Research on the Transformation and Reconstruction of Modern Teaching Mode under the Background of Artificial Intelligence

Pingshan Wang^{1,a}

 1 Guangdong University of Science and Technology, Dongguan, China a wangpingshan@gdust.edu.cn

Abstract: The rapid advancement of artificial intelligence technology is exerting unprecedented pressure for transformation in the field of education. Traditional teaching models, challenged by technological disruption, evolving educational demands, and societal digital transformation, urgently require exploration of new pathways adapted to the contemporary era. This article examines the inevitability of AI-driven teaching reform from three perspectives: technological impetus, educational needs, and social transformation. By analyzing specific application scenarios—such as intelligent tutoring systems, classroom management tools, and virtual instructors—it explores the reconstruction of teaching models across dimensions including subject relationships, teaching processes, evaluation systems, and learning spaces. The study finds that AI not only enables personalized instruction through adaptive learning platforms but also enhances classroom management efficiency via technologies such as emotion recognition. However, it also encounters practical challenges, including ethical concerns, data privacy issues, and a potential deficit in humanistic care. In response, this article proposes strategies such as establishing a human-machine collaborative teaching framework, refining educational ethical guidelines, and strengthening university-industry collaboration. The study emphasizes that future education should construct a ternary collaborative ecosystem involving teachers, AI, and students. While integrating emerging technologies such as the metaverse, education should prioritize cultivating core competencies beyond AI's reach—such as creativity and critical thinking—thereby achieving a balanced development of technological empowerment and the essence of education.

Keywords: Artificial Intelligence, Teaching Mode, Education Transformation, Human-Machine Collaboration, Education Ethics

1. Introduction

Education, as a cornerstone of societal development, has consistently evolved in tandem with technological progress. In the twenty-first century, the wave of intelligent technologies—represented by artificial intelligence, big data, and the Internet of Things—is propelling education into the "Education 4.0" era against the backdrop of the fourth industrial revolution. The traditional "teacher-centered, textbook-centered, and classroom-centered" instructional model is increasingly inadequate in resolving the tension between large-scale education and individualized cultivation. Its standardized, assembly-line approach to knowledge transmission fails to meet future society's demand for innovative talent equipped with core competencies.

In this context, artificial intelligence is no longer merely a supplementary tool in education; it has become a transformative enabler and catalyst that deeply intervenes in the entire teaching and learning process, thereby reshaping the educational ecosystem. In recent years, researchers worldwide have closely examined the application of AI in education. Existing scholarship has largely focused on the educational uses of specific AI technologies—such as intelligent tutoring systems, learning analytics, and adaptive learning platforms—or has explored macro-level trends in educational transformation. However, there remains a lack of an integrated analytical framework for understanding how AI systematically drives instructional model transformation across core dimensions, and how comprehensive reconstruction can be pursued at multiple levels, including conceptual, operational, resource-related, and institutional aspects.

This study aims to address this gap by systematically examining the driving forces and dimensions of AI-driven transformation in teaching models, constructing a multi-level reconstruction pathway model,

and offering prospective reflections on potential risks. It is hoped that this research will provide valuable insights for both theoretical advancement and practical exploration in the field.

2. Analysis of the Drivers Behind the Transformation of Teaching Models Driven by Artificial Intelligence

2.1 The inevitability of the transformation of modern teaching models in the context of artificial intelligence

With the rapid advancement of society, the integration of artificial intelligence technologies has induced profound transformations in the field of education. From a technical perspective, AI-powered tools are progressively reshaping the structure of traditional classroom instruction. Big data analytics enable real-time tracking of students' learning trajectories, precise identification of knowledge gaps, and automatic generation of targeted exercises. Following the implementation of smart classroom systems in certain secondary schools in Jiangsu Province, for instance, the average mathematics scores increased by 15% [1]. Furthermore, breakthroughs in natural language processing have empowered intelligent tutoring systems to emulate teachers' linguistic styles and provide 24/7 query-answering services. Such technological capabilities significantly surpass the limitations of individual educators in conventional classroom settings, thereby compelling innovations in instructional organization.

