ; 

(3) When ,ξ η⊂ we have ( ) ( ) ,V Vξ η≤ ,ξ η∀ ∈Γ . 

If for ( )
11

,i i i
ii

A V A V A
∞ ∞

==

 
∈Γ ≤ 

 
∑

, then V is said to have additivity several times. 

Definition 2.3 [2] Choquet Integral ( ) ( ) ( )( )0

0
1VC V s ds V s dsξ ξ ξ

+∞

−∞
= ≥ + ≥ −∫ ∫ . 

Definition 2.4[2] In sublinear expected space ( ), ,H EΩ , if there exists a constant 1h ≥ , such 

that ( ) ( )( )
1 1

, 1
n n

i i i i
i i

E h E nψ ξ ψ ξ
= =

   ≤ ≥    
∏ ∏ , where ( ),i l lipC Rψ ∈ is a non-negative function 

and neither decreasing nor increasing, then we call{ }, 1i iξ ≥ a sequence of Extended Negatively 
Dependent (Abbreviated as END) random variables.  

2.2 Lemmas 

When proving the main conclusion, the following lemmas are needed. 

Lemma2.1 [3] (1) rC inequality: Given a column of random variables 1 2, , , nη η η in ( ), ,H EΩ , 
the following inequality holds: for every positive number r ,  
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{ }1 2 1 2
r r r r

n r nE C E E Eη η η η η η       + + + ≤ + + +         ,          

Where 1

1 0 1
1r r

r
C

n r−

< ≤
=  >

. 

(2) Markov-inequality: For ( ) ( )
, , 0, 0

q

q

E
H V s s q

s

ξ
ξ ξ∀ ∈ ≥ ≤ ∀ > > . 

(3) Jesen-inequality: If ( )f x is a convex function which is defined on R , suppose ( )E ξ ,  

( )E f ξ   are finite, then ( ) ( )( )E f f Eξ ξ≥   .  

Lemma2.2 Suppose there is a triangular array of random variables { },1 1ij i j iξ ≤ ≤ ≤， ,  

Which is defined on sublinear expected space ( ), ,H EΩ . Let 0τ > , { }, 1ia i ≥ , { }, 1ib i ≥ be 

a sequence of positive numbers. If for every 0ε > ,  

1
1

1

1 1
maxi

i

s
b V dxij i

s i j
a x τξ ε

∞ ∞

=

 
 
  < ∞
 ≤ ≤ = 
 

>∑ ∑∫  .               

Then for every 0ε > ,  

11 1
max

s

i i ij i
s ii j

b a E a
τ

τ ξ ε
∞

−

≤ ≤= = +

  − < ∞ 
  

∑ ∑ .                

Proof: Let 0ε > be given, note that 

1 1

1 1

1 1
2maxi

i

s
b V dxij i

s i j
a x τξ ε

∞∞

=

 
 − ∞ >
 ≤ ≤ = 
 

>∑ ∑∫                    

2

1
1

1 1

1 1
2maxi

i

s
b V dxij i

s i j
a x

τ τξ ε
∞

=

 
 − ≥
 ≤ ≤ = 
 

>∑ ∑∫                   

2

1
1 1 1

maxi
i

s
b V dxij i

s i j
a

τ

ξ ε
∞

=

 
 
 ≥
 ≤ ≤ = 
 

>∑ ∑∫                        

( )
11 1

2 1 max
s

i ij i
s ii j

b V aτ ξ ε
∞

≤ ≤= =

 
= − >  

 
∑ ∑                    
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Thus, we have  

11 1
max

s

i i ij i
s ii j

b a E a
τ

τ ξ ε
∞

−

≤ ≤= = +

  − 
  

∑ ∑                          

0
1

1

1 1
maxi i

i

s
b a V dxij i

s i j
a xτ τξ ε

∞ ∞−

=

 
 
 =
 ≤ ≤ = 
 

− >∑ ∑∫                   

( )

0
1

1

1 1
maxia

i i
i

s
b a V dxij i

s i j
a x

τετ τξ ε
∞

−

=

 
 
