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Abstract: In order to solve the deficiency of vision transformer (ViT) in local feature extraction and 
effectively integrate global and local information, the manuscript proposes a model called Masked 
autoencoder with Patch merger based on Convolutional neural network and Re-attention (MPCR) for 
polarimetric SAR image classification. The CNN is used to divide the input image into patches, which 
effectively extracts local features and enhances the ability of the model to capture details. However, as 
the number of transformer network layers increases, the traditional attention mechanism leads to 
information degradation, manifested by the attention maps of each layer tends to be consistent. To 
address this, re-attention is introduced. By dynamically adjusting the weights, the model can still 
maintain the diversified capture of information at a deep level, so as to better handle the complex input 
data. A simple merging operation is introduced between two consecutive transformer encoder layers to 
further improve computational efficiency. The operation effectively reduces the redundant calculation 
and reduces the computational complexity. The results show that the proposed method not only 
significantly improves the classification accuracy, but also effectively reduces the computational 
complexity when processing PolSAR images. 
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1. Introduction 

Synthetic aperture radar (SAR) is an active microwave imaging remote sensing sensor, which 
transmits electromagnetic waves and receives echo signals to obtain surface information [1]. It has the 
ability to observe the earth all day and all weather, and can penetrate clouds and vegetation [2,3]. It can 
still provide stable and reliable observation data under complex meteorological conditions. Therefore, 
SAR plays an important role in both military and civilian fields, especially in battlefield surveillance 
and reconnaissance, target recognition, land use and disaster monitoring. With the continuous 
development of technology, the imaging resolution and data processing ability of SAR are continuously 
improved, and the application fields are also continuously expanded, providing more accurate ground 
information and decision support. Polarimetric SAR (PolSAR) is further developed from SAR and can 
work in different polarization combinations. By transmitting and receiving horizontally polarized H 
wave and vertically polarized V wave, the scattering echo obtained contains four polarization 
components, namely HH, HV, VH and VV [4]. The polarization combination of electromagnetic wave 
is relatively sensitive to the physical and geometric characteristics of ground objects, which improves 
the ability of PolSAR to obtain ground target information to a certain extent. 

PolSAR image classification refers to the process of dividing all pixels in the image into a certain 
category according to the polarimetric scattering characteristics [5,6]. The process not only constitutes 
the core component of PolSAR image understanding and interpretation technology, but also lays a solid 
foundation for the subsequent ground object recognition and evaluation work. Traditional polsar image 
classification methods are mainly based on statistical distribution, polarization decomposition and 
machine learning. PolSAR image classification based on statistical distribution means to build a 
suitable statistical distribution model to realize the classification of different features. Wishart 
distribution is one of the outstanding results of statistical distribution method, but its classification 
performance is too dependent on the quality of the center pixel of each category, and the calculation of 
Wishart distance is also very time-consuming [7]. With the continuous deepening of research, 
researchers realized that only relying on a single statistical model was not enough to fully express the 
complex ground object scattering mechanism of polarimetric SAR, and the method based on 
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polarimetric target decomposition came into being. For example, Freeman decomposition, Cameron 
decomposition, Huynen decomposition have been proposed [8,9]. However, these methods can only 
determine the scattering type of pixels, and can not be divided into specific ground object categories. 
PolSAR image classification based on machine learning learns rich feature representations from 
massive PolSAR data, and models the relationship between data information and categories. As a large 
amount of PolSAR data is obtained, traditional classification methods cannot address the demand. At 
the same time, deep learning technology continues to develop, showing a strong ability of data 
processing and feature extraction. In recent years, deep learning methods have been gradually 
introduced into the field of PolSAR image classification, which has brought more efficient solutions for 
PolSAR image interpretation [10,11]. 

Convolutional neural network (CNN) is a widely used deep learning method in PolSAR image 
classification [12]. Zhou et al. [13] carried out pioneering research on PolSAR image classification 
method based on CNN. This method considers the spatial characteristics of POLSAR image, and 
captures the spatial information at different scales through multi-layer convolution operation. Zhang et 
al. [14] proposed a complex convolutional neural network for SAR image interpretation, which makes 
full use of the amplitude and phase information of SAR image. A feature selection algorithm was 
proposed by Yang et al., which innovatively combines 1-D CNN and Kullback-Leibler distances [15]. 
In addition, by considering the performance of feature combination rather than the contribution of a 
single feature, the method can better capture the potential relationship between different features. It 
enhances the effectiveness of the classification task while improving the efficiency of feature selection. 
Dong et al. [16] explored the application of neural architecture search in PolSAR for the first time on 
the basis of CNN and proposed a differentiable architecture search method. The method optimizes the 
architectural parameters and additionally introduces a search method in the complex domain to better 
fit the data form of polsar images. The innovation provides a new and effective way for polsar image 
classification, and promotes the technological progress in the field. However, CNN tends to learn the 
local structure of the data, and it is difficult to capture the global context relationships and long-
distance dependencies in the input data, which limits the application of CNN-based methods in polsar 
image classification. 

