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Abstract: Facial Expression Recognition (FER) has increasingly become a research focal point in the 

domain of affective computing. However, traditional feature extraction algorithms and shallow neural 

networks often encounter limitations in capturing robust semantic features within complex, 

unconstrained scenarios characterized by drastic illumination fluctuations and partial facial occlusions. 

To deeply evaluate the performance of various deep neural networks in complex recognition tasks, this 

study conducts a systematic comparative analysis of VGG16, DenseNet, and ResNet variants (ResNet18, 

ResNet34, and ResNet50) based on the large-scale public benchmark dataset FER-2013. Addressing the 

grayscale nature of the image data, we performed single-channel adaptation on the input layers of each 

model and integrated Dropout and Batch Normalization strategies into the fully connected layers to 

effectively suppress overfitting. Experimental results demonstrate that ResNet50 achieves a superior 

validation accuracy of 85.71%, effectively bypassing the gradient vanishing bottleneck via its residual 

learning mechanism. This performance far surpasses that of VGG16 and DenseNet, both of which failed 

to maintain adequate generalization due to limited representational capacity or catastrophic overfitting. 

Ultimately, ResNet50 demonstrates exceptional robustness and a decisive advantage over other baseline 

architectures in capturing the complex nuances of human emotions. 
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1. Introduction 

Facial Expression Recognition (FER) has emerged as a core research hotspot in Human-Computer 

Interaction (HCI) [1]. By empowering machines to perceive emotional intentions, FER enables “affective 

intelligence,” allowing systems to dynamically adjust feedback strategies based on user emotions (e.g., 

anger, happiness) for adaptive interaction [2][3]. 

Early FER research relied on traditional machine learning, synergizing manual feature design with 

classifiers like SVM and KNN. Shan et al. utilized Local Binary Patterns (LBP) with SVM, while 

Carcagnì et al. explored Histograms of Oriented Gradients (HOG) for robust recognition  [4][5]. While 

effective in controlled settings, these hand-crafted features lack robustness against real-world 

challenges—such as lighting fluctuations, pose variations, and occlusions—limiting further accuracy 

improvements. 

Recently, Deep Learning has revolutionized FER. Unlike limited hand-crafted features, 

Convolutional Neural Networks (CNNs) automatically extract robust semantic features from massive 

data [6]. Simonyan’s VGG network used stacked 3×3 kernels to demonstrate the critical role of network 

depth [7]. GoogleNet subsequently introduced Inception modules to enhance feature diversity and 

efficiency [8]. Furthermore, the Deep Residual Network (ResNet) employed residual learning and skip 

connections to overcome gradient vanishing, enabling deeper architectures that significantly improve 

recognition accuracy in complex environments [9]. 

Consequently, this paper investigates the performance variations of CNNs with varying depths for 

FER. Using the FER-2013 benchmark, we systematically compare VGG16, DenseNet, and ResNet 

variants (ResNet18/34/50). We implemented adaptive modifications, including single-channel input 

adjustment and integrating Dropout and Batch Normalization (BN) to mitigate overfitting. By evaluating 

metrics like accuracy and convergence, this study elucidates the relationship between network depth and 

feature extraction capability, validating the superiority of ResNet50 in processing complex facial features. 

This paper is organized as follows: Section 2 reviews related work; Section 3 details the proposed 

methodology; Section 4 analyzes experimental results; and Section 5 presents conclusions. 
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2. Related work 

2.1. Traditional Methodologies 

Traditional facial expression recognition relies on hand-crafted feature extraction, primarily 

categorized into geometric-based and texture-based approaches [10]. Both methodologies encode facial 

information from distinct perspectives, establishing the foundation for classification. 

Methodologies centered on geometric features prioritize morphological transformations and spatial 

relationships among critical facial components [11]. The pipeline typically localizes fiducial landmarks 

(e.g., eyes, mouth) to synthesize feature vectors using descriptors like Euclidean distances or angles [12]. 

For instance, “surprise” is characterized by increased longitudinal distances due to an open mouth. While 

offering low dimensionality and computational efficiency, performance is inextricably linked to 

landmark localization precision. Wang et al. note that unconstrained environments—characterized by 

irregular illumination and pose variations—significantly hamper localization accuracy, causing a 

precipitous decline in robustness [13]. Consequently, a singular reliance on geometric features remains 

vulnerable within complex scenarios. 

