Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 9, Issue 1: 80-86, DOI: 10.25236/AJCIS.2026.090110

A Comparative Study of Facial Expression
Recognition Based on Deep Residual Networks

Yirui Sun

The National University of Malaysia, Bangi, Selangor, 43000, Malaysia
y26294541@gmail.com

Abstract: Facial Expression Recognition (FER) has increasingly become a research focal point in the
domain of affective computing. However, traditional feature extraction algorithms and shallow neural
networks often encounter limitations in capturing robust semantic features within complex,
unconstrained scenarios characterized by drastic illumination fluctuations and partial facial occlusions.
To deeply evaluate the performance of various deep neural networks in complex recognition tasks, this
study conducts a systematic comparative analysis of VGG16, DenseNet, and ResNet variants (ResNet18,
ResNet34, and ResNet50) based on the large-scale public benchmark dataset FER-2013. Addressing the
grayscale nature of the image data, we performed single-channel adaptation on the input layers of each
model and integrated Dropout and Batch Normalization strategies into the fully connected layers to
effectively suppress overfitting. Experimental results demonstrate that ResNet50 achieves a superior
validation accuracy of 85.71%, effectively bypassing the gradient vanishing bottleneck via its residual
learning mechanism. This performance far surpasses that of VGG16 and DenseNet, both of which failed
to maintain adequate generalization due to limited representational capacity or catastrophic overfitting.
Ultimately, ResNet50 demonstrates exceptional robustness and a decisive advantage over other baseline
architectures in capturing the complex nuances of human emotions.
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1. Introduction

Facial Expression Recognition (FER) has emerged as a core research hotspot in Human-Computer
Interaction (HCI) [l By empowering machines to perceive emotional intentions, FER enables “affective
intelligence,” allowing systems to dynamically adjust feedback strategies based on user emotions (e.g.,
anger, happiness) for adaptive interaction 1B,

Early FER research relied on traditional machine learning, synergizing manual feature design with
classifiers like SVM and KNN. Shan et al. utilized Local Binary Patterns (LBP) with SVM, while
Carcagni et al. explored Histograms of Oriented Gradients (HOG) for robust recognition ™51, While
effective in controlled settings, these hand-crafted features lack robustness against real-world
challenges—such as lighting fluctuations, pose variations, and occlusions—Iimiting further accuracy
improvements.

Recently, Deep Learning has revolutionized FER. Unlike limited hand-crafted features,
Convolutional Neural Networks (CNNs) automatically extract robust semantic features from massive
data [%. Simonyan’s VGG network used stacked 3x3 kernels to demonstrate the critical role of network
depth . GoogleNet subsequently introduced Inception modules to enhance feature diversity and
efficiency 1. Furthermore, the Deep Residual Network (ResNet) employed residual learning and skip
connections to overcome gradient vanishing, enabling deeper architectures that significantly improve
recognition accuracy in complex environments 1,

Consequently, this paper investigates the performance variations of CNNs with varying depths for
FER. Using the FER-2013 benchmark, we systematically compare VGG16, DenseNet, and ResNet
variants (ResNet18/34/50). We implemented adaptive modifications, including single-channel input
adjustment and integrating Dropout and Batch Normalization (BN) to mitigate overfitting. By evaluating
metrics like accuracy and convergence, this study elucidates the relationship between network depth and
feature extraction capability, validating the superiority of ResNet50 in processing complex facial features.

This paper is organized as follows: Section 2 reviews related work; Section 3 details the proposed
methodology; Section 4 analyzes experimental results; and Section 5 presents conclusions.
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2. Related work
2.1. Traditional Methodologies

Traditional facial expression recognition relies on hand-crafted feature extraction, primarily
categorized into geometric-based and texture-based approaches ['%. Both methodologies encode facial
information from distinct perspectives, establishing the foundation for classification.

Methodologies centered on geometric features prioritize morphological transformations and spatial
relationships among critical facial components '], The pipeline typically localizes fiducial landmarks
(e.g., eyes, mouth) to synthesize feature vectors using descriptors like Euclidean distances or angles 111,
For instance, “surprise” is characterized by increased longitudinal distances due to an open mouth. While
offering low dimensionality and computational efficiency, performance is inextricably linked to
landmark localization precision. Wang et al. note that unconstrained environments—characterized by
irregular illumination and pose variations—significantly hamper localization accuracy, causing a
precipitous decline in robustness 31, Consequently, a singular reliance on geometric features remains
vulnerable within complex scenarios.