 =
 ≤ ≤ = 
 

− >∑ ∑∫                

( )1

1

1 1
max

i
i i a

i

s
b a V dxij i

s i j
a xτ

τ

ε

τξ ε
∞ ∞−

=

 
 
 +
 ≤ ≤ = 
 

− >∑ ∑∫                

( )11 1 1

1

1 1
max max

i

s

i ij i i i as ii j i

s
b V a b a V dxij

s i j
xτ

τ τ

ε

τε ξ ε ξ
∞ ∞ ∞−

≤ ≤= = =

 
  
 ≤ > +      ≤ ≤ = 
 

>∑ ∑ ∑ ∑∫      

11 1 1 1

1

1 1
max max

s

i ij i i
s ii j i

s
bV a b V dxij i

s i j
a xτ τ τε ξ ε ε ξ ε

∞∞ ∞

≤ ≤= = =

 
  
 = > + < ∞      ≤ ≤ = 
 

>∑ ∑ ∑ ∑∫  

3. Main Results 

Theorem Let{ }, , 1j jξ ξ ≥  be a sequence of END random variables in ( ), ,H EΩ satisfying

( ) 0jE ξ = and ( ) ( ) , 0, 1jV s MV s s jξ ξ> ≤ > ∀ ≥ ≥ , where 0M > is a constant. We not 

only assume that 

( ) ( ){ } ( )1, 0, max 0, 1 1 , max 1, 1pα θ θ α β θ> > > − − > − −               

But also assume that 

( ) ( )2 1 1 2p θβ β< + +  and ( ) ( ){ }max 1, 3 2 [2 1 ]α θ β θβ> − + + , Where 0.5β > − . 

We denote ( )1p α θ− +  as ρ .Suppose that there is a triangular array of constant numbers 

( ){ }1 ,1 ,1p
mj mjA C j m m j mθββ − += ≤ ≤ ≤ that satisfies mjC C≤ for any 1 ,1m j m≤ ≤ ≤ , here

0C > . 
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If 

( ) ( )

( ) ( )

{ }1 max 1, 1 1
0 1

1 1

for
for

p p for

ρ θ θβ θ β ρ
τ ρ β ρ

ρ θ θβ β β ρ

− + − − < < −
< < =−
 + − + − >−

    (1) 

And 

( ) ( )

( )
( ) ( )

{ }
1

1

max 1, 1 1
log 1 1

1

V

V

p p
V

C for
C for

forC

ρ θ θβ

ρ

ρ θ θβ β

ξ θ β ρ
ξ ξ β ρ

β ρξ

− +

+ − + −

 < ∞ − − < < − + < ∞ =−
 >−

   (2) 

Then for every 0ε > , 2

11 1
max

h

mj j
h mm j

m E A
τ

α ξ ε
∞

−

≤ ≤= = +

  − < ∞ 
  

∑ ∑  

Proof By the 𝐶𝐶𝑟𝑟 inequation and known conditions(1)(2), we have for every 1m ≥ , every 0ε > ,  

1 1
max

h

mj j
h m j

E A
τ

ξ ε
≤ ≤ = +

  − < ∞ 
  

∑ .                        

Therefore, to prove the theorem holds, it only needs to be proven for sufficiently large integers 0m̂ ,  

0

2

1ˆ 1
max

h

mj j
h mm m j

m E A
τ

α ξ ε
∞

−

≤ ≤= = +

  − < ∞ 
  

∑ ∑  for all 0ε >  . 

Applying Lemma2.2 now, it is sufficient to prove 

0

2 1

1 1ˆ 1
max

h

mj j
h mm m j

I m V A t dtα τξ ε
∞ ∞−

≤ ≤= =

 
= > < ∞  

 
∑ ∑∫ for all 0ε > . 