Transformer was originally applied in the field of natural language processing (NLP), which is a 
neural network based on self-attention (SA) mechanism [17]. Dosovitskiy et al. [18] proposed a vision 
transformer (vit) model based on transformer structure, which achieved the most advanced 
performance on multiple image recognition benchmarks. In view of the excellent performance of ViT 
in CV, it is also gradually applied to the field of PolSAR. Dong et al. [19] explored the application of 
ViT in PolSAR image classification for the first time, and its powerful global feature extraction 
capability can effectively improve the classification performance. Since then, the researches of ViT in 
PolSAR image classification have been more and more in-depth. Wang et al. [20] pointed out that the 
training data of ViT is too large and the model is too complex to be directly applied to PolSAR image 
classification tasks, so ViT is combined with hybrid convolutional tokenization and the same modules 
are recombined to form parallel blocks. The model reduces the complexity of parameters and the 
requirement of computing power, and significantly speeds up the training and prediction speed. ViT 
improves classification performance by effectively utilizing global information, which helps to solve 
some of the limitations of CNN networks. However, it typically relies on large amounts of labeled data 
for optimal performance, which poses a challenge in PolSAR image classification tasks with scarce 
labeled data. As a self-supervised learning method, masked autoencoder (MAE) based on ViT 
architecture provides a new idea to deal with the problem [21]. MAE can fully use unlabeled data for 
pre-training, and only requires a small amount of labeled data for fine-tuning, which significantly 
reduces the dependence on labeled data. Fuller et al. [22] applied MAE in the field of polsar image 
processing, which effectively alleviated the problem of insufficient labeled data and achieved excellent 
performance in downstream classification tasks. From the existing work on MAE, there are relatively a 
few researches in the polsar field. Nevertheless, the potential of MAE in polsar image classification 
tasks cannot be denied. 

Polsar data is complex and contains a lot of information, which makes it difficult for most deep 
learning methods to fully capture its characteristics. With its unique convolution operation, CNN can 
sensitively capture the local features in the image. However, CNN has some limitations in capturing the 
global information of images, which limits its application performance in the field to some extent. As a 
new deep learning framework, ViT can better solve the problems faced by CNN in processing global 
information through self-attention mechanism. However, ViT is not as good at processing local features 
as CNN. Therefore, in PolSAR image classification task, how to use deep learning method to balance 
global information and local feature extraction has become a problem worth discussing. In addition, the 
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labeling of PolSAR data is highly dependent on expert knowledge, which also poses a limitation for 
deep learning models that require large amounts of labeled data for training. 

Based on the above analysis, in order to better utilize the local feature extraction capability of cnn 
and the global information processing capability of vit to better capture polsar data characteristics 
under the limited polsar labeled data, a method called masked autoencoder with patch merging based 
on convolutional neural network and Re-attention (MPCR) is proposed. In the method, MAE is 
selected as the basic model, which not only makes effective use of unlabeled data, but also integrates 
the characteristics of ViT. By combining the advantages of CNN and MAE, it can realize more accurate 
classification of PolSAR images. The main contributions of the manuscript are as follows: 

(1) Convolutional Neural Network for Image Blocking. CNN is used for image blocking to replace 
the tokenization of input data by linear projection in ViT. It can utilize the powerful local feature 
extraction capabilities of CNN to automatically capture more complex patterns from images. In 
addition, the hierarchical nature of CNN gives it a powerful ability to analyze image content on a multi-
scale, and build increasingly abstract but content-rich feature representations layer by layer. It not only 
improves the ability of the model to perceive local features but also provides a more detailed 
information for the subsequent learning of the transformer architecture. 

(2) Re-attention. Based on the structure of multi-head self-attention (MHSA), a learnable approach 
called Re-attention (RA) is introduced. The method aims to facilitate information exchange between 
different attention heads and effectively increase the diversity of the attention graph. RA enables the 
model to continuously optimize the feature representation at a deeper level, avoiding the learning 
stagnation caused by the simplification of attention distribution. It increases the ability of the model to 
capture complex patterns and offers the possibility of constructing deeper levels of vit. 

(3) Patch merger. With the increase of model depth, processing a large number of tokens will lead to 
a great consumption of computing resources, and may also reduce the speed and effect of model 
training. To solve the problem, the patch merging module is adopted to dynamically evaluate and merge 
similar or redundant tokens in the early layers of transformer. The module aims to reduce the number of 
tokens entering the deeper network, so as to optimize the computational efficiency and performance of 
the model. 

The rest of the literature is organized as follows. Section Ⅱ briefly introduces the relevant technical 
background and describes the proposed method in detail. In Section Ⅲ, the experimental results are 
fully presented and analyzed. Section Ⅳ gives a discussion of the factors that affect the effectiveness of 
the model. Finally, Section Ⅴ summarizes the study and presents an outlook for future work. 

2. The proposed method 

 
Fig.1 The schematic diagram of MPCR network 

The manuscript proposes a hybrid framework designed to combine the advantages of CNN and ViT 
to capture local-global information in images. Fig 1 shows a schematic diagram of Masked autoencoder 
with Patch merger based on Convolutional neural network and Re-attention (MPCR). In the 
framework, firstly, the traditional linear projection method in ViT is replaced by the segmented 
operation of CNN, which is used for the tokenization of input data. By utilizing the excellent local 
feature extraction capability of CNN, the method can automatically capture complex and rich abstract 
feature representations from images, providing detailed information for subsequent processing. 
Secondly, in order to overcome the problem that the attention distribution tends to be uniform in the 
deep ViT model, which leads to the reduction of effective feature capture, Re-attention is introduced. It 
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can promote the exchange of information between different attention heads and ensure that the model 
continuously optimizes the feature representation at a deeper level, thus enhancing the ability to capture 
complex features. Finally, considering the computational overhead caused by the increase of model 
depth, the patch merger module is added. In the shallow layer of transformer, similar or redundant 
tokens are dynamically evaluated and merged, which reduces the number of tokens entering the deeper 
network and effectively optimizes the operation efficiency and model performance. In summary, the 
proposed model not only captures local-global information, but also optimizes computational efficiency 
while maintaining high performance. 