To compensate for geometric limitations, texture-based methods extract microscopic skin surface
changes, capturing subtle details like wrinkles caused by muscle contraction ['4l, Classical operators
include Local Binary Patterns (LBP), Histograms of Oriented Gradients (HOG), and Gabor transforms
[15], LBP is extensively studied for its grayscale invariance. Li et al. indicated that combining LBP with
multi-scale Gabor features significantly enhances representation capability ['°]. Compared to geometric
features, texture features contain richer appearance information and effectively distinguish
morphologically similar expressions, although this comes with higher computational complexity in high-
dimensional spaces.

2.2. CNN Methodologies

With the maturation of deep learning, Convolutional Neural Networks (CNNs) have become the
standard paradigm for facial expression recognition (FER) ['7). Despite emerging variants, classic deep
networks remain central to research due to their robust feature extraction capabilities and mature
structural designs '8,

For deploying classic networks like VGG and ResNet, transfer learning and fine-tuning are
indispensable, as limited FER datasets often precipitate overfitting when training ab initio "'\, Utilizing
models pre-trained on ImageNet addresses this. For instance, Jha et al. demonstrated that a fine-tuned
ResNet-50 offers superior generalization on JAFFE and CK+ datasets compared to unvalidated novel
architectures %1, Similarly, Zhang et al. validated ResNet on FER-2013, showing that strategically
refining fully connected layers allows baseline models to achieve industrial-grade precision 2!,

Regarding mobile deployment, the trade-offs between lightweight models (e.g., MobileNet) and
traditional deep architectures remain a key focus [?2). Studies indicate that while lightweight networks
significantly reduce parameters via depthwise separable convolutions, they generally lag behind deep
models like VGG and ResNet in capturing subtle facial features (23,

Furthermore, comprehensive benchmarking is crucial, as distinct architectures exhibit varying
sensitivities to image texture and shape across conditions 4. Liu et al. conducted detailed cross-
validation on VGG, DenseNet, and ResNet, noting that analyzing confusion matrices in multi-model
comparisons objectively reveals architectural strengths and weaknesses 2. This approach provides a
solid theoretical basis for selecting optimal algorithms in practical engineering.

3. Methods
3.1. Comparative Models

This study evaluates VGG16, DenseNet, and ResNet series as FER baselines. VGG16 utilizes stacked
3x3 kernels to verify depth’s importance, while DenseNet employs aggressive dense connections for
efficient feature reuse. The ResNet series introduces skip connections to resolve network degradation;
specifically, ResNet18/34 utilizes Basic Blocks to balance speed and accuracy, whereas ResNet50
employs a Bottleneck structure to capture abstract semantics with controlled parameters. Collectively,
these models represent the evolution from increasing depth to optimizing connectivity, establishing a

Published by Francis Academic Press, UK
-81-



Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 9, Issue 1: 80-86, DOI: 10.25236/AJCIS.2026.090110
comprehensive benchmark for this research.
3.2. ResNet

3.2.1. Network Structure

The Residual Network (ResNet) was designed to mitigate the “degradation problem” in deep CNNss,
where increased depth triggers an accuracy decline [, By leveraging residual learning, ResNet enables
deep architectures to extract discriminative semantic features. Structurally, variants differ significantly:
ResNet-18/34 utilize the “Basic Block” (two 3x3 layers), whereas ResNet-50 employs the “Bottleneck™
block (stacked 1x1, 3x3, 1x1 layers). This Bottleneck design increases depth while strictly controlling
computational costs via dimensionality reduction, allowing ResNet-50 to optimally balance efficiency
with the capability to capture complex emotional nuances.