Since mj mj mjA A A+ −= − , thus, we may assume that 0mjA > .Given any 0ε > , we choose some 

numbers as follow: 0 1q< < , some small 0σ > , large integer 1N ≥ , and stipulate that, for all 
1 1m j m≤ ≤ ≤， , and all 1t ≥ ,  

( ) ( ) ( ) ( )1,t q q q q q
mj mj j mj j mj j mj jm t I A m t A I A m t m t I A m tσ τ σ τ σ τ σ τ σ τξ ξ ξ ξ ξ− − − − −= − < − + ≤ + >   

( ) ( ) ( )( )2, 1 5t q q
mj mj j mj jA m t I m t A t Nσ τ σ τ τξ ξ ξ ε− −= − ≤ < ,            

( ) ( ) ( )( )3, 1 5t q
mj mj j mj jA m t I A t Nσ τ τξ ξ ξ ε−= − > ,                  

( ) ( ) ( )( )4, 1 5t q q
mj mj j mj jA m t I t N A m tσ τ τ σ τξ ξ ε ξ− −= − ≤ < − ,               

( ) ( ) ( )( )5, 1 5t q
mj mj j mj jA m t I A t Nσ τ τξ ξ ξ ε−= + < −                     

Then 
0

2 1

1 1ˆ 1
max

h

mj j
h mm m j

I m V A t dtα τξ ε
∞ ∞−

≤ ≤= =

 
= >  

 
∑ ∑∫                  

( )

0

5
,2 1

1 2 3 4 51 1ˆ1 1
5 :max

h
l t

mj
h ml m m j

m V t dt I I I I Iα τξ ε
∞ ∞−

≤ ≤= = =

 
≤ > = + + + +  

 
∑ ∑ ∑∫        

Therefore, as long as we prove lI < ∞ for 1, 2,3, 4,5l = , then I < ∞ is proven. 
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For 1I , by ( ) 0 ( 1)kE kξ = ≥ and known condition (2), we have  

( )1,

1 1
supmax

h
t

mj
h m j

Eξ
≤ ≤ =

∑                                

( )

1
1 1

1

1

1

1
1 1

1

1 12 max 1,

12

1
2

m

mj j
j

m

mj j
j

p pm
p p

mj j
j

m E A for

m E A for

form E A

ρ θ ρ θλ
θβ θβ

ρλ ρ

ρ θ ρ θλ
θβ β θβ β

ξ β
θ ρ

ξ β
ρ

βξ ρ

 − −− +  +

=

−

=

 − + − +− + −  + −

=


  − − < < −   


≤ = −



> −


∑

∑

∑

    

( )

( ) ( )

( )

1 1
1

1 1

1 1
1

1 1max 1,

1log

1
p

p

for
Cm

Cm n for

Cm for

ρ θα σ
θβ

α σ ρ

ρ θα σ
θβ β

β
θ ρ

β
ρ

β
ρ

 −
− − + − + 

− − + −

 + −
− − + − + − 

 − − < < − 
 


≤ = −




> −

          

Choosing small 0σ >  such that max , , 1 1
1 1

p
p

ρ θ ρ θσ ρ α
θβ θβ β

 − + −
⋅ − < − + + − 

,  

We get ( )1,

1 1
sup 0maxlim

h
t

mj
m h m j

Eξ
→∞ ≤ ≤ =

=∑  . 

Therefore, if  

( ) ( )( )
0

1, 1,2 1

1 1ˆ 1
10max

h
t t

mj mj
h mm m j

m V E t dtα τξ ξ ε
∞ ∞−

≤ ≤= =

 
− > < ∞  

 
∑ ∑∫ is proven,  

Then 1I < ∞ is proven. 