The evolution of educational demands also propels the transformation of teaching models. Contemporary learners exhibit distinctly individualized characteristics, rendering standardized teaching approaches increasingly inadequate for addressing diverse needs. Data from an online education platform reveal that the pace of knowledge acquisition among student groups utilizing adaptive learning systems can vary by more than threefold [2]. Moreover, the growing emphasis on lifelong learning underscores the constraints of the existing educational framework. A blended learning pilot program conducted by a university in Beijing demonstrated a 27% annual increase in participation among working professionals in online courses [3]. This expanding demand for flexible learning necessitates an education system with greater adaptability and inclusivity, wherein the spatiotemporal limitations of traditional classrooms have become significant constraints.

Global competition and digital transformation are further driving the need to upgrade talent development objectives. Contemporary society no longer requires learners who merely memorize information, but rather inter-disciplinary talents possessing digital literacy and innovative capabilities. A practical case from a vocational college in Shenzhen indicated that after adopting an immersive smart classroom integrating virtual and physical environments, the excellence rate in students' engineering practical ability assessments rose by 40% [4]. Additionally, recruitment data from intelligent manufacturing enterprises show that graduates who possess both professional knowledge and proficiency in applying AI tools command starting salaries 18% higher than the industry average [5]. These developments underscore the inherent logic of educational reform: only through comprehensive reconstruction of teaching models can we cultivate qualified professionals equipped to thrive in the intelligent era.

2.2 Core application scenarios of artificial intelligence technology in modern teaching

The application of artificial intelligence technology in teaching has formed multiple specific scenarios. Intelligent teaching systems provide personalized content by analyzing students' learning data, which breaks through the standardized process of traditional classrooms. Taking the math adaptive platform promoted in a certain province as an example, the system automatically adjusts the difficulty of exercises based on students' correct answer rate and time consumption. When students answer correctly three times in a row, it automatically pushes higher-level challenge questions. This mechanism has improved the average class score by about 15% [6]. Some foreign platforms such as Knewton collect learning trajectories of more than 5 million users to form a knowledge graph that covers the correlation degree of knowledge points. When students understand a certain concept, relevant expansion materials are pushed simultaneously [2]. Such systems rely on big data mining technology, and gradually build cognitive portraits of each student through continuous tracking of indicators such as the distribution of wrong answers and attention duration.

The intelligentization of classroom management tools has revolutionized the way teachers work. A domestic experimental middle school installed cameras with emotion recognition capabilities in classrooms, which can monitor students' micro-expressions such as frowning and resting their chin in

real time. Statistical data shows that when the system indicates that half of the students show confused expressions, the mastery rate of knowledge points increases by 32% after teachers adjust the teaching pace [1]. Some smart classrooms are equipped with attention monitoring bracelets, which can generate a focus curve graph through skin conductance response data. Teachers can provide targeted coaching after class based on this. A voice analysis device introduced in an English classroom can not only count the number of student speeches, but also identify tone changes and mark the pronunciation parts that need to be strengthened. This real-time feedback improves the efficiency of oral training by 40% [7]. The application of such technologies has shifted the teaching process from empirical judgment to data support.

Virtual teachers and educational robots are redefining the way of teaching interaction. The robot teacher Saya developed in Japan can complete 50 facial expressions and strengthen the memory of experimental phenomena by simulating surprised expressions in science classes [8]. The virtual tutor system developed by a university in China has answered 23,000 questions from students in programming courses, and the natural language processing module has achieved an accuracy rate of 89% in question recognition [9]. The application of educational robots in language teaching is more breakthrough. For example, the accompanying robot deployed in an English corner of a school can simulate real dialogue scenarios and correct grammatical errors in real time. Students' two-hour robot interaction per week has improved their oral fluency assessment score by 28% [3]. These intelligent carriers not only share the basic work of teachers, but also create immersive experiences that are difficult to achieve in traditional classrooms.

Typical cases formed in the process of technology application show that AI is moving from the edge to the core of education. A physics smart classroom in a key middle school in a certain city integrates adaptive question banks, experimental simulation software, and three-dimensional holographic projection devices to visualize abstract electrical principles. The number of award-winning students in the provincial physics competition in this class increased by 3 times year-on-year [10]. This deep integration indicates that technology is no longer just an auxiliary tool, but a key element directly involved in teaching design and implementation. When intelligent systems can independently complete the complete closed loop of learning diagnosis, content push, and effect evaluation, the essence of the educational process is undergoing structural changes [5].

