
Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 4: 29-35, DOI: 10.25236/AJCIS.2024.070405 

Published by Francis Academic Press, UK 
-29- 

Importance of matrix operations in artificial neural 
networks 

Jinghan Kang1,a, Junxi Li2,b, Nana Guo3,c, Xin Guo1,d,* 

1Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation 
2Herzen University, St. Petersburg, Russian Federation 
3Gansu Agricultural University, Gansu, China 
a kan.ts@edu.spbstu.ru, blijunxi111@yandex.com, cNnG.cn@outlook.com, dgo7.s@edu.spbstu.ru 
*Corresponding author 

Abstract: In this paper, the importance of matrices in artificial neural networks is studied. It is mainly 
argued from three architectures, traditional convolutional neural network, attention mechanism 
network, and generative adversarial network. The results show that various mathematical operations 
on matrices and transformations of matrices are particularly important in artificial neural networks. 

Keywords: Linear Planning; Matrix Operations; Artificial Neural Networks 

1. Introduction 

The importance of matrices is self-evident, and the mainstream directions of artificial intelligence 
are mainly natural language processing, computer vision and speech processing, which are all very 
closely related to matrices. Currently there are three kinds of neural networks used most: convolutional 
neural network (Cnn & Rnn) and attention mechanism network (Transform) generative adversarial 
network (Gan) [1]. For traditional convolutional neural networks, if we focus more on structural features 
when designing the model, it is better to choose Cnn networks; on the contrary, if we focus more on 
temporal features, we are better to choose Rnn networks. If we are facing a machine translation task, 
we need to choose an attention mechanism network. If we need to complete the generative task, we 
need to choose Generative Adversarial Network. 

Matrices are essentially two-dimensional arrays, a form of organization of data, common 
deformations of matrices are diagonal decomposition of matrices, triangular decomposition, triangular 
diagonal decomposition, feature extraction, diagonalization of matrices, these operations are based on 
the equivalence of matrices, the contract of matrices, and the similarity of matrices, and have a wide 
range of applications in artificial intelligence [2]. 

The matrix can already be seen in the most primitive neuronal structures [3]. Matrices are gradually 
coming into the AI arena along with the concept of neural networks. Matrices are widely used in 
several disciplines, such as matrix theory in mathematics, medical image processing, and face 
recognition. In short matrices exist in all corners of our lives. 

2. Matrix Operations for Convolutional Neural Network and Recurrent Neural Network 

In the field of CNN networks and image processing, matrix convolution is commonly employed to 
calculate image features. There exist two types of matrix convolution: full convolution and RMS 
convolution [4]. 

The full convolution is defined as: 

𝑧𝑧(𝑢𝑢, 𝑣𝑣) =  ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖  ∙ 𝑘𝑘𝑢𝑢−𝑖𝑖,𝑣𝑣−𝑖𝑖∞
𝑖𝑖=−∞

∞
𝑖𝑖=−∞                                              (1) 

Suppose X is an m x m matrix, K is an n x n matrix, and Krot is obtained by rotating K by 180°. The 
effective value convolution is defined as: 

 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 4: 29-35, DOI: 10.25236/AJCIS.2024.070405 

Published by Francis Academic Press, UK 
-30- 

                                     (2) 

                                                   (3) 

The convolution operation can be performed in two steps: first, the convolution filter is multiplied 
by each element of the input matrix slice; and in the second step, the sum is computed over all values in 
the resulting product matrix. 

The 5x5 input matrix is shown in Figure 1: 

 
Figure 1: 5x5 matrix 

Now, we use the 2x2 convolutional filter shown in Figure 2: 

 
Figure 2: 2x2 Convolutional Filter 

Each convolution operation involves a single 2x2 slice of the input matrix. For example, if we 
consider a 2x2 slice starting from the upper left corner of the input matrix, the convolution operation 
performed on this slice is shown in Figure 3: 

 
Figure 3: Convolution operation 

The convolutional layer consists of a series of convolutional operations, each of which acts on a 
different slice of the input matrix. 

First, we need to understand sequence data, sequence data is a sequence of points organized in a 
temporal way, it does not necessarily need a time scale, it is only organized in a chronological 
relationship to the data. For example, our common DNA data and voice data, as well as our text data 
and the K-line in the inventory, are all sequence data.  

A recurrent neural network is a type of neural network that is designed to be run multiple times, 
with the output of each run serving as input for the next run. In an RNN, the hidden layer from the 
previous run contributes to the input of the same hidden layer in the next run [5].  