Chooseγ  such that 

( ) ( ) ( ) ( )

( )

2 2 2
2, , , , , 0 2 ,

1 1 1 2
max

2 1
2(1 ) (1 2 ) 2

p p p
I

q p
p

I
p

ρ θ ρ θ ρ θα τ θ
σ θβ θβ β θ

γ
ρ θ

β
θβ β

+ − + − + − 
< < − + + − − >  

+ −   > −  + − +   

    

By using lemma 2.1and2.2, we can obtain 

( ) ( )( )
0

1, 1,2 1

1 1ˆ 1
10max

h
t t

mj mj
h mm m j

m V E t dtα τξ ξ ε
∞ ∞−

≤ ≤= =

 
− >  

 
∑ ∑∫                   

( ) ( ) ( ) ( ) ( )( )
0

2
21, 1, 1, 1,2

1ˆ 1 1
log

m m
t t t t

mj mj mj mj
m m j j

C m m t E E E E dt
γγ γγα τ ξ ξ ξ ξ

∞ −∞−

= = =

   ≤ − + −  
   

∑ ∑ ∑∫      



Academic Journal of Mathematical Sciences 
ISSN 2616-5805 Vol. 6, Issue 2: 102-112, DOI: 10.25236/AJMS.2025.060214 

Published by Francis Academic Press, UK 
-108- 

( ) ( ) ( ) ( )( ) 221, 1,2 2

1 1
1 1 1 1

log log
m m n

t t
mj mj

m j j i
C m m t E dt C m m t E dt

γ
γ γγγ γα ατ τξ ξ

∞ − −∞ ∞− −

= = = =

 ≤ +   
∑ ∑ ∑ ∑∫ ∫   

According the definition of ( )1,t
mjξ  and the choosing of γ , we can get  

( ) ( )1,2

1
1 1

log
m

t
mj

m j
C m m t E dt

γ γγα τ ξ
∞ −∞−

= =
∑ ∑∫ ( )

( )1
1

1
1

log
p q

m
m m t dtγα λγ τ

−∞ −∞− −

=

≤ < ∞∑ ∫    

The following proves 

( ) ( )( )
221,2

1
1 1

log
m m

t
mj

j j
C m m t E dt

γ
γ

γα τ ξ
−∞−

= =

 
< ∞ 

 
∑ ∑∫ ,               

The following three cases are going to be discussed:  

1) { }max 1, 1 1θ β ρ− − < < −   

(a) If ( ) (1 ) 2ρ θ θβ− + ≥  and 0 2θ< < , then 2E ξ < ∞ , therefore,  

( )( ) ( ) ( )2 2 21,

1 1

m m
t

mj mj j mj
j j

E E A C Aξ ξ
= =

≤ ≤∑ ∑                     

( )

( )

( )

{ }2 1

2

1 2 2 1

max 1, 1 1 2
log 1 2

1 2

p

p

p

Cm for
Cm n for

forCm

θβ

θ

β θβ

θ β
β
β

− +

− −

− − + +  

 − − < < −≤ = −
 > −

             

(b) If ( ) (1 ) 2ρ θ θβ− + ≥  and 2θ ≥ , in which case, we have that 2E ξ < ∞ and 𝛽𝛽 >
−1 2⁄ , thus,  

( )( ) ( ) ( ) ( )2 2 2 1 2 2 11,

1 1

m m
pt

mj mj j mj
j j

E E A C A Cm β θβξ ξ − − − + +  

= =

≤ ≤ ≤∑ ∑                

(c) If ( ) (1 ) 2ρ θ θβ− + < , by 1β ρ< − , we have ( ) ( )1 1 1pβ α θβ− + < − , therefore, we 
get 

( )( ) ( ) ( ) ( ) ( )2 221,

1 1

m m
t q q q

mj mj j mj j mj j
j j

E E A I A m t n t I A m tσ τ σ τ σ τξ ξ ξ ξ− − −

= =

= ≤ + >∑ ∑       

( )qm tσ τ−≤  ( )2 ( 1) (1 ) ( 1) (1 )

1

mp pq
mj j

j
m t E A

α θβ α θβσ τ ξ
− − + − +−

=

≤ ∑                

( ) ( ) ( ) ( )( 1) 2 1 1 2 1 1p q pCm tα σ α θβ α θβ τ− − − − − + − − +      ≤                      

2) 1β ρ= −  

(a) If 2ρ ≥  and 0 2θ< < , then  

( )( ) ( ) ( )2 2 21,

1 1

m m
t

mj mj j mj
j j

E E A C Aξ ξ
= =

≤ ≤∑ ∑                       
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( )