3. Systematic reconstruction path of teaching mode

The education sector is currently undergoing structural transformations catalyzed by artificial intelligence, with distinctive characteristics emerging in the evolution of teaching subject relationships. The traditional classroom paradigm, characterized by teachers' absolute discursive authority, is being fundamentally challenged as intelligent tutoring systems progressively assume responsibilities for knowledge transmission through capabilities such as learning analytics and knowledge graph construction. For instance, following the implementation of virtual teaching assistants in mathematics classrooms at a leading secondary school in Eastern China, teachers reduced time spent on fundamental knowledge instruction by 42%, reallocating their efforts toward cognitive guidance and emotional support [11]. This transition is transforming educators from knowledge authorities into designers and facilitators of learning experiences, though technological adaptation barriers persist. Empirical data indicates that over 60% of frontline educators encounter operational difficulties with intelligent teaching interfaces [6].

The dynamic adaptive reconstruction of instructional processes manifests through the deconstruction of standardized teaching procedures. An intelligent recommendation system developed by an online education platform exemplifies this shift, continuously adjusting exercise difficulty at 15-minute intervals based on real-time student response data, thereby enhancing average learning efficiency by 27% [8]. While such instant feedback mechanisms disrupt traditional lockstep teaching approaches, they simultaneously reveal algorithmic bias concerns. Research demonstrates that in language courses, these systems achieve an 18% error rate in evaluating oral expression proficiency [3]. The development of personalized learning pathways necessitates balancing technical precision with educational inclusivity, imposing heightened requirements for educational data annotation quality.

The multidimensional evolution of evaluation systems is advancing the transition from singular score-based assessment toward comprehensive competency profiling. A holistic evaluation model implemented at an experimental school in Shenzhen incorporates twelve distinct indicators—including classroom participation and collaborative capabilities—to generate multidimensional learning reports [12]. Such systems employ affective computing technologies to analyze micro-expressions, enabling effective

identification of learning state variations, though privacy concerns regarding data collection have become increasingly prominent. Legal disputes involving educational biometric data have tripled over three years, reflecting growing tensions between technological application and ethical governance [2].

The integration of physical and virtual learning environments is reshaping conventional educational spaces. A metaverse laboratory developed by a Beijing university enables student participation in historical scene reenactments through virtual avatars, with experimental data showing 39% improvement in spatial cognitive efficiency [13]. While such immersive environments transcend physical spatial constraints, equipment dependency exacerbates digital divide challenges. Schools in economically disadvantaged regions consistently lag in hardware infrastructure, with smart classroom coverage in western provinces measuring only one-third of eastern regional rates [4]. The digital migration of educational resources necessitates balanced development of supporting infrastructure, presenting novel challenges to educational equity.

These four dimensions of reconstruction do not evolve independently but form an interconnected ecosystem. As intelligent systems assume certain instructional functions, teachers can concentrate on higher-order educational objectives; data flows generated through dynamic teaching processes provide multidimensional parameters for evaluation systems; seamless virtual-physical integration ensures instructional continuity. However, coordinated development across these elements faces systemic barriers, including the absence of data interoperability standards among intelligent devices, resulting in approximately 30% of educational data remaining siloed [10]. These contradictions reveal the inherent complexity of educational digital transformation, necessitating profound dialogue between technological developers and educational practitioners.

4. Realistic Dilemmas and Breakthrough Paths in the Transformation Process

The integration of artificial intelligence in educational contexts reveals several critical contradictions requiring systematic attention. A fundamental conflict emerges between technological rationality and educational ethics, particularly regarding potential infringements of student privacy during data acquisition. For instance, a classroom monitoring system deployed in a provincial secondary school failed to adequately inform parents about data collection purposes, raising concerns about educational institutions' excessive gathering of behavioral information [1]. Furthermore, when intelligent tutoring systems adjust task difficulty based on assessment results, they risk reinforcing biases against academically disadvantaged students. Previous research indicates that one mathematics platform assigned low-level exercises to underperforming students at a rate of 87% [6]. This necessitates the development of specialized ethical frameworks for educational AI applications, clearly delineating data usage boundaries and algorithmic transparency standards, akin to the regulatory requirements established by California's Education Algorithms Accountability Act of 2022.

