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Abstract: Aiming at the problem of the loss of detail information in medical image registration, which 
leads to poor registration results in large deformation regions, a large deformation features guided 
network(LDGNet) for medical image registration is proposed. LDGNet mainly includes two 
contributions: first, a large deformation feature enhancement module is designed at the encoding and 
decoding connection to enable the network to enhance the extraction of large deformation features. 
Secondly, a large deformation feature guidance module is designed at the skip connection, which can 
help fully fuse the large deformation features from the encoded feature map, and effectively improve 
the registration accuracy of the network in large deformation regions. Registration experiments on the 
brain dataset IXI show that LDGNet achieves higher registration accuracy compared with current 
popular medical image registration methods. 
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1. Introduction 

Image registration is an important technique in medical image processing. Its purpose is to align 
medical images acquired at different locations or at different times, so that doctors can more accurately 
diagnose and treat diseases. Image registration technology is widely used in the field of medical images, 
including surgical navigation, disease diagnosis, treatment plan formulation, and drawing of organ 
structure maps[1]. 

The core of the medical image registration problem lies in how to determine the similarity between 
images and how to spatially map the images. Traditional grayscale-based registration methods[2-3] 

usually use the grayscale information of the image itself to calculate the similarity between images. 
However, when the similarity measure function has multiple extreme values, it is easy to fall into local 
optimality. In addition, traditional registration methods require iterative calculations, usually with high 
calculation costs and slow registration speed, which are difficult to meet the registration efficiency 
requirements of clinical applications. 

With the development of deep learning, some scholars have introduced deep learning[4-5] into 
medical image registration and have achieved many research results. According to whether label 
information is needed, medical image registration based on deep learning can be divided into 
supervised medical image registration methods and unsupervised medical image registration methods. 

In the supervised medical image registration method, the input image pair and the gold standard 
registration field are input into the registration network for training, and the trained registration 
network is used to directly predict the test sample to obtain the registration field. The gold standard 
registration field is generally obtained by two methods: random generation and traditional registration 
method. For example, Hessam et al.[6] proposed nonrigid image registration using multi-scale 3D 
convolutional neural networks. This network uses randomly generated registration fields in the training 
phase, which improves the efficiency of label generation for training samples. RegNet performance 
Outperforms single-resolution B-spline registration algorithms. However, the randomly generated 
registration field can only synthesize limited spatial transformations, and the synthesized registration 
field cannot effectively simulate the real movement of human tissues and organs, so the generalization 
effect in clinical practice is poor. Some scholars use the registration field obtained by traditional 
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methods as the gold standard field to avoid the problem of large differences with the real deformation. 
However, this method is difficult to circumvent the problems of traditional methods, and the final 
registration accuracy is difficult to surpass the used traditional method. 

The unsupervised medical image registration method does not require a gold standard registration 
field. It only needs to input fixed images and moving images into the registration network to directly 
predict the registration field. The unsupervised registration network VoxelMorph proposed by 
Balakrishnan et al.[7] which realizes three-dimensional brain image registration. During the training 
process, the network uses the spatial transformation network to calculate the image similarity loss, 
penalizes the appearance difference between the moved image and the fixed image, and finally 
achieves registration accuracy comparable to SyN. However, the input image of VoxelMorph requires 
additional affine registration for preprocessing, which increases the registration time. To spve this 
question, the VTN network proposed by Zhao et al.[8] cascades the affine network into the registration 
network to achieve true end-to-end registration. However, this method has poor registration effect in 
large deformation areas of the image. In order to solve this problem, some scholars are working on 
stacking multiple networks to improve the registration accuracy. For example, Bob et al.[9]  proposed a 
recursive cascade registration network, which gradually distorts the image by recursively cascading 
multiple VoxelMorphs, thus improving the registration accuracy. However, as the number of cascade 
layers increases, it is difficult to maintain the smoothness of the registration field, and the cascade leads 
to a substantial increase in the number of network model parameters, resulting in longer training time. 
In order to reduce the number of model parameters, CycleMorph proposed by Kim et al.[10] uses a 
cascade of two registration sub-networks to obtain input by switching the order of fixed images and 
moving images through cycle consistency, which can be expanded to large volumes to be registered. 
Multi-scale registration is performed on the images, so that the model captures different levels of 
transformation relations. 