2.1 Convolutional Neural Network for Image Blocking 

As a deep learning model, CNN can automatically learn local features in images and gradually 
extract high-level semantic information. In recent years, more and more researches begin to apply CNN 
to PolSAR image classification. By using its unique convolution layer, CNN can effectively capture the 
spatial structure and local features of the image, which is very important for understanding the complex 
information in Polsar data. With the rise of vit, the self-attention mechanism exhibits great potential in 
processing polsar images. The original vit uses linear projection to segment the image into a series of 
image blocks with the same size and no overlap, and converts them into tokens as input data. However, 
the method has relatively weak ability to capture local features of the image, which may lead to the loss 
of some local details. In order to overcome the limitation and retain the global information processing 
ability in vit, CNN is applied to block the image instead of linear projection in MAE with vit as the 
backbone [23]. 

Fig 2 is a schematic diagram of image blocking using CNN. For the original polsar data, a polsar 
image block with the size of f ×f × 9 is obtained by neighborhood extraction centered on pixel. The 
image blocks are subsequently fed as input data into a network composed of three convolutional layers. 
The network consists of 32, 64 and 128 convolutional layers designed to capture local features within 
each image block and map them into a high dimensional embedding vector. Firstly, the image blocks go 
through 32 convolutional kernels of size 3 × 3 in the first layer, and the initial feature extraction is 
carried out on the input image. The information of 9 channels is converted into 32 channel feature 
maps, and each feature map captures the local features of the input image in different aspects. Then 
more abstract features are extracted through the second layer of convolution, which enhances the 
ability of the model to express image features. The third layer of convolution converts the feature map 
of 64 channels into a feature map with d channels, where d denotes an embedding dimension of 128. 
After three layers of convolution, the f × f × 9 image block is divided into N2 image blocks with the 
shape of ((f/N), (f/N), 9). Each patch is expanded according to the spatial dimension to obtain a vector 

with the shape of ((f/N)·(f/N)·9)-d. These vectors are stacked, the input is reconstructed from 
9f fR × ×

 

to 
( ) ( )( )2 9N f N f NR × ⋅ ⋅

, which completes the process from the original image block to tokenization. In 
order to ensure that the model correctly understands the location information of each patch, location 
embedding is added. As a special embedding vector, class token gradually aggregates information from 
all image blocks in the whole transformation process. Through the process, the model can not only 
capture the local features of the image blocks, but also understand the position and category 
information of the image blocks, enabling the model to handle the image data more comprehensively. 

 
Fig.2 The schematic diagram of CNN for image blocking 
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2.2 Re-attention 

ViT applies transformer architecture to visual tasks for the first time, and captures the global 
dependencies between various parts of an image through self-attention mechanism, which brings new 
perspectives and methods to image classification tasks. On large-scale datasets, ViT has shown 
comparable or even better performance than deep CNN. Although ViT has achieved remarkable results 
in image classification, its performance tends to be saturated with the increase of network depth. Unlike 
CNNs that gain consistent performance gains by stacking more layers, vit faces challenges when 
adding depth. Specifically, as the number of transformer blocks increases, the attention maps of the 
model gradually tend to be similar, resulting in the inability to effectively expand the representation 
ability of the model. The phenomenon is called attention collapse. To address this challenge, cross-head 
information exchange is introduced on the basis of multi-head self-attention, and the new attention 
mechanism is Re-attention [24]. 

In the transformer model, a multi-head self-attention mechanism is adopted. Each head has different 
parameters and is capable of capturing different features of the input sequence. Therefore, within the 
same transformer block, the similarity of attention maps of different heads is relatively low. Based on 
this, the Re-attention mechanism dynamically fuses the information of different attention heads by 
introducing a learnable transformation matrix r rRθ ×∈ , so as to generate a new and more diverse 
attention map. 
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Where iA  represents the attention weight of the i-th head, and A represents the splicing of the 
attention matrices of r heads. In the way, the model is able to integrate information from different heads 
and effectively enhance the flow of information between individual head. Specifically, matrix θ , as a 
learnable transformation matrix, can fuse the attention outputs of multiple heads into a new 
representation through linear transformation according to different input data, so that the information of 
different heads can be better combined. After transformation, the obtained matrix is standardized to 
ensure that the output has a stable distribution. Then it is multiplied by the value matrix V to generate 
the final attention output. As shown in Fig 3, the self-attention of the original ViT is directly replaced 
by the Re-attention. In contrast, the Re-attention mechanism can effectively enhance the information 
exchange between the multi-head, which enables the model to better capture the interrelationships 
between different features, and improves the expression ability and performance of the model. 

 
Fig.3 The schematic diagram of Re-attention and multi head attention: (a) ViT based on multi-head 

self-attention (b) ViT based on Re-attention 
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2.3 Patch merging module 

With the rapid development of deep learning, ViT has shown its excellent performance and unique 
advantages in many visual tasks. ViT divides the input image into a number of fixed size image blocks, 
which are tokenized by linear projection, and then sent to the transformer block for processing. The 
innovative approach opens up a new perspective for image classification, and gives full play to the 
powerful efficiency of transformer in processing sequence data. Through the self-attention mechanism, 
it can effectively capture the global information and show a stronger ability in dealing with long-
distance dependencies and complex structures. Although ViT performs well in performance, its 
computational overhead has also become a problem that can not be ignored. The computational 
complexity of the ViT architecture grows quadratically with the number of input image blocks, and thus 
the computational cost rises sharply as the image resolution increases. How to balance the relationship 
between performance and computational overhead has become an important research direction. To 
solve the problem, Renggli et al. [25] proposed a patch merging module that can effectively reduce the 
computational cost of ViT while retaining the powerful performance of ViT. 