When RNNs networks deal with tasks of temporal order, they generally go to step t-1 first, then 
deal with the task at step t, and finally deal with the task at step t+1. 

𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅 =  tanh�𝑊𝑊𝑖𝑖ℎ𝑥𝑥𝑡𝑡 +  𝑏𝑏𝑖𝑖ℎ +  𝑊𝑊ℎℎℎ(𝑡𝑡−1)  +  𝑏𝑏ℎℎ�                                    (4) 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 4: 29-35, DOI: 10.25236/AJCIS.2024.070405 

Published by Francis Academic Press, UK 
-31- 

 
Figure 4: Recurrent neural network 

As shown in Figure 4, there is a sequence of data processing at each time point., but it is not 
independent, the input of the current node is based on the temporal characteristics of the output of the 
previous node, which also reflects the memory function of the recurrent neural network [6]. 

�
0.5
3.6
15.

�  ×  �
0.

0.9
0.1

� =  �
0.

3.24
1.5

�                                                                (5) 

The first matrix represents the original data and the second matrix represents the matrix processed 
by the sigmoid function; the data processed by the sigmoid function will all be between [0, 1]. Of 
course, the multiplication of the two matrices has a special meaning, the result of the first row indicates 
that the signal is lost or forgotten; the result of the second row of the pair indicates that the signal is 
enhanced; the data in the last row indicates that the signal is suppressed [7-8]. 

3. Matrix Operations for Attention Neural Network 

In Attention Mechanism Neural Networks, the first thing we are going to explore is the matrix inner 
product operation that underlies the formulation of the self-attention mechanism [9]. 

𝑆𝑆𝑆𝑆𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥(𝑋𝑋𝑋𝑋𝑇𝑇)                                                                            (6) 

Equation 6 above is the original form of the self-attention mechanism, and the XXT in parentheses 
can be seen as a matrix multiplied by its own transpose matrix, which of course we can see as the inner 
product of the vectors of the current matrix with the vectors of its transpose matrix respectively. 

The geometric meaning of the inner product of vectors can characterize the angle between two 
directions, and when one vector is a unit vector and the other is not, it is expressed as the projection of 
the other vector onto the unit vector [10]. 

 
Figure 5: Schematic diagram of matrix calculation 

X, Y and Z in Figure 5 represent a Chinese character, X, Y, Z are all vectors after embedding, firstly, 
X does inner product with itself and the other two vectors respectively to get a new vector. The matrix 
XXT is a new matrix expanded from the perspective of inner product of row vectors, the matrix XXT 
saves the result of inner product operation of each vector with itself and all the vectors of other 
matrices.  

The softmax function in the attention mechanism neural network performs a normalization 
operation on our new matrix XXT, and after the softmax operation, the values of the row vectors sum to 
1. 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 4: 29-35, DOI: 10.25236/AJCIS.2024.070405 

Published by Francis Academic Press, UK 
-32- 

𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥(𝑄𝑄𝐾𝐾
𝑇𝑇

�𝑑𝑑𝑘𝑘
)𝑉𝑉                                                (7) 

The Q, K, and V matrices in Eq. 7 above are actually the product of X and the parameter matrices 
WQ, WK, and WV, which is essentially a linear variation of X. 

 
Figure 6: Operations of matrix X with parameter matrices WQ, WK, WV 

WQ, WK, and WV of Figure 6 are all linear variations of the matrix X. The reason for not using X 
directly but using linear variations of X is to improve the fit of the model, and the parameter matrices 
are all trainable and act as a buffer. 

4. Matrix Operations for Generative Adversarial Network 

Generative Adversarial Network is a generative model based on game theory, which is widely used 
in the field of image generation. GAN consists of a generative network and a discriminative network, 
where the generative network automatically generates data and the discriminative network determines 
whether the data belongs to the data generated by the generative network [11]. 

The goal of learning is to build generative networks that can automatically generate data with the 
same distribution as the training data already given. The process of learning is also the process of 
gaming, where the generative and discriminative networks are constantly gaming by optimizing their 
network parameters. When the equilibrium state is reached, the learning ends and the generative 
network can generate data that is false and the discriminative network has difficulty in determining 
whether the data is true or false. 

Suppose that the training data D has been given to follow the distribution Pdata(x), where x is a 
sample, and the generative network is denoted by x = G(z; θ), where z is the input matrix, x is the 
output matrix, i.e., the generated data, and θ is the network parameters. 