( )

( )

{ }2 1

2

1 2 2 1

max 1, 1 1 2
log 1 2

1 2

p

p

p

Cm for
Cm n for

forCm

θβ

θ

β θβ

θ β
β
β

− +

− −

− − + +  

 − − < < −≤ = −
 > −

              

(b) If 2ρ ≥  and 2θ ≥ , then 

( )( ) ( ) ( )2 2 21,

1 1

m m
t

mj mj j mj
j j

E E A C Aξ ξ
= =

≤ ≤∑ ∑ ( )1 2 2 1 pCm β θβ− − − + +  ≤             

(c) If 2ρ < , since 1β ρ= − , by known condition (2), we have 

( )( )21,

1

n
t

ni
i

E ξ
=
∑ ( ) ( )2 (1 )

1

m
q

mj j
j

m t E A
ρ θ θβ ρσ τ ξ

− − +−

=

≤ ∑                   

( ) ( )( 1) 2 2(log ) qCm m tα σ ρ ρ τ− − − − −≤ .                        

3) 1β ρ> −  

(a) If ( ) (1 ) 2p pρ θ θβ β+ − + − ≥  and 0 2θ< < , then  

( )( ) ( ) ( )2 2 21,

1 1

m m
t

mj mj j mj
j j

E E A C Aξ ξ
= =

≤ ≤∑ ∑                    

( )

( )

( )

{ }2 1

2

1 2 2 1

max 1, 1 1 2
log 1 2

1 2

p

p

p

Cm for
Cm m for

forCm

θβ

θ

β θβ

θ β
β
β

− +

− −

− − + +  

 − − < < −≤ = −
 > −

               

(b) If ( ) (1 ) 2p pρ θ θβ β+ − + − ≥  and 2θ ≥ , then  

( )( ) ( ) ( )2 2 21,

1 1

m m
t

mj mj j mj
j j

E E A C Aξ ξ
= =

≤ ≤∑ ∑ ( )1 2 2 1 pCm β θβ− − − + +  ≤           

(c) If ( ) (1 ) 2p pρ θ θβ β+ − + − < , by 1β ρ> − , we have 

( ) ( )1 1 1pβ α θβ− + > − , therefore, combing the known conditions, we get 

( )( )21,

1

m
t

mj
j

E ξ
=
∑ ( ) ( ) ( )2 (1 ) (1 )

1

mp p p pq
mj j

j
m t E A

ρ θ θβ β ρ θ θβ βσ τ ξ
− − + + − − + + −−

=

≤ ∑           

( ) ( ) ( ) ( )( 1) 2 1 2 1p p q p pCm tα σ ρ θ θβ β ρ θ θβ β τ− − − − − + + − − − + + −      ≤                 

Based on the above discussion and the selection of γ , .we have obtained 

( ) ( )( )
221,2

1
1 1

log
m

t
mj

m j
C m m t E dt

γ
γ

γα τ ξ
∞ −∞−

= =

 
< ∞ 

 
∑ ∑∫                  

In this way, 1I < ∞ is proven.  

For 𝐼𝐼2, by the definition of ( )2,t
mjξ and Markov-inequality, we can obtain for m N≥  
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( )2, 1

1 1
5max

k
t

mj
k m j

V t τξ ε
≤ ≤ =

 
>  

 
∑  

( )2, 1

1
5

k t
V mj

j
t τξ ε

 
 

=  
 =
 

>∑             

{ }( )1, 2, , q
mj jV there are at least N values of j m such that A m tσ τξ −≤ ∈ >

     

( )1 1
11

, ,
N N

N

q q
mj j mj j

j j
V A m t A m tσ τ σ τξ ξ− −

≤ ≤ ≤

≤ > >∑


                

( ) ( )1 1
11

N N
N

q q
mj j mj j

j j
MV A m t V A m tσ τ σ τξ ξ− −

≤ ≤ ≤

≤ > >∑


              