 
Fig.4 The schematic diagram of patch merging module: (a) Overall schematic diagram of patch 

merging module (b) Detailed process of patch merging 

The overall process is displayed in Fig 4, the core idea of patch merging is to reduce the 
computational burden of ViT by introducing a simple merging operation between two consecutive 
transformer encoder layers. To be specific, the module performs a weighted combination of input 
tokens by introducing a learnable matrix. First, the input token sequence N dX R ×∈  is linearly 
transformed, and each d-dimensional token is mapped to the M-dimensional space using matrix W. 
Subsequently, it is transposed and a weight distribution is computed for each output token with softmax 
function. Finally, the normalized weight matrix is multiplied with the original input tokens sequence to 
obtain the merged token sequence. The specific operation is as follows. 

 ( )softmax TPM XW X=                                                      (2) 

Where N is the number of input tokens, d is the embedded dimension of each token, and 
M dPM R ×∈  is the combined token sequence. 

The main significance of patch merging operation is to reduce the computational burden of the 
model, while trying to maintain the performance of the model. By combining multiple input tokens into 
a smaller number of output tokens, the model can process fewer tokens in the subsequent transformer 
encoder layer, thus significantly reducing the computational complexity. Since the merge operation is 
carried out through the learned weights, the model can adaptively determine which input tokens 
contribute more to the final output tokens. It helps to retain important information while reducing the 
impact of redundant or unimportant information, achieving a balance of optimized performance and 
efficiency. 
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3. Experimental results and analysis 

3.1 Datasets description 

(1) AIRSAR Flevoland: The Flevoland image was acquired by the AIRSAR platform and is a sub-
image of the L-band multi view PolSAR dataset, which has a size of 750 × 1024. The ground resolution 
of the image is 6.6 m × 12.1 m, containing 15 types of ground objects, and each type is presented 
through different colors. The image has 167,712 pixels manually labeled by expert knowledge. Fig 5(a) 
illustrates the Pauli-based pseudo-color map, and Fig 5(b) and (c) show the corresponding ground truth 
map and legend for this dataset, respectively. 

 
Fig.5 AIRSAR Flevoland dataset and the color code. (a) Pauli-RGB map (b) Ground truth map (c) 

Legend 

(2) RADARSAT-2 San Francisco Bay: The second image is a C-band image of the San Francisco 
Bay area acquired by the RADARSAT-2 satellite. The size of the image is 1380 × 1800, and there are 
1804087 pixels with known label information. Fig 6(a) shows the Pauli-RGB image in the scene, which 
mainly covers five types of land cover: High-Density Urban, Water, Vegetation, Developed, and Low-
Density Urban. The ground truth map and the legend of land cover type are shown in Fig 6(b) and (c), 
respectively. 

 
Fig.6 RADARSAT-2 San Francisco Bay dataset and the color code. (a) Pauli-RGB map (b) Ground 

truth map (c) Legend 

(3) ESAR Oberpfaffenhofen: The Oberpfaffenhofen dataset was derived from the ESAR airborne 
platform provided by the German Aerospace Center and belongs to the L-band. An image of Pauli-
RGB is given in Fig 7(a). The scene is relatively simple and includes only three feature classes: Built-
up Area, Wood Land and Open Area. The image size is 1300 × 1200, and Fig 7(b) shows the 
corresponding ground truth map, which contains 1,374,298 labeled data. Fig 7(c) shows the 
corresponding feature types. 
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Fig.7 RADARSAT-2 San Francisco Bay dataset and the color code. (a) Pauli-RGB map (b) Ground 

truth map (c) Legend 

3.2 Experimental setup 

ViT extracts a field of size 14 × 14 centered on the pixel. Therefore, the input space size is set to 15. 
MAE is a self-supervised learning model, 150,000 unlabeled data were selected for pre-training, and 
the number of training rounds was 1,600. In the fine-tuning phase, the Flevoland image was randomly 
selected with 300 labeled data from each category. Since the San Francisco Bay and Oberpfaffenhofen 
dataset have fewer categories, 1000 and 1500 labeled data were adopted for each category. The Adam 
optimizer is used for optimization, and the weight attenuation is set to 31 10−× , and the initial learning 
rate is set to 41 10−× . 

Table 1 Network architecture settings for encoder and decoder 

Network architecture Encoder Decoder 
Depth 12 8 

OutputDimension 128 64 
Number of heads 4 4 

Dimension of Each Head 32 16 
Number of Hidden Nodes 512 256 

Table 1 shows the parameter settings of the network architecture. Specifically, in the pre-training 
phase, the depth of the encoder part is 12 and the output dimension is 128. The number of heads in the 
self-attention is set to 4, where the dimension of each head is 32. 512 is the number of hidden nodes. In 
the decoder part, the depth is set to 8 and the output dimension is 64. The number of heads in self-
attention is set to 4, where the dimension of each head is 16. The number of hidden nodes is 256. 
During the fine-tuning stage, only the trained encoder is removed and its parameter Settings remain 
consistent with those of the encoder in the pre-training stage. 

The manuscript explores the combined form of CNN and vit, so in order to further demonstrate the 
effectiveness of the method, six polsar image classification methods based on CNN, vit, or a 
combination of the two are selected for comparative experiments. The CNN-based methods include 
ResNet [26], SKNet [27], and MobileNetV3 [28]. The ViT-based methods include CCT [29], MCPT 
[30], and MAPM [30], where CCT and MCPT are based on the combination of CNN and ViT. 