A discriminative network is a two-class classifier, denoted by P(1|x) = D(x; φ), where x is the input 
matrix, P(1|x) and 1-P(1|x) are the probabilities of the outputs, denoting the probability that the inputs x 
come from the training data and the generated data, respectively, and φ is a network parameter. 

The seed matrix follows a distribution Pseed(z), such as a standard normal distribution or a uniform 
distribution. The data distribution generated by the generative network is denoted as Pgens(x), which is 
jointly determined by Pseed(z) and x = G(z; θ). 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 4: 29-35, DOI: 10.25236/AJCIS.2024.070405 

Published by Francis Academic Press, UK 
-33- 

 
Figure 7: Architecture diagram for generating adversarial networks 

If the generative network parameters θ are fixed, the discriminative network parameters φ can be 
learnt by maximizing the objective function so that it has the ability to discriminate between true and 
false data. 

max
𝜑𝜑

= {𝐸𝐸𝑥𝑥~ 𝑃𝑃data(x) [logD(x;  φ)] + 𝐸𝐸𝑧𝑧~ 𝑃𝑃seed(z) [log (1 − D(G(z;  θ);  φ] }              (8) 

If the discriminative network parameters φ are fixed, then the generative network parameters θ can 
be learnt by minimizing the objective function, giving it the ability to generate data in a fake way. 

min
𝜃𝜃

= {𝐸𝐸𝑧𝑧~ 𝑃𝑃seed(z) [log (1 − D(G(z;  θ);  φ] }                                           (9) 

The discriminative and generative networks form a game, which can be defined as the very small 
very large problem, which is the objective function of generating an adversarial network. 

max
𝜑𝜑

min
𝜃𝜃

= {𝐸𝐸𝑥𝑥~ 𝑃𝑃data(x) [logD(x;  φ)] + 𝐸𝐸𝑧𝑧~ 𝑃𝑃seed(z) [log (1 − D(G(z;  θ);  φ] }        (10) 

The solutions φ* and θ* of the very small and very large problem exist, that is, the Nash equilibrium 
exists, so the algorithm of GAN network learning is the process of solving the optimal solution of the 
very small and very large problem. 

Using the generative adversarial network architecture in Figure 7, the adversarial training process is 
used in order to automatically generate image data. 

In this context, transposed convolution is particularly important. Transposed convolution is widely 
used in image generating networks, image autoencoder models, convolution can be used to reduce the 
size of the image data and dedicated convolution can be used to increase the size of the image data, 
such processes are also called down sampling and up sampling. 

The convolution operation can be expressed as a linear transformation, assuming a kernel matrix W 
with padding 0 and step size. 

𝑊𝑊 =  �
𝑤𝑤11 𝑤𝑤12 𝑤𝑤13
𝑤𝑤21 𝑤𝑤22 𝑤𝑤23
𝑤𝑤31 𝑤𝑤32 𝑤𝑤33

�                                                          (11) 

In the process of convolution, its input is the vector of the input matrix expansion and the output is 
the vector of the output matrix expansion, this linear transformation corresponds to the signaling from 
the former to the latter layer of the neural network and the upper convolution operation is represented 
in the process of linear transformation. On the other hand, the linear transformation of the transpose 
matrix of the original matrix is signaling from the latter to the former layer of the neural network. 

𝑟𝑟𝑆𝑆𝑆𝑆180(𝑊𝑊) =  �
𝑤𝑤33 𝑤𝑤32 𝑤𝑤31
𝑤𝑤23 𝑤𝑤22 𝑤𝑤21
𝑤𝑤13 𝑤𝑤12 𝑤𝑤11

�                                                  (12) 

This transposed convolution is a convolution operation with a kernel matrix of rot180(W), a 
padding of 2, and a step size of 1. Here rot180 means 190 degrees of rotation, and the convolution is 
computed with full padding of the input matrix. 

The primitive convolutional kernel transposed convolution is a reciprocal but not inverse operation, 
and between the two layers of a convolutional neural network, both forward and backward propagation 
are convolutional operations, corresponding to each other and in opposite directions. Given any 
convolution with W as the kernel matrix, a transposed convolution with rot180(W) as the kernel matrix 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 4: 29-35, DOI: 10.25236/AJCIS.2024.070405 

Published by Francis Academic Press, UK 
-34- 

can be constructed. 