To compensate for geometric limitations, texture-based methods extract microscopic skin surface 

changes, capturing subtle details like wrinkles caused by muscle contraction [14]. Classical operators 

include Local Binary Patterns (LBP), Histograms of Oriented Gradients (HOG), and Gabor transforms 
[15]. LBP is extensively studied for its grayscale invariance. Li et al. indicated that combining LBP with 

multi-scale Gabor features significantly enhances representation capability [16]. Compared to geometric 

features, texture features contain richer appearance information and effectively distinguish 

morphologically similar expressions, although this comes with higher computational complexity in high-

dimensional spaces. 

2.2. CNN Methodologies 

With the maturation of deep learning, Convolutional Neural Networks (CNNs) have become the 

standard paradigm for facial expression recognition (FER) [17]. Despite emerging variants, classic deep 

networks remain central to research due to their robust feature extraction capabilities and mature 

structural designs [18]. 

For deploying classic networks like VGG and ResNet, transfer learning and fine-tuning are 

indispensable, as limited FER datasets often precipitate overfitting when training ab initio [19]. Utilizing 

models pre-trained on ImageNet addresses this. For instance, Jha et al. demonstrated that a fine-tuned 

ResNet-50 offers superior generalization on JAFFE and CK+ datasets compared to unvalidated novel 

architectures [20]. Similarly, Zhang et al. validated ResNet on FER-2013, showing that strategically 

refining fully connected layers allows baseline models to achieve industrial-grade precision [21]. 

Regarding mobile deployment, the trade-offs between lightweight models (e.g., MobileNet) and 

traditional deep architectures remain a key focus [22]. Studies indicate that while lightweight networks 

significantly reduce parameters via depthwise separable convolutions, they generally lag behind deep 

models like VGG and ResNet in capturing subtle facial features [23]. 

Furthermore, comprehensive benchmarking is crucial, as distinct architectures exhibit varying 

sensitivities to image texture and shape across conditions [24]. Liu et al. conducted detailed cross-

validation on VGG, DenseNet, and ResNet, noting that analyzing confusion matrices in multi-model 

comparisons objectively reveals architectural strengths and weaknesses [25]. This approach provides a 

solid theoretical basis for selecting optimal algorithms in practical engineering. 

3. Methods 

3.1. Comparative Models 

This study evaluates VGG16, DenseNet, and ResNet series as FER baselines. VGG16 utilizes stacked 

3×3 kernels to verify depth’s importance, while DenseNet employs aggressive dense connections for 

efficient feature reuse. The ResNet series introduces skip connections to resolve network degradation; 

specifically, ResNet18/34 utilizes Basic Blocks to balance speed and accuracy, whereas ResNet50 

employs a Bottleneck structure to capture abstract semantics with controlled parameters. Collectively, 

these models represent the evolution from increasing depth to optimizing connectivity, establishing a 
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comprehensive benchmark for this research. 

3.2. ResNet 

3.2.1. Network Structure 

The Residual Network (ResNet) was designed to mitigate the “degradation problem” in deep CNNs, 

where increased depth triggers an accuracy decline [26]. By leveraging residual learning, ResNet enables 

deep architectures to extract discriminative semantic features. Structurally, variants differ significantly: 

ResNet-18/34 utilize the “Basic Block” (two 3×3 layers), whereas ResNet-50 employs the “Bottleneck” 

block (stacked 1×1, 3×3, 1×1 layers). This Bottleneck design increases depth while strictly controlling 

computational costs via dimensionality reduction, allowing ResNet-50 to optimally balance efficiency 

with the capability to capture complex emotional nuances. 

The residual block is the core component of ResNet, and its innovation lies in the introduction of 

“skip connections” or “identity mappings.” Assume the input of a certain sub-module in the neural 

network is 𝑥 , and the desired underlying mapping to be learned is 𝐻(𝑥) . Traditional convolutional 

networks attempt to fit 𝐻(𝑥)  directly, but this is extremely difficult to optimize in deep structures. 

ResNet converts the learning objective into fitting a residual function, namely Eq(1): 

𝐹(𝑥) = 𝐻(𝑥) − 𝑥 (1) 

Therefore, the original underlying mapping can be reconstructed as Eq(2): 

𝐻(𝑥) = 𝐹(𝑥) + 𝑥 (2) 

This mechanism allows input signals to bypass intermediate layers, fundamentally mitigating 

vanishing gradients. Mathematically, for redundant layers, the model simply drives residual weights to 

zero to achieve identity mapping, preventing performance degradation with increased depth. Additionally, 

skip connections create a gradient “expressway” for backpropagation; this ensures lossless flow to 

shallow layers, suppressing dispersion while significantly enhancing convergence efficiency. 