The tension between data-driven approaches and humanistic care manifests in the overreliance on quantitative metrics for evaluating teaching effectiveness. While some institutions employ emotion recognition systems to assess classroom engagement, they often overlook individual psychological differences. In Chinese smart classroom implementations, emotion monitoring systems incorrectly identified 31% of head-down note-taking students as inattentive [9]. Although an English teaching robot demonstrates precision in grammatical error detection, its accuracy in recognizing emotional nuances within student writing remains merely 52%. Consequently, developing educational intelligent agents with enhanced emotional interaction capabilities has become crucial. A virtual instructor developed by a Beijing university, for example, incorporates vocal intonation variations to deliver encouraging feedback, resulting in a 40% increase in student questioning frequency within pilot classes [8].

The disparity between technological investment and practical efficacy stems from misalignment between equipment procurement and implementation capabilities. At a vocational college that invested two million yuan in smart classroom infrastructure, 75% of instructors utilized only basic projection functions [4]. Meanwhile, educational robots in rural schools experience idleness rates reaching 60%, primarily due to maintenance costs exceeding local budgetary capacities [14]. Addressing these challenges requires establishing multi-stakeholder collaboration mechanisms. The successful welder training system co-developed by Guangdong vocational schools and enterprises demonstrates this approach, reducing operational error rates by 23% through corporate technological support, pedagogical expertise from educators, and third-party effectiveness evaluation [7].

Resolving these contradictions demands comprehensive systematic improvements. This includes establishing collaborative platforms encompassing government agencies, educational institutions, and

technology enterprises, complemented by regular assessments of educational technology applications—similar to the dynamic elimination mechanism for educational informatization projects implemented in Shanghai's Pudong New Area [10]. Simultaneously, enhancing teachers' technological proficiency is imperative, as evidenced by Zhejiang Province's "dual-qualification" training program that enabled 86% of participating educators to independently adjust smart classroom parameters [11]. Ultimately, balancing technological innovation with educational essence remains paramount for achieving meaningful transformation of teaching models.

5. Conclusions and Prospects

This study systematically examines the transformation and reconstruction of contemporary teaching models within the context of artificial intelligence. The findings indicate that this transformation constitutes an inevitable outcome driven by technological advancement, societal evolution, and the inherent logic of educational development, representing a paradigm shift from instruction-centered to learning-centered approaches. Successful reconstruction requires a comprehensive framework encompassing conceptual, operational, resource-based, and institutional dimensions, while consistently adhering to the fundamental principles of human-centric design and human-machine collaboration.

The rapid development of artificial intelligence is fundamentally reshaping educational ecosystems. Within future educational environments, teachers, AI systems, and students will form novel collaborative partnerships. A case in point is a key secondary school in Beijing that has implemented an intelligent teaching assistant system. Through this platform, teachers access knowledge point correlation maps during lesson preparation, while the system automatically generates differentiated exercises based on student performance data. This arrangement enables teachers to focus on designing inquiry-based learning tasks, while AI handles standardized workloads, and students receive more targeted learning support. Such division of labor represents not mere substitution, but rather an optimization where each educational participant leverages their distinctive strengths. Educational robots, as emerging instructional media, are demonstrating significant value in specialized educational settings. A school for visually impaired students in Shanghai utilizes intelligent learning guidance equipment that facilitates understanding of geometric shapes through tactile feedback and voice interaction, thereby transforming traditional visually-dependent teaching methodologies.

Breakthroughs in virtual reality technology are creating unprecedented learning spaces. Stanford University's 2022 virtual laboratory project enables students to observe molecular motion trajectories and modify experimental parameters in real-time through head-mounted displays. This immersive experience transcends the safety and spatial constraints of physical laboratories. Several vocational colleges in China have initiated pilot metaverse training platforms where automotive engineering students can virtually disassemble and assemble various engine models, receiving immediate feedback on operational standards. These virtual-physical hybrid learning environments not only enhance engagement but also address challenges related to outdated training equipment. In basic education, virtual classrooms are transforming opportunities for remote schools. Yunnan Province's "Cloud Classroom" initiative employs augmented reality technology to enable rural students to conduct biological dissection experiments simultaneously with urban counterparts, potentially mitigating long-standing educational resource disparities.

