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Abstract: In addressing the challenge of selecting weighting coefficients for performance indicators in 
the active suspension Linear Quadratic Regulator (LQR) control strategy, a Whale Optimization 
Algorithm (WOA) is proposed for optimizing the LQR controller's weighting coefficients. Leveraging the 
WOA's advantages in precision and convergence, the algorithm iteratively refines the values of the Q 
and R matrices in the LQR active control algorithm.A 1/4 vehicle model of the active suspension is 
established in the MATLAB/Simulink environment for simulation. By comparing the results with 
traditional LQR controllers, the designed WOA-optimized LQR controller is demonstrated to enhance 
the overall performance of the suspension system, significantly improving the vehicle's ride comfort and 
handling stability. 

Keywords: Active suspension, LQR controller, Whale Optimization Algorithm, Vehicle's ride comfort 
and handling stability 

1. Introduction 

Suspension, as an elastic device connecting the wheels and the vehicle body, plays a crucial role in 
mitigating the impact on the vehicle. The types of suspension can be categorized into passive, semi-
active, and active, with active suspension, equipped with actuators, offering the advantage of providing 
active force. Therefore, the utilization of active suspension can enhance the vehicle's handling stability 
and ride comfort[1,2]. As the effectiveness of active suspension largely depends on the magnitude and 
direction of the active force, research on active suspension has focused extensively on control methods 
and strategies. Linear Quadratic Regulator (LQR) is a classical optimal control method widely applied 
in the field of vehicles. However, the key to the LQR control algorithm lies in the design of matrices Q 
and R, determining the allocation of weight coefficients for different performance indicators. Typically, 
the allocation of weight coefficients can be determined through empirical methods, but such an approach 
is inefficient and challenging to find the optimal solution[3]. With the development of intelligent 
algorithms, there is a continuous emergence of designs that integrate intelligent algorithms into active 
suspension control, such as the work by HE et al.[4], which introduces genetic algorithms into the LQR 
control of suspension systems. 

The Whale Optimization Algorithm (WOA) is a novel bio-inspired algorithm introduced by Seyedali 
Mirjalili and Andrew Lewis[5]. It is a population-based swarm intelligence algorithm rooted in the social 
behavior of whale populations. This algorithm is characterized by its few parameters, simple structure, 
high convergence accuracy, and the ability to effectively balance local and global search, making it 
widely applicable to various engineering optimization problems[6-8]. 

This paper introduces a novel approach for optimizing the weights of Linear Quadratic Regulator 
(LQR) control using the Whale Optimization Algorithm (WOA) in the context of active suspension. The 
proposed method leverages the WOA to fine-tune the weight coefficients of the LQR control. Simulation 
studies were conducted using a 1/4 suspension model to evaluate the performance of the designed LQR 
controller. A comparative analysis between the Whale Optimization Algorithm was performed to validate 
the feasibility and superiority of the Whale Algorithm in optimizing the weight coefficients for LQR 
control. 
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2. Suspension System Model Establishment 

The dynamic model of the suspension system serves as the foundation for analyzing damping 
characteristics. In this study, we focus on the establishment of a 1/4 active suspension model, as 
illustrated in Figure 1. 
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Figure 1: 1/4 active suspension model 

According to Newton's Second Law, the motion differential equations for the 1/4 vehicle system 
model can be established. 

 





−=−+−−−−
=−+−+

Fxxkxxkxxcxm
Fxxkxxcxm

rtttststt

tstsss

)()()(
)()(





 (1) 

Where: ms represents the vehicle body mass; mt denotes the wheel mass; k and kt are the suspension 
equivalent stiffness and wheel stiffness, respectively; c is the suspension equivalent damping coefficient; 
xr is the road unevenness displacement excitation; xs and xt represent the vertical displacements of the 
wheel and the vehicle body, respectively; F is the active control force provided by the actuator. All 
directions are considered positive in the upward vertical direction. 