The residual block is the core component of ResNet, and its innovation lies in the introduction of
“skip connections” or “identity mappings.” Assume the input of a certain sub-module in the neural
network is x, and the desired underlying mapping to be learned is H(x). Traditional convolutional
networks attempt to fit H(x) directly, but this is extremely difficult to optimize in deep structures.
ResNet converts the learning objective into fitting a residual function, namely Eq(1):

F(x) =H(x) —x ®
Therefore, the original underlying mapping can be reconstructed as Eq(2):
Hx)=F(x)+x 2

This mechanism allows input signals to bypass intermediate layers, fundamentally mitigating
vanishing gradients. Mathematically, for redundant layers, the model simply drives residual weights to
zero to achieve identity mapping, preventing performance degradation with increased depth. Additionally,
skip connections create a gradient “expressway” for backpropagation; this ensures lossless flow to
shallow layers, suppressing dispersion while significantly enhancing convergence efficiency.

3.2.3. ReLLU Activation Function

Following the convolutional layers of ResNet, the Rectified Linear Unit (ReLU) is typically
introduced as the non-linear activation function, and its mathematical expression is defined as shown in

Eq(3):
f(x) = max(0,x) 3)

Compared to traditional saturated functions like Sigmoid or Tanh, ReLU exhibits critical advantages
in deep residual networks. First, its constant derivative of 1 in the positive region prevents gradient decay,
synergizing with residual structures to fundamentally alleviate vanishing gradients. Second, ReLU’s one-
sided inhibition induces output sparsity; this mechanism mimics biological neural systems and reduces
feature redundancy, thereby suppressing overfitting. Finally, by utilizing simple threshold operations
instead of complex exponential calculations, ReLU significantly enhances computational efficiency
during both forward inference and backpropagation.

3.3. Loss Function

To evaluate the deviation between the predicted probabilities of the model output and the ground truth
expression labels, and to guide the optimization of network weights, this paper adopts the cross-entropy
loss function commonly used in multi-classification tasks. During the model training process, the outputs
of the last layer of the network (Logits) are first mapped to the probability distribution of each expression
category through the Softmax activation function, and then the cross-entropy between them and the
ground truth labels is calculated. The formula can be represented by Eq(4):

L=- %i i Yic log(pic) 4

i=1c=1

Where L represents the calculated total loss value. N represents the total number of samples in the
current training batch, and M represents the total number of data categories. y;. represents the ground
truth category, and p;. represents the probability value predicted by the model that sample i belongs to a
certain category.
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4, Experiment
4.1. Dataset

This experiment selects the FER-2013 (Facial Expression Recognition 2013) dataset as the core
experimental data. The dataset consists of a total of 35,887 single-channel grayscale facial images.
Specifically, the training set contains 28,709 images, while the public test set and the private test set each
contain 3,589 images. The dataset is annotated with 7 basic expression categories: Anger (0), Disgust (1),
Fear (2), Happiness (3), Sadness (4), Surprise (5), and Neutral (6). The original resolution of the images
is 48x48. During the preprocessing stage, they are converted to 224x224 in size and undergo pixel

normalization.
4.2. Evaluation Metrics

To comprehensively and objectively evaluate the classification performance of different deep learning
models on facial expression recognition tasks, this paper introduces Accuracy, AUC (Area Under Curve),
Precision, and F1-score as performance evaluation metrics.

The Accuracy formula is described in Eq(5):

| ~ TP + TN -
Couracy = TP TN + FP + FN

Among them, TP (True Positive) is the number of truly positive samples and predicted as positive,
TN (True Negative) is the number of truly negative samples and predicted as negative, FP (False Positive)
is the number of samples that are truly negative but predicted as positive, and FN (False Negative) is the
number of samples that are truly positive but predicted as negative.

The AUC formula is described in Eq(6). Among them, TPR (True Positive Rate) represents the true
positive rate, which indicates the proportion of samples correctly predicted by the model among all
ground truth categories, and FPR (False Positive Rate) represents the false positive rate, which is the
proportion of samples incorrectly predicted by the model among all samples that truly do not belong to
a certain category. TPR and FPR can be expressed by Eq (7) and Eq (8):

1
AUC = j TPR(FPR) dFPR 6)
0
TP
TPR = TP + FN @
FPR = ki (8)
" TN +FP

Precision represents the proportion of actual positive samples among the samples predicted as
positive by the model, and its calculation formula is shown in Eq(9):
Precision = TP ©
recision = o5
F1-score is the harmonic mean of precision and recall. It can comprehensively reflect the model’s
precision and recall, and is especially suitable for evaluating datasets with imbalanced category
distributions. Its calculation formula is shown in Eq(10), and the calculation of recall can be expressed

by Eq(11):

