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Abstract: In order to solve the problem that the classification effect of approximate logic dendritic neuron 
model is largely limited by the training effect of learning algorithm. The differential evolution algorithm 
of the population evolution algorithm is selected as the training algorithm of the model. Differential 
evolution algorithm is a branch of population evolution algorithm, which has the advantages of good 
robustness and easy implementation. But it also has the disadvantage that it is easy to fall into the 
stagnation of evolution. In order to solve this key problem, several differential evolution algorithms are 
investigated. Finally, we noticed that a differential evolution algorithm improved by selection operator 
can better solve the problem of algorithm evolution stagnation. This paper studies the training of logic 
dendritic neuron model using the differential evolution algorithm improved by this selection operator. In 
order to evaluate the performance of the algorithm training model, four representative data sets were 
used for experiments. When comparing the classification effect, particle swarm optimization algorithm, 
traditional differential evolution algorithm and genetic algorithm are selected as the comparison 
experiment. 

Keywords: artificial neural network, approximate logic dendritic neuron model, population evolution 
algorithm, differential evolution algorithm, classification 

1. Introduction 

Since the invention of the artificial neural network, as the research on it has deepened, the artificial 
neural network has been widely used to solve complex problems such as classification, function 
approximation, and prediction [1]. In 1943, Warren MuCulloch and Walter Pitts creatively proposed a 
computational neuron model that mimics the structure and function of biological neurons, which is called 
the M-P model[2]. Since this model was invented, it has been widely used as a computing unit for neural 
network computing. The disadvantage is that the oversimplified generalization of the biological neuron 
structure by the M-P model makes the model unable to effectively solve the nonlinear classification 
problem[3].  

In recent years, academic research on biological neurology and biophysics has become increasingly 
in-depth. The role of dendritic neurons in neural computing has been increasingly noticed[4]. Individual 
neurons with specific dendritic structures can perform specific brain functions, including memory, 
learning, and other cognitive behaviors[5]. Due to a large number of studies on the structure of neurons, 
Koch et al. proposed a delta-like cell model with a dendrite structure based on the above studies. The 
model was used to analyze the interaction between excitatory and inhibitory inputs to neurons[6,7]. This 
model was validated by several biological experiments[8]. However, the dendrite structure is highly 
dynamic, and Koch's model cannot simulate the plasticity of this neuron structure. The biological neural 
structure in reality can adopt different dendrite structures when dealing with different affairs. In this 
aspect, the model fails to simulate the real biological neuron structure well[9].  

In terms of simulating the plasticity of the dendritic neural structure, researchers have proposed a 
variety of plastic structures based on the pyramidal nerve cells of the brain [10-13]. Legenstein and Maass 
proposed a single neuron model with a dendritic structure. Such a model is designed considering spike-
time-dependent plasticity and branch-strength reinforcement learning principles[14]. The researchers 
verified the feasibility of the model with a mathematical proof and a simple feature binding problem. But 
the disadvantage of this model is that it cannot solve nonlinear classification problems[15].  
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Recently, researchers proposed an approximate logic neuron model (Approximate Logic Dendritic 
Neuron Model, ALDNM). At present, the ALDNM model has been applied to solve some real-world 
problems, such as computer-aided diagnosis and financial forecasting[16,17]. In order to prove the 
effectiveness of the learning mechanism of the ALNM model, researchers proposed an unsupervised 
learning rule training model to solve the two-dimensional selection problem. Experimental results prove 
the effectiveness of the model[18]. In addition, the model has neural pruning functions that other models 
do not have, including dendrite pruning and synapse pruning[19]. 

Differential evolution algorithm is a simple and efficient global optimization algorithm. It was first 
proposed by Storn and Price in 1995[20]. Since the differential evolution algorithm was invented, it is 
suitable for solving various optimization problems. These optimization problems include continuous 
optimization, discrete optimization, constrained optimization, and unconstrained optimization[21-24]. 
Although the performance of the differential evolution algorithm is superior, its accuracy is still greatly 
affected by mutation operators, crossover operators, parameter control and selection operators. There are 
a large number of studies on differential evolution algorithms that have made a lot of contributions to the 
improvement of algorithm performance in various aspects. 