Consider the suspension dynamic travel, vehicle body vertical velocity ts xx − , tire dynamic 

deformation sx , and wheel axle vertical velocity tx  as the system state vector X. The vehicle body 

vertical acceleration sx , suspension dynamic travel ts xx − , and tire dynamic deformation rt xx −  

constitute the system output Y. The system control variable is denoted as U=F, and W= rx represents the 
system disturbance. The system state equation can then be expressed as: 
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3. LQR Control Algorithm 

The essence of the LQR control algorithm is to achieve the best control performance for a system by 
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minimizing the cost. In the case of LQR control for suspension systems, the key performance indicators 
that need improvement are primarily the vehicle body acceleration, suspension dynamic travel, and tire 
dynamic displacement. Simultaneously, it is essential to ensure that the actuator's output force remains 
within an acceptable threshold. While optimizing these performance indicators, efforts are made to 
minimize the magnitude of the output force, thereby reducing the power consumption of the active 
suspension. 

In accordance with the above considerations, the performance evaluation functional for active 
suspension LQR control can be expressed as: 
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Where: : 1ρ , 2ρ , 3ρ , r  are the weighting coefficients for vehicle body acceleration, suspension 
dynamic travel, tire dynamic displacement, and active control force, respectively. By increasing the 
values of these weighting coefficients, the performance of the corresponding indicators can be enhanced. 

Let 
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According to Equation (4), with CQCQ T
0= ; DQCN T

0= ; rDQDR T += 0 , the feedback gain 
matrix K can be expressed as: 

 )(1 TT NPBRK += −  (5) 

Where the matrix P can be determined by solving the Riccati equation. 

 0)()( 1 =+++−+ − QNPBRNPBPAPA TTT  (6) 

The optimal control force for the suspension system output is given by: 

 KXF −=       (7) 

4. Whale Algorithm Optimization of Weighting Coefficients 

4.1. LQR Weighting Coefficient Parameters 

In the design of LQR controllers, the design of matrices Q and R is crucial, as it directly affects the 
control effectiveness of the active suspension. The key to designing matrices Q and R lies in the selection 
of weighting coefficients 1ρ , 2ρ , 3ρ , r . When the magnitudes of the corresponding performance 
indicators are close, larger values of the weighting coefficients within a certain range result in better 
optimization of the corresponding performance. However, simultaneously, the optimization level of other 
system performances may decrease or even be negatively impacted. The selection of appropriate 
weighting coefficients to determine the optimal control parameters has been an ongoing discussion in 
LQR control. 

Typically, in the design of LQR controllers, an empirical approach can be employed to determine the 
magnitudes of the various weighting coefficients. As shown in Equations (8) and (9), one can control the 
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magnitudes of different performance indicators to be approximately consistent. By doing so, a balanced 
LQR controller with optimized performance can be obtained. However, this empirical method struggles 
to achieve the optimal control parameters and often results in a LQR controller with performance 
optimization that tends to be more balanced. This approach poses challenges in designing LQR 
controllers to meet diverse requirements. 
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4.2. Whale Algorithm Optimization Process 

The Whale Optimization Algorithm (WOA) is a metaheuristic algorithm that employs the hunting 
patterns of whales to seek optimal solutions. In the whale hunting process, the main target is a school of 
small fish swimming near the water surface, which the whale preys upon. Whales create bubbles by 
shrinking their circles, forming a path resembling the number 9. 

The following outlines the process of the Whale Algorithm, which can be divided into exploration 
and exploitation phases. The exploration phase involves a random strategy to search for prey, while in 
the exploitation phase, whales surround and attack the prey using a spiral bubble net. 

Exploitation Phase: 

To capture prey, whales must first locate and encircle them. The mathematical model of their behavior 
is represented by Equations (10) and (11): 

 DAiXiX


⋅−=+ ∗ )()1(  (10) 

 )()( iXiXCD


−⋅= ∗   (11) 

Where: i represents the iteration count, )(iX


 indicating the i-th iteration when the whale is at its 

best position. )1( +iX


 is the current best position. D


 is the distance from the whale to the prey. 

CA


、  is the coefficient vector, calculated as follows: 

 araA 



+⋅⋅= 2  (12) 

 rC 



⋅= 2  (13) 

where: The value of  starts with an initial value linearly decreasing from [0,2] until it becomes 0 
at the end of the iteration. r  is a variable and represents a random number in the range [0,1]. 

The region where whales approach prey can be controlled by the values of the vectors CA


、 . By 
assigning values to A



 within the range [-1, 1], a new position for the search agent can be identified 
between the whale's current position and its best position. 

Whales use a spiral bubble to surround prey, and the position update is achieved through the equation 
(14), which models the spiral movement of the whale. This equation is also used to calculate the distance 
between the best position and the current position. 