3.2.3. ReLU Activation Function 

Following the convolutional layers of ResNet, the Rectified Linear Unit (ReLU) is typically 

introduced as the non-linear activation function, and its mathematical expression is defined as shown in 

Eq(3): 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (3) 

Compared to traditional saturated functions like Sigmoid or Tanh, ReLU exhibits critical advantages 

in deep residual networks. First, its constant derivative of 1 in the positive region prevents gradient decay, 

synergizing with residual structures to fundamentally alleviate vanishing gradients. Second, ReLU’s one-

sided inhibition induces output sparsity; this mechanism mimics biological neural systems and reduces 

feature redundancy, thereby suppressing overfitting. Finally, by utilizing simple threshold operations 

instead of complex exponential calculations, ReLU significantly enhances computational efficiency 

during both forward inference and backpropagation. 

3.3. Loss Function 

To evaluate the deviation between the predicted probabilities of the model output and the ground truth 

expression labels, and to guide the optimization of network weights, this paper adopts the cross-entropy 

loss function commonly used in multi-classification tasks. During the model training process, the outputs 

of the last layer of the network (Logits) are first mapped to the probability distribution of each expression 

category through the Softmax activation function, and then the cross-entropy between them and the 

ground truth labels is calculated. The formula can be represented by Eq(4): 

𝐿 = −
1

𝑁
∑ ∑ 𝑦𝑖𝑐 𝑙𝑜𝑔(𝑝𝑖𝑐)

𝑀

𝑐=1

𝑁

𝑖=1

(4) 

Where 𝐿 represents the calculated total loss value. 𝑁 represents the total number of samples in the 

current training batch, and 𝑀 represents the total number of data categories. 𝑦𝑖𝑐 represents the ground 

truth category, and 𝑝𝑖𝑐 represents the probability value predicted by the model that sample 𝑖 belongs to a 

certain category. 
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4. Experiment 

4.1. Dataset 

This experiment selects the FER-2013 (Facial Expression Recognition 2013) dataset as the core 

experimental data. The dataset consists of a total of 35,887 single-channel grayscale facial images. 

Specifically, the training set contains 28,709 images, while the public test set and the private test set each 

contain 3,589 images. The dataset is annotated with 7 basic expression categories: Anger (0), Disgust (1), 

Fear (2), Happiness (3), Sadness (4), Surprise (5), and Neutral (6). The original resolution of the images 

is 48×48. During the preprocessing stage, they are converted to 224×224 in size and undergo pixel 

normalization. 

4.2. Evaluation Metrics 

To comprehensively and objectively evaluate the classification performance of different deep learning 

models on facial expression recognition tasks, this paper introduces Accuracy, AUC (Area Under Curve), 

Precision, and F1-score as performance evaluation metrics. 

The Accuracy formula is described in Eq(5): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(5) 

Among them, 𝑇𝑃 (True Positive) is the number of truly positive samples and predicted as positive, 

𝑇𝑁 (True Negative) is the number of truly negative samples and predicted as negative, 𝐹𝑃 (False Positive) 

is the number of samples that are truly negative but predicted as positive, and 𝐹𝑁 (False Negative) is the 

number of samples that are truly positive but predicted as negative. 

The AUC formula is described in Eq(6). Among them, 𝑇𝑃𝑅 (True Positive Rate) represents the true 

positive rate, which indicates the proportion of samples correctly predicted by the model among all 

ground truth categories, and 𝐹𝑃𝑅 (False Positive Rate) represents the false positive rate, which is the 

proportion of samples incorrectly predicted by the model among all samples that truly do not belong to 

a certain category. 𝑇𝑃𝑅 and 𝐹𝑃𝑅 can be expressed by Eq (7) and Eq (8): 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅) 𝑑𝐹𝑃𝑅
1

0

(6) 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(7) 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
(8) 

Precision represents the proportion of actual positive samples among the samples predicted as 

positive by the model, and its calculation formula is shown in Eq(9): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(9) 

F1-score is the harmonic mean of precision and recall. It can comprehensively reflect the model’s 

precision and recall, and is especially suitable for evaluating datasets with imbalanced category 

distributions. Its calculation formula is shown in Eq(10), and the calculation of recall can be expressed 

by Eq(11): 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(11) 

4.3. Implementation Details 

Experiments utilized an Nvidia GeForce RTX 4090 GPU (24GB) on Ubuntu 22.04. To enhance 

robustness, data augmentation techniques—including random horizontal flipping, rotation, translation, 

and affine transformation—were employed. The training process adopted the Adam optimizer with a 
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learning rate of 0.0001, a batch size of 32, and 50 epochs. Furthermore, a dropout rate of 0.3 was applied 

to effectively mitigate overfitting [27]. 