Most studies on differential evolution algorithms focus on the improvement of mutation operators 
and parameter control. Zhiqiang Zeng et al. proposed an improved differential evolution algorithm for 
selection operator optimization[25]. The proposer compared 58 benchmark functions with 6 differential 
evolution algorithms, and the simulation results showed that the proposed selection operator significantly 
improved the performance of the differential evolution algorithm. 

This article will use the differential evolution algorithm optimized by the selection operator 
mentioned above to train the ALDNM model, and use the CMSC, Glass, Wine and wisconsin breast 
cancer data sets to test the classification effect of the algorithm. The classification results were compared 
with the ALDNM model trained by particle swarm optimization, traditional differential evolution 
algorithm and genetic algorithm. 

2. Approximate Logic Dendritic Neuron Model 

In this section, the article will introduce the structure and principle of the Approximate Logical 
Neuron Model (ALDNM). Inspired by the biological neuron model and dendrite mechanism, the 
researchers proposed a neuron model called ALDNM. ALDNM consists of four layers: synaptic layer, 
dendritic layer, membranous layer, and cell body. Figure 1 shows the structure of ALDNM, where n 
represents the number of inputs and m represents the number of branches, thus, the total number of 
synapses is m*n. The synaptic layer receives the incoming signal from the previous neuron and processes 
the sigmoid function of the received signal. A logical AND operation is then performed between the 
synapses on each branch. All dendritic branches of the dendritic layer are connected to the membranous 
layer, and the interrelationship between these branches can be regarded as a logical OR operation. Finally, 
the cell body performs nonlinear computations on the signal from the previous layer. After outputting the 
result, the model completes a calculation as a whole. 

 
Figure 1: Structure of ALNM model 

2.1. Synaptic Layer 

This layer represents the organization of synaptic connections from the previous neuron to the next 
neuron, and its signal transmission is feed-forward. Whether a synapse is excited or inhibited depends 
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on changes in specific ionic synaptic potentials. The sigmoid function was used to process synaptic 
connections. The connection function of the synaptic layer from the i-th (i=1, 2, ..., n) input to the j-th (j 
= 1, 2, ..., m) branch is as follows: 

𝑌𝑌𝑖𝑖,𝑚𝑚 = (1 + 𝑒𝑒−𝑘𝑘(𝑤𝑤𝑖𝑖,𝑚𝑚∗𝑥𝑥𝑖𝑖−𝑞𝑞𝑖𝑖,𝑚𝑚))−1                           (1) 

The k in the formula is a user-defined parameter, which is set to 5 in this experiment. x_i represents 
the signal input to the synaptic layer, and these data will be normalized to [0,1]. Y_(i,m) represents the 
output of the i-th local synapse on the m-th branch of the dendrite. w_(i,m) and q_(i,m) represent the 
connection parameters that need to be adjusted during the learning process. Figure 2 is a schematic 
diagram of the synaptic layer structure. 

 
Figure 2: Synaptic layer 

2.2. Dendritic layer 

There are multiplication operations in the process of neuron processing neural information [26]. For 
each branch, the dendritic layer performs a multiplication operation on the synaptic connections. Since 
synaptic signaling at the dendritic layer is almost binary, logical AND operations can be used instead. 
The output of the jth branch is shown in formula (2). Figure 3 is a schematic diagram of the dendritic 
layer structure. 

𝑍𝑍𝑗𝑗 = ∏ 𝑌𝑌𝑖𝑖𝑗𝑗𝑛𝑛
𝑖𝑖=1                                 (2) 

 
Figure 3: Dendritic layer 

2.3. Membrane layer 

Each branch of the dendritic layer is connected to the membrane layer. This layer performs a sum 
operation on the results of all branches. Because the signals are binary, this operation can be replaced by 
a logical OR operation. Then, the results of the film layer are sent to the final layer. The output formula 
of the film layer is shown in formula (3). Figure 4 is a schematic diagram of the film layer structure. 