3.3 Classification metrics 

The commonly used PolSAR image classification metrics are Overall Accuracy (OA), Average 
Accuracy per Class (AA) and kappa Coefficient. OA is the most direct performance measure, which 
indicates the proportion of the number of correctly differentiated samples to the total number of 
samples. AA is used to evaluate the performance of the classification model in dealing with multi 
classification problems. By calculating the average classification accuracy across all categories, the 
overall performance of the model is evaluated to ensure that sufficient attention is given to each 
category. The Kappa coefficient is a statistic to measure the label consistency in a classification task, 
which usually takes a range of values between 0 and 1. As the coefficient gets closer to 1, it indicates a 
higher level of consistency, which indicates that the model is more capable of categorizing. The 
formulas for OA, AA and Kappa are given below: 

 
TP TNOA

TP FN FP TN
+

=
+ + +

                                               (3) 
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Where TP refers to true positive, FN refers to false negative, FP refers to false positive, and TN 
refers to true negative, i denotes the category and U denotes the total number of categories. Given the 
number of true samples per class 1 2, ,..., ca a a  and the number of predicted samples per class 

1 2, ,..., cb b b  , and the total number of samples n, the probability of accidental consistency can be 
expressed as follows: 
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3.4 Classification results 

(1) The results and analysis of the Flevoland dataset 

 
Fig.8 Predicted images about ground truth of the AIRSAR Flevoland dataset. (a) Ground truth map (b) 

ResNet (c) SKNet (d) MobileNetV3 (e) CCT (f) MCPT (g) MAPM (h) The proposed method 

Fig 8 presents the prediction results of different methods on the Flevoland ground truth map. Fig 
8(a) is a standard ground truth map, which provides an important reference for evaluating the 
classification accuracy and prediction effect of the model. Fig 8(b)-(d) show the classification images 
based on CNN method, where each region contains a large amount of noises. The classification result 
of the ResNet method in Fig 8(b) is the most severely affected by noise, with misclassification 
occurring in most areas. The SKNet method can reduce the interference of noise to a certain extent and 
improve the discrimination of categories. It is shown in Fig 8(c), but there are still some inaccurate 
categorized regions. The brown part at the bottom of Fig 8(d) contains a lot of green, and in addition, 
other color classifications also appear in the blue part in the upper right corner. It indicates that the 
MobileNetV3 method has a large misclassification when dealing with individual regions. In contrast, 
the methods based on ViT or the combination of both CNN and ViT can effectively mitigate the 
interference of noise, and the corresponding classification results are given in Fig 8(e)-(h). Fig 8(e) 
shows excellent performance, and the CCT method can handle most areas well, but there are still 
shortcomings in predicting the edge parts. Fig 8(f) demonstrates the results of the MCPT method, 
which is able to predict the categories correctly, however, there is significant noise in most of the 
regions. Fig 8(g) presents a relatively clear category boundary, but the MAPM method has slight errors 
in the classification of some regions. Fig 8(h) exhibits the prediction results of the proposed method, 
which shows that the method divides the region better and is less affected by noise. In general, the 
proposed method shows significant advantages in the prediction of labeled data, providing more stable 
and accurate predictions. 

The numerical prediction results of different methods on the Flevoland dataset are shown in Table 
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2. The overall performance of the ResNet method is poor compared to the other methods and has a 
large standard deviation. It indicates that the method has significant fluctuations, especially with lower 
accuracy on Wheat 2 and Rapeseed, further proving its unsatisfactory performance in these categories. 
The sknet method has a relatively good performance among the CNN-based methods, but does not 
show significant prominence in predicting the individual feature categories. The performance of 
MobileNetV3 method is between ResNet and SKNet methods, but its classification performance on 
Forest is the worst among all methods. The CCT method has outstanding performance on several 
categories, showing strong robustness and feature learning ability. The lower standard deviation 
indicates that it is effective in reducing the fluctuation of the prediction results. The MCPT and MAPM 
methods perform very close to each other in terms of performance, with both showing high accuracy 
and stability. The proposed method performs relatively well, especially achieving the highest 
classification accuracy in most land cover categories. In addition, the proposed method exhibits a small 
standard deviation, which indicates that the method has good stability. 

Table 2 Objective evaluation indicators of seven methods on the AIRSAR Flevoland dataset 

 ResNet SKNet MobileNetV3 CCT MCPT MAPM Proposed  

Water 0.8746±0.0973 0.9405±0.0650 0.8882±0.0736 0.9855±0.0126 0.9648±0.0267 0.9916±0.0071 0.9992±0.0018 

Forest 0.7262±0.0966 0.7756±0.0513 0.6803±0.1066 0.9942±0.0017 0.9871±0.0131 0.9872±0.0027 0.9907±0.0054 

Lucerne 0.9023±0.0799 0.9831±0.0187 0.9170±0.0891 0.9897±0.0045 0.9769±0.0189 0.9871±0.0047 0.9944±0.0033 

Grass 0.7907±0.0848 0.9463±0.0295 0.8207±0.0441 0.9810±0.0060 0.9406±0.0190 0.9723±0.0089 0.9860±0.0078 

Peas 0.9176±0.0416 0.9574±0.0218 0.9220±0.0336 0.9907±0.0041 0.9941±0.0023 0.9773±0.0097 0.9971±0.0035 

Barley 0.9180±0.0557 0.8976±0.0845 0.8660±0.1080 0.9948±0.0020 0.9872±0.0080 0.9887±0.0053 0.9923±0.0066 

Bare Soil 0.9552±0.0587 0.9961±0.0027 0.9707±0.0270 0.9975±0.0028 0.9890±0.0130 0.9872±0.0098 0.9954±0.0025 

Beet 0.8271±0.0737 0.9583±0.0046 0.9005±0.0371 0.9772±0.0085 0.9861±0.0044 0.9825±0.0049 0.9883±0.0024 

Wheat 2 0.6621±0.1393 0.9078±0.0358 0.7561±0.0827 0.9767±0.0125 0.9465±0.0561 0.9647±0.0128 0.9704±0.0241 