 )()2cos()1( iXDkeiX bk ∗∗ +⋅⋅=+


π  (14) 

a



Academic Journal of Engineering and Technology Science 
ISSN 2616-5767 Vol.7, Issue 2: 20-27, DOI: 10.25236/AJETS.2024.070204 

Published by Francis Academic Press, UK 
-24- 

 )()( iXiXD
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where: ∗D


 represents the optimal distance between the whale and the prey during the iteration 
process. b is a constant value represented in a spiral form. k is a random value in the range [0, 1]. 

In reality, both the behavior of whales surrounding prey and emitting a spiral bubble to encircle prey 
may occur. To simulate this behavior, the choice of whale position update is expressed by Equation (16). 
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where: p is a random quantity within the range [0,1]. 

Exploration Phase: 

During this phase, whales update their positions through random searching. By controlling whales to 
move away from their best positions, this type of search relies on randomly chosen whale position vectors. 
Therefore, it represents a global search for prey. This approach helps address issues related to local 
optimization. 

 DAXiX


⋅−=+ rand)1(  (17) 

 XXCD


−⋅= rand  (18) 

where: randX


 represents the position of a randomly chosen whale from the whales. 

4.3. Establishment of the Objective Function and Parameter Optimization 

The purpose of establishing the objective function is to leverage the optimization capabilities of the 
algorithm to different extents in optimizing various performance indicators of the system. The suspension 
system has four performance indicators: vehicle body acceleration representing ride comfort and 
handling stability, suspension dynamic travel, wheel dynamic displacement, and the active control force 
representing the power consumption performance of the system. Due to the different magnitudes of these 
indicators, it is necessary to dimensionless them when establishing the objective function. This involves 
taking the ratio of the values of the three indicators for both active and passive suspensions under the 
same conditions. The objective function is then constructed using the ratio of the active control force to 
the maximum active control force. 
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where: RMS represents the root mean square value, ][ 321 rx ρρρ=


which serves as the 
weighting coefficients for each performance indicator. w1, w2, w3, w4 are the weights for each 
performance indicator, and w1+ w2+ w3+ w4 = 1.  

The weights can be adjusted based on different performance requirements. 

The optimization steps of the Whale Algorithm for tuning the weighting coefficients in the Linear 
Quadratic Regulator (LQR) control are outlined as follows: 

Step 1: Generate the initial whale population by setting the initial positions, maximum iteration count, 
and other algorithm parameters for the whale population. 

Step 2: Utilize Equation (19) to calculate the fitness function value for each individual whale, 
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identifying the position of the optimal whale. 

Step 3: Update the values of r
 , a

 , k, l. Evaluate whether p is less than 0.5; if greater, the whale 
individual updates its position according to Equation (14) using a spiral bubble net mechanism. If p is 
less than 0.5 and |A| is greater than 1, the whale updates its position randomly in a global search manner 
using Equation (11); otherwise, it updates its position through Equation (10) employing a surrounding 
mechanism. 

Step 4: Compute the fitness function value after the whale positions are updated, update the position 
of the currently optimal whale, and calculate the fitness function value for the optimal whale individual. 

Step 5: Check whether the termination condition for optimization is met. If satisfied, conclude the 
optimization, retaining the optimal solution; if not, proceed to Step 3. 

5. Simulation Analysis 

5.1. Simulation Conditions 

The simulation employed MATLAB/Simulink to construct passive and active suspension models. 
Comparative analyses were conducted on the suspension performance indicators for passive suspension, 
empirical LQR, and Whale LQR. The control performance of the Whale LQR was specifically analyzed. 
Table 1 outlines the parameters for the suspension system. 

Table 1: Suspension System Parameters 

Name Symbols Value Unit 
Vehicle body mass ms 340 kg 

wheel mass mt 59 kg 
suspension stiffness k 28000 N/m 

wheel stiffness kt 263000 N/m 
suspension damping c 600 N·s/m 
Maximum control 

force 
F 500 N 

The road excitation employs a random road surface, and in Simulink, a stochastic road surface time-
domain model is constructed using a filtered white noise method. The specific mathematical model is 
derived from Equation (20). 