Table 1: The performance of VGG, DenseNet, ResNet18, ResNet34, and ResNet50 on FER-2013. 

Model Validation Accuracy Training Accuracy Loss 

VGG16 0.4517 0.5953 1.0654 

DenseNet 0.5390 0.9950 3.8907 

ResNet18 0.6048 0.6681 1.2658 

ResNet34 0.6505 0.8086 1.1923 

ResNet50 0.8571 0.8571 1.7390 

Table 1 presents the performance of VGG, DenseNet, ResNet18, ResNet34, and ResNet50 on FER-

2013, where the optimal performance is indicated in bold font. 

Experimental results show that the VGG16 model has the lowest validation accuracy, at only 45.17%. 

This indicates that in expression recognition tasks with limited data and complex features, shallow 

networks that simply stack convolutional layers struggle to extract highly discriminative deep semantic 

features and are prone to falling into local optimal solutions. 

Although DenseNet achieved the highest training accuracy (99.50%), it reached only 53.90% on 

validation, indicating severe overfitting. While its dense feature reuse aids transmission, it caused the 

model to over-learn noise in the “in-the-wild” FER-2013 dataset. In contrast, ResNet performance 

improved with depth, with ResNet50 achieving the optimal 85.71% validation accuracy. Benefiting from 

residual skip connections, ResNet50 effectively mitigates gradient vanishing, ensuring deep feature 

extraction while maintaining excellent generalization. 

Given the performance of ResNet50 in the comparative experiments, this paper further conducts an 

in-depth analysis of its convergence during the training process and its multi-dimensional performance 

metrics. Fig.1 displays the variation curves of various indicators for ResNet50 during the 50-epoch 

training process. 

 

Figure 1: Performance metrics of ResNet50 in the first 50 rounds of training. 

As the number of training epochs increases, the model’s accuracy climbs rapidly and tends to stabilize 

around the 10th epoch, eventually achieving stable convergence. The Loss curves of the training and 

validation sets show synchronized descent trends without significant oscillations or separation, further 

proving that the model effectively avoids overfitting under the influence of the Dropout strategy. Besides 

accuracy, the AUC metric eventually stabilizes around 0.7 on the validation set, indicating that the model 

possesses good ranking capability for positive and negative sample classification. Although F1-score and 

Precision exhibit some fluctuations in the later stages of training—primarily caused by the extreme 

imbalance of sample quantities in certain categories within the FER-2013 dataset—the overall trend 

remains at a high level, verifying the robustness of ResNet50 when handling class-imbalanced data. 

5. Conclusion 

Aiming at facial expression recognition (FER) challenges in uncontrolled environments, this paper 

systematically evaluated VGG16, DenseNet, and ResNet variants (ResNet18/34/50) on the FER-2013 

dataset. Through adaptive architectural adjustments and multi-dimensional analysis, we draw the 

following conclusions: 

(1) Experimental results demonstrate that ResNet50 significantly outperforms both VGG16 (limited 
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by shallow semantic capture) and DenseNet (prone to overfitting) by utilizing residual learning to 

effectively resolve gradient vanishing, achieving a peak validation accuracy of 85.71% with superior 

robustness and stability. 

(2) Despite ResNet50’s success, dataset class imbalance remains a limitation causing precision 

fluctuations. Future work will address this via resampling or cost-sensitive learning strategies, while also 

integrating attention mechanisms and facial landmarks to enhance the model’s focus on micro-

expressions and occluded areas, thereby constructing a more precise FER system. 

References 

[1] Li, S., & Deng, W. (2020). Deep facial expression recognition: A survey. IEEE Transactions on 

Affective Computing, 13(3), 1195–1215. 

[2] Wang, K., Peng, X., Yang, J., et al. (2020). Suppressing uncertainties for large-scale facial 

expression recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition(pp. 6897–6906). 

[3] Ekman, P. (1971). Universals and cultural differences in facial expressions of emotion. In Nebraska 

Symposium on Motivation. University of Nebraska Press. 

[4] Shan, C., Gong, S., & McOwan, P. W. (2009). Facial expression recognition based on local binary 

patterns: A comprehensive study. Image and Vision Computing, 27(6), 803–816. 