𝑉𝑉 = ∑ 𝑍𝑍𝑗𝑗𝑚𝑚
𝑗𝑗=1                                    (3) 
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Figure 4: Membrane layer 

2.4. Soma body 

The soma body is the last part of the neuron model. It performs non-linear computations on the results 
it receives. If the input signal exceeds a predefined threshold, the neuron will be activated. The 
calculation formula of this layer is shown in formula (4). 

𝑂𝑂 = （1 + e−csoma（V−γ））
−1

                         (4) 

In that formula, γ represents the threshold constant. V represents the output result of the membrane 
layer. csoma represents a fixed parameter. O indicates the final output of the cell body layer. Figure 5 is 
a schematic diagram of the cell body structure. 

 
Figure 5: Soma body 

In order to explain the structure of ALDNM more clearly, an example is provided here to represent 
the ALDNM classification process. Figure 6 shows the operation steps and basic components of each 
layer. The operation steps of ALDNM are described below. 

Step 1: At the synaptic layer, m branches intersect with the input (n-dimensional), forming m*n 
synaptic connections (▼). Each synaptic connection produces the output of formula (1). Then, m*n 
outputs are transmitted to the dendritic layer. 

Step 2: In the dendritic layer, each branch receives corresponding n inputs. The output of each branch 
is given by formula (2). The generated m outputs are transmitted to the membrane layer. 

Step 3: The membrane layer processes the output of m branches through formula (3). The result is 
then sent to the soma body. 

Step 4: In the soma, use the sigmoid function to process the output of the membrane layer to obtain 
the classification result. 

The number of inputs and outputs per layer of ALDNM is summarized in Table 1. The input of each 
layer comes from the output of the previous layer. 

 
Figure 6: A classification progress example of ALDNM 
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Table 1: The number of inputs and outputs of each layer of ALDNM 

Name of layer Nunmber of input Number of output 
Synaptic layer n m*n 
Dendritic layer m*n m 

Membrane layer m 1 
Soma 1 1 

3. Selection operator improved differential evolution algorithm 

Differential evolution algorithm is a population-based optimization algorithm. A population contains 
multiple individuals, and each individual is represented by a vector. The differential evolution algorithm 
continuously improves individuals in the iterative process, and each individual evolves continuously in 
the iterative process to finally reach the best solution. The differential evolution algorithm mainly 
includes three operation links: mutation operator, crossover operator and selection operator. The mutation 
operation selects multiple individuals from the population, and generates mutant individuals through the 
mutation operator. Crossover applies a crossover operator to mutation vectors and parent vectors to 
generate trial vectors. The selection operator selects a vector from the test vector and the parent vector to 
survive to the next generation. 

At present, the selection operator used by most differential evolution algorithms is the greedy 
selection operator. It has been found that the greedy selection operator is effective most of the time, but 
when the individual stagnates (stagnation can be understood as the individual cannot be improved after 
a certain number of iterations), it is likely that the individual will fall into a local optimum. If greedy 
selection is still used at this time, it will be difficult for the individual to jump out of the local optimum. 
Therefore, a new selection operator is needed to help the individual jump out of the local optimum when 
it is stagnant. 

As a global optimization algorithm, the differential evolution algorithm is mostly improved on the 
mutation operator and parameter control. The improvement method proposed by Zhiqiang Zeng et al. is 
to improve the selection operator of the general differential evolution algorithm. 

The operation logic of this selection operator is: when the individual is not in a stagnant state, the 
proposed selection operator operates in the same way as the traditional selection operator, that is, the 
optimal vector is selected from the test vector and the parent vector to survive to the next generation; 
when the individual is at a standstill, the algorithm selects from the three previously selected candidate 
vectors. The first candidate vector is the optimal vector selected from the trial vectors among all the 
discarded parent vectors, the second candidate vector is the suboptimal vector selected from the trial 
vectors among all the discarded parent vectors, and the third candidate vectors are randomly selected 
from all successfully updated solutions[25].  

This improved algorithm prevents the evolution process of the algorithm from falling into an 
evolutionary stagnation state, and enables the algorithm to obtain more optimized results. 