Wheat 3 0.8864±0.0391 0.9464±0.0314 0.8746±0.0567 0.9967±0.0012 0.9882±0.0050 0.9931±0.0024 0.9919±0.0056 

Stem beans 0.8644±0.0532 0.9245±0.0305 0.8897±0.0466 0.9976±0.0026 0.9811±0.0061 0.9892±0.0043 0.9967±0.0033 

Rapeseed 0.6384±0.1009 0.8446±0.1198 0.7252±0.1199 0.9633±0.0118 0.9200±0.0547 0.9612±0.0138 0.9723±0.0195 

Wheat 0.8736±0.0435 0.9350±0.0279 0.8670±0.0396 0.9801±0.0086 0.9795±0.0047 0.9748±0.0073 0.9846±0.0065 

Buildings 0.9344±0.0580 0.8684±0.0078 0.9546±0.0280 0.9965±0.0013 0.9965±0.0016 0.9888±0.0078 0.9968±0.0012 

Potatoes 0.6715±0.0681 0.8013±0.0241 0.6836±0.0716 0.9803±0.0044 0.9685±0.0143 0.9511±0.0119 0.9939±0.0018 

AA 0.8295±0.0218 0.9122±0.0138 0.8478±0.0182 0.9868±0.0007 0.9737±0.0023 0.9798±0.0019 0.9900±0.0014 

Kappa 0.7921±0.0235 0.8947±0.0151 0.8081±0.0240 0.9844±0.0008 0.9699±0.0031 0.9768±0.0014 0.9881±0.0014 

OA 0.8089±0.0217 0.9032±0.0139 0.8234±0.0222 0.9856±0.0007 0.9723±0.0028 0.9787±0.0013 0.9891±0.0013 

In addition to the prediction of labeled regions, more emphasis is placed on the prediction results of 
unlabeled regions in the PolSAR image classification task. Fig 9 shows the overall prediction results of 
various methods on the Flevoland dataset, and compares them with the Pauli-RGB image in Fig 9(a). 
The comparison not only reveals the differences in image detail processing between different 
algorithms, but also demonstrates their performance in unlabeled areas. Fig 9 (b) shows the prediction 
figure of the ResNet method, and it can be observed that it performs better in handling large-scale 
regions. However, it is generally affected by a large amount of noises, which leads to obvious 
misclassification in most of the regions. The prediction result of SKNet method in Fig 9(c) displays 
good adaptability, but the prediction result still has some deviation in the part with relatively complex 
background. MobileNetV3 method can effectively recognize the feature types in most areas, but due to 
its relatively low accuracy, the classification effect is rough when dealing with the detail part. The 
corresponding prediction image is shown in Fig 9(d). Fig 9(e) performs excellent as a whole, but for 
some small or irregular feature types, the CCT method is still insufficient. Fig 9(f) is the prediction 
image of MCPT method, which is able to clearly distinguish different objects when dealing with 
unlabeled areas. However, it is more ambiguous in the processing of the boundary. The MAPM method 
exhibits a strong classification ability with relatively pure areas, but there will be some adhesion in Fig 
9(g). Fig 9(h) shows the classification result image of the proposed method. Compared with other 
methods, the boundary of various ground objects is clearer, and each area is purer. 
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Fig.9 Predicted images of the AIRSAR Flevoland dataset. (a) Pauli-RGB image (b) ResNet (c) SKNet 

(d) MobileNetV3 (e) CCT (f) MCPT (g) MAPM (h) The proposed method 

(2) The results and analysis of the San Francisco Bay dataset. 

Table 3 demonstrates the objective evaluation metrics of the different methods on the San Francisco 
Bay dataset. ResNet and MobileNetV3 perform relatively close to each other, with small differences in 
several evaluation metrics. However, the ResNet method has a larger standard deviation and may be 
subject to larger fluctuations in classification, especially in the delineation of High-Density Urban. In 
contrast, MobileNetV3 has better stability. The performance of SKNet method is better than ResNet 
and MobileNetV3 method, especially in AA, kappa coefficient and OA. However, compared with the 
ViT based method, SKNet method has no advantages. The CCT method performs well in Developed 
areas. In addition, small variances in various categories can effectively reduce fluctuations. The MCPT 
method shows a performance close to that of the CCT method, with less large fluctuations and a more 
balanced performance. The MAPM method is able to better classify High-Density Urban, and the 
higher Kappa coefficient further proves its better classification consistency and robustness. The 
performance of the proposed method on the San Francisco Bay dataset is better than other methods, 
and has achieved high accuracy in Water and Low-Density Urban, and has made significant 
improvements in various evaluation indicators. In addition, the smaller standard deviation indicates 
better robustness and stronger classification ability, which can effectively handle complex feature 
classification tasks. 

Table 3 Objective evaluation indicators of seven methods on the San Francisco Bay dataset 

 ResNet SKNet MobileNetV3 CCT MCPT MAPM Proposed  

Water 0.9899±0.0058 0.9968±0.0029 0.9838±0.0107 0.9982±0.0007 0.9932±0.0051 0.9985±0.0007 0.9989±0.0012 

Vegetation 0.9019±0.0306 0.9506±0.0134 0.9163±0.0139 0.9102±0.0053 0.9034±0.0138 0.9342±0.0060 0.9340±0.0065 

High-Density 
Urban 0.7865±0.0740 0.9381±0.0077 0.7903±0.0403 0.9604±0.0032 0.9568±0.0063 0.9617±0.0051 0.9611±0.0058 

Developed 0.8735±0.0356 0.9053±0.0399 0.8479±0.0256 0.9617±0.0041 0.9506±0.0103 0.9511±0.0052 0.9505±0.0067 