The widespread integration of artificial intelligence necessitates reorienting educational objectives. According to the World Economic Forum's "Future of Jobs" report, critical thinking, creativity, and interpersonal coordination will emerge as the most crucial workplace skills by 2025—precisely those human capabilities that AI cannot readily replicate. Massachusetts Institute of Technology's recent "Human Intelligence Project" incorporates philosophical debate and artistic creation modules into engineering curricula, signaling a fundamental reorientation of educational priorities. In practical implementation, a Shanghai primary school has introduced a "Mind Gymnastics" curriculum that emphasizes developing students' questioning abilities through open-ended problems and interdisciplinary projects, rather than memorizing standardized answers. This shift demands corresponding advancements in evaluation systems, as exemplified by an online education platform's development of growth portfolio systems that document students' thinking processes and collaborative contributions, transcending the limitations of traditional score-based assessment.

Throughout technological transformation, education must preserve its essential human attributes. Finland's education authorities explicitly mandate that no teaching software may replace face-to-face teacher-student interaction time when promoting AI teaching aids—a policy balance worthy of emulation.

An educational technology company's composition correction system maintains teachers' handwritten comment functionality while providing grammatical suggestions, embodying the human warmth in technological application. Future school physical spaces may increasingly resemble innovation workshops, as demonstrated by a Beijing Zhongguancun experimental school that has transformed conventional classrooms into "learning communities" equipped with mobile devices and intelligent perception systems, while preserving handmade areas and free discussion corners. This spatial reconfiguration reflects enduring educational values—that technology ultimately serves human needs, and cultivating well-rounded individuals remains education's unwavering mission.

References

- [1] Li Wangwei, Deng Fengyi. (2025)Application Research of Smart Classroom in Probability and Statistics Teaching in Junior High School. Advances in Education, 15: 64.
- [2] Bhutoria, Aditi. (2022)Personalized education and artificial intelligence in the United States, China, and India: A systematic review using a human-in-the-loop model. Computers and Education: Artificial Intelligence 3: 100068.
- [3] Wang Yanyan. (2022)Research on the construction of intelligent English classrooms in higher vocational education under the background of artificial intelligence. Campus English.
- [4] Zhang Ke. (2025) Exploration of Smart Classroom Teaching Mode for Electronic Courses in Higher Vocational Education under the Background of Artificial Intelligence. Social Science Research and Practice, 1(6)
- [5] Qu, Jianjing, Yanan Zhao, and Yongping Xie.(2022)Artificial intelligence leads the reform of education models. Systems Research and Behavioral Science 39.3: 581-588.
- [6] Zhu Yingbin, Wang Wanshun, Xiao Longhai. (2025) Learning Diagnosis Based on Smart Classroom: Practice, Challenges and Future. Digital Education, 11(2).
- [7] Liu Bangqi.(2023) Smart Classrooms Lead the Digital Transformation of Teaching: Trends, Characteristics, and Practical Strategies. Journal of Educational Technology Research, 44(8): 71-79.
- [8] Liu, Yi, Lei Chen, and Zerui Yao. (2022) The application of artificial intelligence assistant to deep learning in teachers teaching and students learning processes. Frontiers in psychology 13: 929175.
- [9] Guo Yafeng.(2022) Artificial Intelligence Smart Classroom A Bridge for Teacher-Student Communication in Middle School Chinese Teaching . Second Classroom.
- [10] Yang Susu. (2025)Research on Project-based Teaching Design and Implementation Strategies Supported by Smart Classrooms in the Age of Artificial Intelligence. Advances in Education, 15: 601.
- [11] Zhu Xudong, Xu Peiyuan, Yu Saidi.(2025) Teacher's all-round professional development in the era of artificial intelligence. Journal of Distance Education (1672-0008), 43(4).
- [12] Lv Dongfang, Wei Xiaotong.(2025) Research on the Recognition of "Artificial Intelligence+" Learning Behavior from the Perspective of Multi-dimensional Features . China Medical Education Technology, 39(3).
- [13] Li Na.(2025) Application Research of Smart Classroom Teaching Mode in Ideological and Political Education in Colleges and Universities Taking "Outline of Modern History" as an Example . Advances in Social Sciences, 14: 311.
- [14] Nie Shicong.(2024)The Realistic Dilemmas and Implementation Paths of Smart Sports Classrooms . Advances in Physical Sciences, 12: 488.