So, we can get that rot180(rot180(W)) = W holds between convolution kernel and transposed 
convolution kernel, and (WT)T = W holds between the corresponding matrix and transposed matrix. 

5. Application of Matrices in Federated Architectures 

We propose a novel architecture shown in Figure 8 for handwritten digit recognition and generation 
tasks, which integrates convolutional neural networks, recurrent neural networks, attentional 
mechanisms, and the matrix operation characteristics of generative adversarial networks. 

 
Figure 8: Joint Architecture 

Our real data input here from the MNIST dataset is randomly screened for samples that serve as 
criteria for the discriminator's real data. On the other hand, we input random noise after passing through 
the generator after screening some samples to the discriminator. The discriminator determines whether 
the data is true or false, if it is true, then output this is the real data, if it is false, you need to enter the 
reconstruction of the data module, the reconstruction of the data module through a variety of matrix 
operations, and then continue to send the results of the operation to the generator, and finally the 
generator and the discriminator at the same time for training to achieve the Nash equilibrium state, to 
stop the training, the end of the task. 

 

 
Figure 9: Handwritten digits generated via generative models 

Figure 9 shows a portion of the generated image selected during the training of our model. We can 
clearly see the very blurry image at the beginning. After continuous training by the generation network 
and the discriminant network, we finally got a clearer handwriting. digital image. 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 4: 29-35, DOI: 10.25236/AJCIS.2024.070405 

Published by Francis Academic Press, UK 
-35- 

6. Conclusion 

Artificial neural networks fundamentally rely on matrix operations for calculations. These 
operations include matrix multiplication, addition, and inversion, which are critical for propagating 
input through the network, adjusting weights during training, and performing backpropagation. The 
efficiency of these operations can significantly impact neural network performance and training time. 

Using structured matrices in neural networks can improve computational efficiency. Structured 
matrices, such as semi-separable matrices, low-shift rank matrices, hierarchical matrices, and products 
of sparse matrices, can reduce the computational complexity of neural networks. These structures allow 
for more efficient matrix-vector multiplication, which is a major computational bottleneck in neural 
networks. 

This article examines the importance of matrices in artificial neural networks. The importance of 
matrix operations in the model is discussed in the mainstream neural network structure. Finally, the 
importance of matrix operations is demonstrated through an example of generating handwritten digit 
recognition. 

References 

[1] Chintalapudi N, Battineni G, Hossain MA, et al. Cascaded Deep Learning Frameworks in 
Contribution to the Detection of Parkinson's Disease. Bioengineering (Basel). 2022. 
[2] Fawzi, A. et al. Artificial intelligence finds faster algorithms for multiplying matrices. Nature. 2022; 
doi: 10.1038/d41586-022-03023-w 
[3] Hofmann M, Mader P. Synaptic Scaling-An Artificial Neural Network Regularization Inspired by 
Nature. IEEE Trans Neural Netw Learn Syst. 2022; 33 (7):3094-3108. doi:10.1109/TNNLS. 2021. 
3050422 
[4] Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image 
classification. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. pp. 
3642–3649. IEEE (2012). 
[5] Jay Alammar. Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models 
With Attention). 2018. 
[6] Wang X, Liu J, Zhang C, et al. SSGraphCPI: A Novel Model for Predicting Compound-Protein 
Interactions Based on Deep Learning. Int J Mol Sci. 2022. 
[7] Hemati W, Mehler A. LSTMVoter: chemical named entity recognition using a conglomerate of 
sequence labeling tools. J Cheminform. 2019. 
[8] Zhou Y, Rosen MC, Swaminathan SK, et al. Distributed functions of prefrontal and parietal cortices 
during sequential categorical decisions. Elife. 2021. 
[9] Nozomu Miyamoto, Masaru Isonuma, Sho Takase, Junichiro Mori, and Ichiro Sakata. 2023. 
Dynamic Structured Neural Topic Model with Self-Attention Mechanism. In Findings of the Association 
for Computational Linguistics: ACL 2023, pages 5916–5930, Toronto, Canada. Association for 
Computational Linguistics. 
[10] Chengshen Xu, Lin Li, Xiao Hu, et al. The Cross Products of M Vectors in N-dimensional Spaces 
and Their Geometric Significance. arXiv preprint arXiv:2206.13809, 2022. 
[11] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative 
Adversarial Networks. In: Advances in Neural Information Processing Systems. 2014; 2672-2680.  
 