Low-Density 
Urban 0.8873±0.0475 0.9093±0.0093 0.8740±0.0246 0.9469±0.0052 0.9411±0.0081 0.9490±0.0039 0.9617±0.0064 

AA 0.8878±0.0127 0.9400±0.0063 0.8825±0.0091 0.9555±0.0013 0.9490±0.0019 0.9589±0.0007 0.9612±0.0014 

Kappa 0.8868±0.0106 0.9431±0.0019 0.8812±0.0090 0.9556±0.0016 0.9478±0.0039 0.9605±0.0004 0.9641±0.0017 

OA 0.9212±0.0073 0.9604±0.0014 0.9171±0.0063 0.9691±0.0011 0.9636±0.0027 0.9725±0.0003 0.9750±0.0012 

The classification results of different comparison methods on San Francisco Bay dataset are shown 
in Fig 10. Fig 10(a) shows the Pauli-RGB map of the dataset. Fig 10(b) presents the results of ground 
classification using the resnet method, which can divide most areas, but in the yellow and green areas, 
the results contain more other feature types. It can be seen from Fig 10(c) that the SKNet method 
performs relatively well in the CNN based method, and a small blue area in the lower left corner is also 
accurately recognized. In contrast, the MobileNetV3 method performs poorly and contains a lot of 
noises in each region, which appears to be more cluttered, as reflected in Fig 10(d). The CCT method 
achieves a better delineation performance, but it can be seen from Fig 10(e) that its boundary is not as 
regular as other images. The predicted images of MCPT and MAPM methods are shown in Fig 10(f) 
and (g), respectively. The two methods perform well in the division of yellow and green areas, and can 
better handle the transition between urban and natural areas. The classification result of the proposed 
method Fig 10(h) exhibits significant superiority. Each region is purer and possesses clearer 
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boundaries. It further enhances the usability and reliability of the classification results. 

 
Fig.10 Predicted images of the San Francisco Bay dataset. (a) Pauli-RGB image (b) ResNet (c) SKNet 

(d) MobileNetV3 (e) CCT (f) MCPT (g) MAPM (h) The proposed method 

(3) The results and analysis of the Oberpfaffenhofen dataset 

Table 4 Objective evaluation indicators of seven methods on the Oberpfaffenhofen dataset 
 ResNet SKNet MobileNetV3 CCT MCPT MAPM Proposed 
Built-up 
Area 0.9720±0.0342 0.9390±0.0556 0.9546±0.0300 0.9176±.0059 0.9298±0.0110 0.9060±0.0252 0.9338±0.0204 

Wood Land 0.6984±0.1260 0.8228±0.0371 0.7014±0.0865 0.7733±0.0241 0.7535±0.0213 0.7606±0.0470 0.8303±0.0240 
Open Area 0.2264±0.2923 0.5569±0.3749 0.3746±0.2330 0.9599±0.0072 0.9631±0.0072 0.9547±0.0125 0.9386±0.0099 

AA 0.6323±0.0784 0.7729±0.1184 0.6769±0.0810 0.8836±0.0069 0.8821±0.0042 0.8738±0.0075 0.9009±0.0050 
Kappa 0.3113±0.1734 0.5705±0.2543 0.3930±0.1464 0.8385±0.0071 0.8366±0.0055 0.8242±0.0061 0.8496±0.0050 

OA 0.4885±0.1467 0.6972±0.2064 0.5685±0.1313 0.9055±0.0039 0.9048±0.0031 0.8972±0.0031 0.9109±0.0031 

Table 4 demonstrates the objective evaluation metrics of the seven different methods on the 
Oberpfaffenhofen dataset. The results reveal that there is a significant gap between the CNN based 
method and the ViT based method or a combination of the two. The ResNet method performs well in 
the Built-up Area with a high level of accuracy. But the performance in other categories is very weak, 
especially in the Open Area, the classification accuracy is far lower than other methods. However, the 
method has a large standard deviation, which indicates that its classification result may be affected by 
large fluctuations, thus reducing the stability of the classification result. The MobileNetV3 method has 
a similar performance to the ResNet method, with a weaker and less stable performance on the Open 
Area. In comparison, CCT, MCPT, MAPM and the proposed method display a more balanced 
performance, with significant advantages in accuracy and stability in each category. These methods 
improve the robustness of classification and reduce the fluctuations. In general, the proposed method 
shows the best classification ability and strong anti-interference ability, which proves its effectiveness 
in the task of complex ground object classification. 

Fig 11 illustrates the classification results of the different methods on the Oberpfaffenhofen dataset, 
which performs in line with the numerical results in Table 4. Fig 11(a) shows the Pauli-RGB diagram 
of the dataset. There are prediction results of the three methods based on CNN in Fig 11(b)-(d), with a 
wide range of misclassification and irregular color distribution. The classification result of ResNet 
method Fig 11(b) contains a large number of green areas, while Fig 11 (c) and (d) are covered by a 
large number of red areas, and the overall performance is messy. The CCT method performs well in 
most areas, but it still exhibits ambiguity in the boundary regions of Fig 11(e), particularly at the 
intersection of yellow and red areas, leading to erroneous classification of some regions. Fig 11(f) 
shows the classification results of the MCPT method, which performs well in classifying yellow and 
green regions. However, in the details section, particularly in the lower-right corner of the image, the 
classification results of the MCPT method still appear somewhat ambiguous, and the classification in 
certain small areas lacks sufficient precision. The overall performance of the MAPM method is 
relatively good. As can be seen from Fig 11(g), it exhibits clearer boundaries and is capable of 
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capturing detailed changes between regions effectively. The classification results of the proposed 
method are shown in Fig 11(h), which demonstrates significant superiority. In the classification of each 
region, the proposed method clearly divides the color regions and has very clear boundaries. It is able 
to effectively handle transitions in complex regions, reducing misclassifications, and demonstrates the 
most stable performance among all methods. 