_ Precision X Recall _ 2XTP
Fl = score = 2 X 5 ision + Recall ~ Zx TP + FP + FN (10)
TP
Recall = m (11)

4.3. Implementation Details

Experiments utilized an Nvidia GeForce RTX 4090 GPU (24GB) on Ubuntu 22.04. To enhance
robustness, data augmentation techniques—including random horizontal flipping, rotation, translation,
and affine transformation—were employed. The training process adopted the Adam optimizer with a
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learning rate of 0.0001, a batch size of 32, and 50 epochs. Furthermore, a dropout rate of 0.3 was applied
to effectively mitigate overfitting 2],

Table 1: The performance of VGG, DenseNet, ResNetl8, ResNet34, and ResNet50 on FER-2013.

Model Validation Accuracy Training Accuracy Loss

VGG16 0.4517 0.5953 1.0654
DenseNet 0.5390 0.9950 3.8907
ResNetl8 0.6048 0.6681 1.2658
ResNet34 0.6505 0.8086 1.1923
ResNet50 0.8571 0.8571 1.7390

Table 1 presents the performance of VGG, DenseNet, ResNet18, ResNet34, and ResNet50 on FER-
2013, where the optimal performance is indicated in bold font.

Experimental results show that the VGG16 model has the lowest validation accuracy, at only 45.17%.
This indicates that in expression recognition tasks with limited data and complex features, shallow
networks that simply stack convolutional layers struggle to extract highly discriminative deep semantic
features and are prone to falling into local optimal solutions.

Although DenseNet achieved the highest training accuracy (99.50%), it reached only 53.90% on
validation, indicating severe overfitting. While its dense feature reuse aids transmission, it caused the
model to over-learn noise in the “in-the-wild” FER-2013 dataset. In contrast, ResNet performance
improved with depth, with ResNet50 achieving the optimal 85.71% validation accuracy. Benefiting from
residual skip connections, ResNet50 effectively mitigates gradient vanishing, ensuring deep feature
extraction while maintaining excellent generalization.

Given the performance of ResNet50 in the comparative experiments, this paper further conducts an
in-depth analysis of its convergence during the training process and its multi-dimensional performance
metrics. Fig.1 displays the variation curves of various indicators for ResNet50 during the 50-epoch
training process.
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Figure 1: Performance metrics of ResNet50 in the first 50 rounds of training.

As the number of training epochs increases, the model’s accuracy climbs rapidly and tends to stabilize
around the 10th epoch, eventually achieving stable convergence. The Loss curves of the training and
validation sets show synchronized descent trends without significant oscillations or separation, further
proving that the model effectively avoids overfitting under the influence of the Dropout strategy. Besides
accuracy, the AUC metric eventually stabilizes around 0.7 on the validation set, indicating that the model
possesses good ranking capability for positive and negative sample classification. Although F1-score and
Precision exhibit some fluctuations in the later stages of training—primarily caused by the extreme
imbalance of sample quantities in certain categories within the FER-2013 dataset—the overall trend
remains at a high level, verifying the robustness of ResNet50 when handling class-imbalanced data.

5. Conclusion

Aiming at facial expression recognition (FER) challenges in uncontrolled environments, this paper
systematically evaluated VGG16, DenseNet, and ResNet variants (ResNet18/34/50) on the FER-2013
dataset. Through adaptive architectural adjustments and multi-dimensional analysis, we draw the
following conclusions:

(1) Experimental results demonstrate that ResNet50 significantly outperforms both VGG16 (limited
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by shallow semantic capture) and DenseNet (prone to overfitting) by utilizing residual learning to
effectively resolve gradient vanishing, achieving a peak validation accuracy of 85.71% with superior
robustness and stability.

(2) Despite ResNet50’s success, dataset class imbalance remains a limitation causing precision
fluctuations. Future work will address this via resampling or cost-sensitive learning strategies, while also
integrating attention mechanisms and facial landmarks to enhance the model’s focus on micro-
expressions and occluded areas, thereby constructing a more precise FER system.
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