( )
1

N
m

q
mj j

j
M V A m tσ τξ −

=

 
≤ > 

 
∑                        

1
1

1

1

1
1

1

1 1max 1,

1

1

N
qm

mj j
j

N
qm

mj j
j

Np
q pm p

p
mj j

j

for
M m t E A

for
M m t E A

for
M m t E A

ρ θ
ρ θθβ

σ τ θβ

ρ
ρσ τ

ρ θ
ρ θθβ β

σ τ θβ β

β
θ ρξ

β
ρξ

β
ρξ

−
−+−
+

=

−

=

− +
− ++ −−

+ −

=

    − − < < −             
   = −   ≤       


  > −          

∑

∑

∑

    

( ) ( ) ( )
( )

( ){ } ( )
( ) ( ) ( )

( )

1
1 1

1

1
1 1

1 1max 1,

1log

1

Nq
N

Nq
NN

p Nq p
N

p p

forCm t

Cm t m for

Cm t for

σ ρ θ ρ θ
α

θβ τ θβ

ρ
α σρ τ

σ ρ θ ρ θ
α

θβ β τ θβ β

β
θ ρ

β
ρ

β
ρ

−  − −
− − + + + 

−
− − +

− +  − − +
− − + + − + − 

  − − < < −   
≤ = −



> −


  

Because of max , , 1 1
1 1

p
p

ρ θ ρ θσ ρ α
θβ θβ β

 − − +
⋅ − < − + + − 

,  

We can take a sufficiently large positive N such that 

( )1 max , ,
1 1

pN
p

ρ θ ρ θα σ ρ α
θβ θβ β

  − − +
− − + ⋅ < −  + + −  

 and 

min , , 1
1 1

q pN
p

ρ θ ρ θρ
τ θβ θβ β

 − − +
⋅ > + + − 

                      

Thus, we get 2I < ∞  

For 𝐼𝐼3, since  
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1
2

3 1
1 1 5mj j

m j

tI m V A dt
N
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α εξ

∞∞ ∞−

= =

  
≤ >  

  
∑ ∫ 

                       

( )12 1

1
1 1 5

p
j

m j

m V t j m dt
ND

θβα τ βεξ
∞∞ ∞ +− −

= =

  ≤ >  
  

∑ ∫ 

                   

( )12 1

1
1 1 5

m
p

m j
C m V t j m dt

ND
θβα τ βεξ

∞∞ +− −

= =

  ≤ >  
  

∑ ∑∫              (3) 

Let ( )1 , ,py x yθββµ υ+−= =  then ( ) ( )1 1 ,p px yθβ β θβµ υ υ+ += = . 

Therefore, we have ( )12 1

1 1 5

m
p

m j
m V t j m

ND
θβα τ βεξ

∞
+− −

= =

 > 
 

∑ ∑  

( )11
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θβτ βεξ

∞ +− ≤ > 
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( )1

1 1 1 1

1 1

1
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p ppC d V t d
D

θβ βµ ρ θ θβ β ρ θ θβ τµ µ υ ξ µ υ
θβ

+ −∞ − + − − +  ≤ > +  ∫ ∫         

( )
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1

1 1

1
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1

1 1max 1,
5

1log
5

1

5

p
p

C V t d for
ND

C V t d for
ND

forC V t d
ND

ρ θ
τθβ

ρ τ

ρ θ
τθβ β

εµ ξ µ µ β
θ ρ

εµ µ ξ µ µ β
ρ

ε βµ ξ µ µ ρ

−
∞ +

∞ −

+ −
∞ + −

    > − − < < −   
   

  ≤ > = −  
 

   > − >   

∫

∫

∫

   

(4) 

Therefore, by known conditions and (3)(4), 3I < ∞ is proved. According to the proof method of

2I < ∞ , 3I < ∞ , we can also be proven that 4I < ∞ , 5I < ∞ .Thus, the theorem is proved.. 

4. Conclusion 

We have obtained the sufficient conditions for the convergence of weighted and complete moments 
of END random variables in subline expectation spaces, which extends the conclusions existing in 
reference [12]. 
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