 
Fig.11 Predicted images of the Oberpfaffenhofen dataset. (a) Pauli-RGB image (b) ResNet (c) SKNet 

(d) MobileNetV3 (e) CCT (f) MCPT (g) MAPM (h) The proposed method 

The experimental results on these three datasets demonstrate that the proposed method exhibits 
higher classification accuracy compared to other methods. The regions of each land type are purer, and 
the classification boundaries between different land types are more distinct. In summary, the proposed 
method delivers satisfactory overall performance. 

4. Discussions 

4.1 Ablation experiment 

Ablation experiments were conducted on the Flevoland dataset by progressively introducing 
different mechanisms to optimize the baseline model MAE, and the performance of each protocol was 
analyzed. The specific results are presented in Table 5. Scheme 1 is an unimproved baseline model, 
which serves as the baseline for the overall ablation experiments. Scheme 2 introduces CNN to extract 
more detailed local information, significantly enhancing the feature extraction capability of the model 
and improving classification performance. However, when processing local features, the CNN requires 
greater computational effort, which increases the computational complexity of the model. In order to 
avoid the singularity of attention distribution, Scheme 3 uses re-attention instead of self-attention, 
further improving the performance of the model. In Scheme 4, a patch merging module is introduced to 
reduce redundant information and effectively lower computational complexity. Schemes 5-7 
demonstrates the complementary effects between different mechanisms by combining them pairwise. 
Scheme 5 combines CNN and re-attention mechanism to capture local information while maintaining 
the attention of the model on important features. At this point, FLOPs has seen a significant increase, 
but it is understandable. Scheme 6 combines the advantages of CNN in feature extraction with the 
effect of patch merging to optimize the computational complexity, which can effectively reduce the 
computational overhead while maintaining the accuracy. Re-attention and patch merging enable 
Scheme 7 to optimize the attention distribution while reducing redundant computations. Scheme 8 
achieves optimal accuracy by combining three mechanisms, with well-balanced computational cost and 
parameter count. The results of the ablation experiments demonstrate the effectiveness of the 
introduced mechanism. By enhancing the feature extraction ability and classification accuracy, the 
classification performance of ground objects has been significantly improved. 
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Table 5 Results of ablation experiments of the proposed method on the AIRSAR Flevoland dataset 

Scheme MAE CNN Re-
attention 

Patch 
merging OA AA Kappa FLOPs 

(M) 
Params 

(M) 
1 √    0.9791 0.9780 0.9760 85.81 3.17 
2  √   0.9857 0.9849 0.9836 92.12 3.26 
3   √  0.9895 0.9896 0.9886 85.84 3.17 
4    √ 0.9856 0.9873 0.9861 55.70 3.17 
5  √ √  0.9870 0.9850 0.9837 92.16 3.26 
6  √  √ 0.9872 0.9866 0.9854 62.02 3.26 
7   √ √ 0.9868 0.9867 0.9856 55.72 3.17 
8  √ √ √ 0.9893 0.9882 0.9872 62.04 3.26 

4.2 Impact of the amount of training data 

 
Fig.12 Impact of the amount of training data on Flevoland dataset 

In deep learning, training data is the core foundation of model performance, which can help the 
model better capture the features and potential patterns in the input data, and enhance its generalization 
ability for unknown data. Fig 12 illustrates the performance of different training data volumes on the 
Flevoland dataset. With the increase of training data, the performance of the model shows different 
trends. When the data volume increases from 100 to 200, OA shows a significant improvement. 
However, there is still a large upside in the performance at this point. At the same time, the yellow 
curve in the figure reveals that the training time also increases significantly with the increase of data 
volume. It indicates that the model needs to process more information, which leads to the extension of 
training time. The trend reveals the direct relationship between data volume and training time. When 
the data volume reaches 300, OA continues to improve, but the growth rate relatively slows down, 
indicating that the improvement of model performance gradually stabilizes. Meanwhile, the training 
time only increased slightly, and the computing time and performance tended to balance. With the 
further increase of data volume, the performance of the model is basically stable. The improvement 
speed of OA gradually slowed down, while the training time showed an obvious growth trend. It 
indicates that after the data volume reaches a certain scale, the contribution of further increasing the 
data volume to the model performance has gradually decreased, while the computational cost and time 
have increased more significantly. Therefore, it is crucial to select an appropriate data volume for 
enhanced model performance and optimized computational efficiency. In addition, considering that the 
Flevoland dataset contain a relatively large number of land cover categories, a data volume of 300 
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samples per category was selected for training. It can not only effectively improve the performance of 
the model, but also obtain better classification results within a reasonable calculation time range, 
balancing the accuracy of the model and training efficiency. 

5. Conclusions 

The manuscript discusses the problem of insufficient ability to capture local features in PolSAR 
image classification. CNN is used instead of the original linear projection operation to block the image 
and enhance the extraction of local features. Although the process increases computational load, the 
dynamic merging of redundant patches in the early transformer layers effectively reduces the number of 
input tokens, thereby compensating for additional computational overhead while maintaining the 
computational efficiency of the model. To solve the problem of information degradation caused by the 
attention mechanism in deep transformer models, which manifests as the attention distribution of each 
layer tending to become consistent with increasing model depth, a method of reordering attention 
weights is introduced. The model can effectively capture diverse and complex information and promote 
information exchange among different attention heads. The proposed method enhances the performance 
of the model, which helps the model achieve higher accuracy and better generalization ability in 
PolSAR image classification. 
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