 )()(2)(2)( 001 twunGntuzntz qgg ππ +−=  (20) 

Where: )(tzg  represents the time-domain road surface, )( 0nGq  denotes the road roughness 
coefficient, n1 is the lower cut-off spatial frequency set at 0.011 m-1, and w(t) represents a unit white 
noise. 

The B-class road surface model with a vehicle speed of 10 m/s is established in Simulink using 
Equation (20). This road surface serves as the simulation condition for conducting a comprehensive 
analysis of the suspension system. 

In addition to the aforementioned simulation conditions, the active suspension in this simulation 
prioritizes ride comfort. Specifically, the primary optimization goal is to reduce vehicle body acceleration 
while concurrently considering the optimization objective of suspension dynamic travel, aiming to avoid 
impact on suspension bump stops. Hence, when employing the Whale Optimization Algorithm for 
optimization, the weightings w1, w2, w3, and w4 in the objective function are set to 0.5, 0.3, 0.1, and 0.1, 
respectively. Under these conditions, the design of the LQR controller yields empirical LQR control and 
Whale LQR control. 

5.2. Simulation results 

Under the simulation conditions described in Section 4.1, an analysis is conducted on the passive 
suspension as well as the active suspensions employing empirical LQR and Whale LQR. The graphical 
results of the simulation analysis are presented in Figure 2. 
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Figure 2 Compare the results 

Table 2: Control effect analysis 

Control 
algorithm 

vehicle body acceleration 
(m/s2) 

suspension dynamic travel 
(m) 

wheel dynamic 
displacement (m) 

RMS control 
effect RMS control 

effect RMS control 
effect 

passive 0.6516  0.007046  0.00227  
empirical 

LQR 0.4593 29.5% 0.003311 53% 0.00173 24% 

Whale LQR 0.3524 46% 0.003934 44% 0.00214 6% 
According to Table 2, empirical LQR demonstrates optimization improvements of 29.5%, 53%, and 

24% for vehicle body acceleration, suspension dynamic travel, and wheel dynamic displacement , 
respectively. On the other hand, Whale LQR exhibits optimization improvements of 46%, 44%, and 6% 
for these three indicators. A comprehensive analysis, as depicted in Figure 2, reveals that both empirical 
LQR and Whale LQR contribute to varying degrees of enhancement in the vehicle's damping 
performance. Notably, empirical LQR shows the most pronounced improvement in suspension dynamic 
travel optimization, while the optimization effects on vehicle body acceleration and wheel dynamic 
displacement  are moderate. In contrast, Whale LQR primarily optimizes vehicle body acceleration and 
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suspension dynamic travel, sacrificing some of the optimization in wheel dynamic displacement . 

In the context of this simulation, the primary objective for active suspension is to enhance ride 
comfort while avoiding impacts on suspension bump stops. Consequently, the emphasis is placed on 
improving damping performance, particularly in vehicle body acceleration and suspension dynamic 
travel. Through the comparative simulations presented above, Whale LQR control successfully achieves 
the objectives set for this optimization design. This confirms that Whale LQR control is capable of 
meeting the varied performance requirements of active suspension LQR controller designs. 

In conclusion, when addressing the optimization of weighting coefficients in active suspension LQR 
control under the same conditions, the Whale Algorithm outperforms the traditional empirical method in 
optimization results. This underscores the superiority of the Whale Algorithm in handling such problems. 

6. Conclusions 

In addressing the challenge of determining optimal weighting coefficients in the Linear Quadratic 
Regulator (LQR) control method, this paper introduces an approach for optimizing the weighting values 
in active suspension LQR control based on the Whale Optimization Algorithm. Initially, a set of 
weighting coefficients is determined using an empirical method. Subsequently, the Whale Algorithm is 
employed to identify the optimal weighting coefficients that meet performance requirements. Through 
the establishment of a 1/4 vehicle model and simulation analysis, the feasibility of the Whale Algorithm 
in optimizing weighting coefficients for active suspension LQR control is validated. Furthermore, a 
comparative analysis with the traditional empirical method highlights the superiority of the Whale 
Algorithm in addressing the optimization problem of weighting coefficients in active suspension LQR 
control. 

In conclusion, based on the Whale Optimization Algorithm, the proposed method for active 
suspension LQR control effectively enhances the vibration performance of the suspension system, 
achieving a balance between the vehicle's comprehensive demands for different performance aspects. 
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