4. Training methods 

As we all know, training algorithms have a large impact on the capabilities of neural network models. 
As a relatively novel population algorithm, the differential evolution algorithm has the advantages of 
good robustness and convenient use, but at the same time it has the defect that it is easy to fall into 
evolutionary stagnation. The differential evolution algorithm for selection operator optimization 
mentioned above can effectively prevent the algorithm from falling into an evolutionary stagnation state 
by setting candidate variables in advance. 

The differential evolution algorithm for selection operator optimization first initializes m individuals 
of the group P (t) in a random manner, where t represents the current iteration. Then, during each iteration, 
a mutation vector is generated by a mutation operation. Once the mutation vector is obtained, use the 
crossover operator on the parent vector and the mutation vector to obtain the trial vector. After the trial 
vector is obtained, and the algorithm is not stagnant, a better vector can be selected from the parent vector 
and the test vector through the selection operator, so that the vector survives to the next generation. When 
the algorithm detects that the number of generations that the individual stops evolving reaches a certain 
value, the algorithm considers that the current evolution has stagnated. At this time, the optimal vector is 
selected from the three candidate vectors prepared before and the algorithm is re-optimized for iteration. 
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To train the ALDNM using the selection operator optimization differential evolution algorithm in the 
experiment, the first step is the representation of the problem. The goal of training a model with an 
algorithm is to find the most appropriate parameter values to achieve the highest classification accuracy. 
Since each synaptic connection has two parameters (𝑤𝑤 and 𝑞𝑞), the number of parameters that need to 
be adjusted by the algorithm can be expressed as formula (5). 

N = 2 ∗ n ∗ m                                  (5) 

Where n represents the number of inputs and m represents the number of branches. Therefore, each 
individual of the differential evolution algorithm optimized by the selection operator can be expressed as 
a vector as shown in formula (6). 

X =  (W , Q) 

    =  (𝑤𝑤1,1 ,𝑤𝑤1,2 ,· · · ,𝑤𝑤𝑛𝑛,𝑚𝑚 , 𝑞𝑞1,1 ,𝑞𝑞1,2 ,· · · ,𝑞𝑞𝑛𝑛,𝑚𝑚)              (6) 

The direct purpose of training is to make the gap between the actual output and the ideal output 
smaller. Therefore, the mean square error of the dendritic neuron model can be directly used as the fitness 
function of the selection operator optimization differential evolution algorithm. It can be expressed as 
formula (7). 

fitness = 1
2𝑆𝑆
∑ (𝑇𝑇𝑠𝑠 − 𝑂𝑂𝑠𝑠)2𝑆𝑆
𝑠𝑠=1                            (7) 

In formula (7), 𝑇𝑇𝑠𝑠 and 𝑂𝑂𝑠𝑠 represent ideal output and actual output respectively. S represents the 
number of training samples. 

In order to express the training process more clearly, we show the flow chart of the entire training in 
Figure 7. The flowchart consists of three main parts: the training set, the differential evolution algorithm 
for selection operator optimization, and ALDNM. The role of these three parts in the experiment process 
is as follows. 

Training set: Provides training samples for ALDNM. 

Differential evolution algorithm for operator optimization: Iteratively update individual values to 
obtain the best fitness function value. The individual selection operator optimized by the differential 
evolution algorithm is represented by formula (6). The fitness function of the individual is calculated by 
formula (7). When the number of iterations reaches the preset target value, the algorithm stops iterating, 
and at this time returns the parameter values obtained from the optimal individual and outputs them to 
ALDNM. 

ALDNM: Calculate the actual output of all samples, as shown in Figure 6. Then, the value calculated 
in formula (7) is returned to the differential evolution algorithm for selection operator optimization as 
the fitness function value of the individual. 

 
Figure 7: Schematic diagram of training process 

5. Experimental Research 

This section presents the experiments to verify the performance. The algorithms in this research are 
all written in python. The experiment runs on a Windows system with a core i7 processor and 16G 
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memory. 

In this experiment, four classic data sets were selected to verify the classification performance of the 
dendritic neuron model optimized by the selection operator. The four datasets are Wine, Climate 
modelsimulation crashes (CMSC), Wisconsin diagnostic breast cancer (WDBC), and Glass. These four 
dataset classification problems are all from the UCI Machine Learning Repository. The details of the four 
datasets are summarized in Table 2. 