[5] Carcagnì, P., Del Coco, M., Leo, M., et al. (2015). Facial expression recognition and histograms of 

oriented gradients: A comprehensive study. SpringerPlus, 4(1), 645. 

[6] LeCun, Y., Bottou, L., Bengio, Y., et al. (2002). Gradient-based learning applied to document 

recognition. Proceedings of the IEEE, 86(11), 2278–2324. 

[7] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image 

recognition. arXiv preprint arXiv:1409.1556. 

[8] Szegedy, C., Liu, W., Jia, Y., et al. (2015). Going deeper with convolutions. In Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition(pp. 1–9). 

[9] Tang, Y. (2013). Deep learning using linear support vector machines. arXiv preprint 

arXiv:1306.0239. 

[10] Adyapady, R. R., & Annappa, B. (2023). A comprehensive review of facial expression recognition 

techniques. Multimedia Systems, 29(1), 73–103. 

[11] Durmuşoğlu, A., & Kahraman, Y. (2016). Facial expression recognition using geometric features. 

In 2016 International Conference on Systems, Signals and Image Processing (IWSSIP)(pp. 1–5). IEEE. 

[12] Dhavalikar, A. S., & Kulkarni, R. K. (2014). Facial expression recognition using Euclidean distance 

method. Journal of Telematics and Informatics, 2(1), 1–6. 

[13] Li, Y., Zhou, Z., Feng, Q., et al. (2025). Analysis and comparison of machine learning-based facial 

expression recognition algorithms. Algorithms, 18(12), 800. 

[14] Jaffar, M. A. (2017). Facial expression recognition using hybrid texture features based ensemble 

classifier. International Journal of Advanced Computer Science and Applications, 8(6). 

[15] Sharma, M., Jalal, A. S., & Khan, A. (2019). Emotion recognition using facial expression by fusing 

key points descriptor and texture features. Multimedia Tools and Applications, 78(12), 16195–16219. 

[16] Liao, J., Lin, Y., Ma, T., et al. (2023). Facial expression recognition methods in the wild based on 

fusion feature of attention mechanism and LBP. Sensors, 23(9), 4204. 

[17] Liu, K., Zhang, M., & Pan, Z. (2016). Facial expression recognition with CNN ensemble. In 2016 

International Conference on Cyberworlds (CW)(pp. 163–166). IEEE. 

[18] Abdullah, S. M. S., & Abdulazeez, A. M. (2021). Facial expression recognition based on deep 

learning convolution neural network: A review. Journal of Soft Computing and Data Mining, 2(1), 53–

65. 

[19] Abdulsattar, N. S., & Hussain, M. N. (2022). Facial expression recognition using transfer learning 

and fine-tuning strategies: A comparative study. In 2022 International Conference on Computer Science 

and Software Engineering (CSASE)(pp. 101–106). IEEE. 

[20] Rawat, U., & Rai, C. S. (2023). Improving facial emotion recognition through transfer learning 

with deep convolutional neural network (DCNN) models. In 2023 3rd International Conference on 

Technological Advancements in Computational Sciences (ICTACS)(pp. 1335–1339). IEEE. 

[21] Talele, M., & Jain, R. (2025). A comparative analysis of CNNs and ResNet50 for facial emotion 

recognition. Engineering, Technology & Applied Science Research, 15(2), 20693–20701. 

[22] Zhao, Z., Li, Y., Yang, J., et al. (2024). A lightweight facial expression recognition model for 

automated engagement detection. Signal, Image and Video Processing, 18(4), 3553–3563. 

[23] Sawan, H., Deka, R., Saikia, S., et al. (2025). Optimizing CNN models for facial expression 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 9, Issue 1: 80-86, DOI: 10.25236/AJCIS.2026.090110 

Published by Francis Academic Press, UK 

-86- 

recognition: A comparative study of fine-tuning impact. In International Conference on Sustainable 

Science and Technology for Tomorrow (SciTech 2024)(pp. 163–179). Atlantis Press. 

[24] Islam, M. A., Kowal, M., Esser, P., et al. (2021). Shape or texture: Understanding discriminative 

features in CNNs. arXiv preprint arXiv:2101.11604. 

[25] Perveen, G., Ali, S. F., Ahmad, J., et al. (2023). Multi-stream deep convolution neural network with 

ensemble learning for facial micro-expression recognition. IEEE Access, 11, 118474–118489. 

[26] He, K., Zhang, X., Ren, S., et al. (2016). Deep residual learning for image recognition. In 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(pp. 770–778). 

[27] Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the 

3rd International Conference on Learning Representations. 