The wine dataset includes chemical composition analyzes of red wines produced in specific regions 
of Italy. The specific origin of red wine can be analyzed from the chemical composition contained in the 
wine. This dataset contains 178 records, each with 13 attributes. CMSC is used to predict the value of 
climate model simulation results for a given climate model parameter. It contains a total of 540 parameter 
value combinations, each with 18 values. All attribute values for this dataset are scaled on the interval [0, 
1]. Simulation results are represented by 0 (success) and 1 (failure). The WDBC dataset was provided by 
Dr. William H. Wolberg, University of Wisconsin, et al. for breast cancer diagnosis. These features are 
obtained by computing digitized images of breast masses. The dataset includes records from 569 samples, 
each with 30 feature items. The diagnosis results are divided into benign (B) and malignant (M) 
categories. The Glass dataset includes various parameters of different types of glass. Depending on the 
parameters, the type of glass can be deduced. The Glass dataset includes 214 sample records, and each 
sample contains 9 attributes. 

Since the proposed ALDNM is a binary classifier, the above data sets are treated as a binary 
classification problem in the data processing stage in order to be used for ALDNM testing. The topic of 
ALDNM solving multi-classification problems is worthy of more exploration in the future. 

Table 2: Details of the four datasets used in the experiments 

Name of dataset Num.of classes Num.of featrues Num.of samples 
Wine 2 13 178 

CMSC 2 18 540 
WDBC 2 30 569 
Glass 2 9 214 

According to a large number of researchers' previous studies, the constant parameters c, 𝑐𝑐𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠 and 
γ of ALDNM are set to 5, 5 and 0.5, respectively. Each dataset is randomly divided into two parts, one 
for training and one for testing. The ratio of the two subsets is 50%:50%. Performing 30 operations on 
each dataset formed 30 pair subsets for experiments. Since each random operation to divide the dataset 
is performed independently, the 30 pairs of subsets are different. After running the proposed model, 30 
experimental results were obtained. To satisfy the input of ALDNM, all eigenvalues are normalized in 
the interval [0, 1]. The number of iterations for all training algorithms is set to 100 generations. 

6. Comparison with other heuristic algorithms 

Table 3: Parameter settings of three comparison algorithms 

Name of algorithms Name of parameters Value of parameters 
 ω 0.5 

Pso c1 1.5 

 c2 1.5 

 N 50 
 𝑝𝑝𝑐𝑐 0.9 

 Crossover type Single point 
Ga 𝑝𝑝𝑚𝑚 0.1 

 Selection Roulette wheel 
 N 50 
 𝑁𝑁𝑒𝑒 10 

 CR 0.9 
De F 0.5 

 N 50 
This section discusses the training effect of the differential evolution algorithm for operator 
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optimization and other three typical heuristic algorithms on the dendritic neuron model. The three 
algorithms are Particle Swarm Optimization (PSO) [27], Genetic Algorithm (GA) [28] and traditional 
Differential Evolution (DE) [29]. The parameter settings of these three algorithms are shown in Table 3. 

Table 4 lists the classification results of the four heuristic optimization algorithms. Obviously, except 
that the classification accuracy rate of the CMSC data set is not much different from the other three 
algorithms, the classification accuracy rate of the operator optimization algorithm on the other three data 
sets has reached the highest. 

Table 4: Classification accuracy of four algorithms 

 CMSC Glass Wine WDBC 
Trail 

algorithm 
0.914815∓0.02963 0.920561∓0.051402 0.988764∓0.011236 0.955715∓0.018571 

pso 0.920371∓0.035185 0.901869∓0.060748 0.926967∓0.073033 0.952858∓0.021428 
de 0.912963∓0.024074 0.915888∓0.046729 0.988764∓0.011236 0.954286∓0.022857 
ga 0.925926∓0.02963 0.920561∓0.042056 0.915731∓0.08427 0.955715∓0.021429 
To further investigate the differences between these algorithms, Figure 8 lists the average 

convergence curves for the four benchmark problems. Since the experiment used MSE as the fitness 
function, so the curve of fitness function is the curve of MSE. The comparison of the convergence curves 
on four datasets is shown in Figure 8. 

 
Figure 8: Comparison of the MSE curve of the differential evolution algorithm training with other three 

heuristic algorithms 

It is not difficult to see that when the number of iterations reaches about 20 times, the MSE of the 
differential evolution algorithm training with operator optimization is close to the minimum value, while 
the training results of other heuristic algorithms are still not stable when the number of iterations reaches 
the maximum value set in the experiment down. Therefore, it is obvious that the convergence speed of 
the differential evolution algorithm training using the selection operator optimization on the wine data 
set is significantly faster than that of other heuristic algorithm training. 

A comparison of the convergence curves on the glass dataset is shown in Figure 8. The convergence 
curve of the objective function trained by the differential evolution algorithm for selection operator 
optimization reaches a relatively stable state roughly after 50 iterations. Although the convergence curve 
of the objective function of particle swarm training has reached a stable state before 50 generations, the 
minimum value of the convergence is far from the effect achieved by the differential evolution algorithm 
of selective operator optimization. Therefore, it can be seen that in the same number of iterations, the 
differential evolution algorithm with operator selection optimization achieves a smaller minimum value 
than the backpropagation algorithm, so it can also be concluded that the differential evolution algorithm 
trained with operator selection optimization. The convergence speed is significantly faster than the 
convergence speed of backpropagation algorithm training. 

Since the objective function value of the CMSC data set can reach less than 0.05 at the beginning, 
the change range of the convergence curve on this data set is not very obvious. Although the change 
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range of the convergence curve with the increase of the number of iterations is not obvious, it can still be 
seen that whether it is the initial function value or the function value after the preset number of training 
iterations, the training of the differential evolution algorithm with operator optimization is selected. The 
effect is better than the other three heuristic algorithms. Therefore, it can be seen that in the same number 
of iterations, the differential evolution algorithm with operator selection optimization achieves a smaller 
minimum value than the backpropagation algorithm, so it can also be concluded that the differential 
evolution algorithm trained with operator selection optimization The convergence speed is significantly 
faster than the other three traditional heuristic algorithm training convergence speed. 

It is not difficult to see that when the number of iterations reaches about 20 times, the fitness function 
trained by the operator-optimized differential evolution algorithm is close to the minimum value, while 
the training results of the other three heuristic algorithms have already reached the minimum value when 
the number of iterations reaches 50 generations. The convergence curve of the objective function reaches 
a stable value, but when the number of iterations reaches the preset maximum value, the minimum value 
achieved by the differential evolution algorithm for operator optimization is better than the minimum 
value trained by the other three heuristic algorithms. Therefore, it can still be concluded that the 
convergence speed of the differential evolution algorithm training using the selection operator 
optimization is significantly faster than that of the other three heuristic algorithm training. 

The excellent performance of the differential evolution algorithm for selecting operator optimization 
in training ALDNM can be explained as follows. The three candidate vectors reserved by the differential 
evolution algorithm for selection operator optimization during normal operation ensure that the algorithm 
can be restarted when it is stagnant. This mechanism effectively prevents the optimization process from 
stagnating. 

7. Conclusion 

The neuron model proposed based on the structure of dendritic neuron cells has been applied to solve 
many real-world problems. In this field of research, a new model called the approximate logistic dendritic 
neuron model was proposed. The model consists of four layers, the synaptic layer, the dendritic layer, the 
membrane layer, and the soma body. In this study, ALDNM is trained by using the differential evolution 
algorithm optimized by selection operator, which is excellent in solving high-dimensional problems. The 
experimental results show that the differential evolution algorithm for operator optimization can achieve 
better performance, and it is superior to three typical heuristic optimization algorithms, PSO, GA, and 
DE, in terms of classification accuracy and the minimum value of the convergence curve. 

In future research, we intend to adopt ALDNM to solve more complex classification problems to 
verify its classification efficiency. In addition, the development of ALDNM to solve multi-classification 
problems is also a field worthy of exploration. 
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