Although the above methods use the network cascade method to improve the registration accuracy, 
it leads to the accumulation of interpolation artifacts and affects the quality of the registration field. To 
solve this problem, some scholars try to estimate the registration field based on a multi-resolution 
strategy. Mok et al.[11] simulated the traditional multi-resolution strategy and proposed the L-level 
Laplacian pyramid framework (LapIRN), creating an image pyramid on the input image pair, use the 
network to calculate the registration field at different resolutions, distort the upper-level image, train 
and expand the network on higher-resolution data, and finally calculate the multi-resolution registration 
field from the pyramid structure to estimate the final registration field. Kang et al.[12] proposed a dual-
stream pyramid network Dual-PRNet, which calculates two feature pyramids respectively to directly 
estimate the registration field in the feature space. The refinement of the registration field and 
convolution features is carried out layer by layer, sequentially and from coarse to fine, and the fixed 
image and the moving image are more accurately aligned in the feature space. Compared with 
LapIRN,improved registration in large deformation areas. However, when the above network performs 
feature extraction, it continuously uses downsampling to obtain multi-scale features, and the feature 
fusion method at skip connections is relatively simple, and detailed information is lost, resulting in 
poor registration results in large deformation areas. 

In order to solve this problem, we propose a large deformation features guided network for medical 
image registration, referred to as LDGNet. The main contributions of this paper include: 

(1) We design a large deformation feature enhancement module, which helps the network to 
supplement the detailed features containing large deformation information lost during the encoding and 
decoding process. 

(2) We design a large deformation feature guidance module, which enhance the encoding feature 
map and large deformation feature fusion, so as to fully pay attention to the large deformation features 
when performing feature fusion. 

2. Methodology 

2.1 The whole frame 

The overall registration framework of the LDGNet network proposed in this paper is shown in 
Figure 1. The registration process can be roughly divided into three steps: (1) The fixed image and the 
moving image are input into the registration network LDGNet for feature extraction to obtain the 
registration field; (2) The spatial transformation network uses the registration field to distort the 
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moving image to obtain the registration image; (3) Use the similarity measure of the moved image and 
the fixed image as a loss function to update the network parameters. 

LDGNet
Spatial 

Transformation

Loss Function

Fixed Image

Moving Image

Registration Field Moved Image

 
Figure 1: LDGNet registration framework 

The LDGNet registration network is shown in Figure 2. First, the fixed and moving images are 
concatenated by channel as input, and then the input image pair is encoded and decoded to extract 
image features for estimating the final registration field φ . In the encoding part, the network 
continuously uses four three-dimensional convolutions with a size of 3 3 3× ×  and a step size of 2 for 
feature extraction. The spatial dimension of each convolutional feature map is halved, and the size of 
the last layer of feature maps is 1/16 of the input image, although the network retains the information of 
the image to the greatest extent, it still inevitably loses a lot of detail information containing large 
deformation information, so a large deformation feature enhancement module is designed behind the 
minimum feature map to help the network enhance the extraction of large deformation features . In the 
decoding part, the network upsamples the smallest feature map, and then stitches the upsampled feature 
map with the feature map of the corresponding layer of the encoding part through skip connections to 
supplement the detailed information. However, it is relatively simple to use splicing for feature fusion. 
The detailed information from the encoded feature map cannot be well fused, so a large deformation 
feature guidance module is designed at the skip connection to help the network better fuse the large 
deformation feature information. 

Conv with stride 2 Conv with stride 1 UpSampling

Large deformation feature 
enhancement module

Large deformation feature 
guidance module

(f,m)

 
Figure 2: The network structure of LDGNet  

2.2 Large deformation feature enhancement module 

In order to enhance the network's extraction of large deformation features, this paper designs a large 
deformation feature enhancement module at the codec connection, as shown in Figure 3. 

(1) Extract features at multiple scales. Specifically, for the input feature map, three dilated 
convolutions with a size of 3 3 3× × , and dilation rates of 6, 12, and 18 are used. Using dilated 
convolutions to extract multi-scale features can not only expand the receptive field of the convolution 
kernel, thereby improving the range of features extracted by the convolution kernel, but also does not 
lose the resolution of the image, reducing the loss of Large deformation feature information. 

(2) Multi-scale feature fusion. For the extracted features of multiple scales, the concat operation is 
used to splicing to obtain the spliced feature map, and then the convolution with a size of 1 1 1× ×  is 
used for feature fusion, and reduce the output feature map to the same dimension as the input feature 
map. 
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Figure 3: Large deformation feature enhancement module 

2.3 Large deformation feature guidance module 

The feature map from the encoder contains more detailed feature information containing large 
deformations, while the feature map obtained by upsampling from the decoder has more global 
information.In order to fully fuse the feature maps of the encoder and decoder and guide the 
registration of large deformation, a large deformation feature guidance module is designed. The 
specific structure can be divided into two steps as shown in Figure 4: encoding feature map 
enhancement and large deformation feature fusion. 
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Figure 4: Large deformation feature guidance module 

(1) In encoding feature map enhancement, since the feature map from the encoder part contains 
more detailed information containing large deformations, more weight is given to the encoding feature 
map. Specifically: first, the feature map from the encoder part and the feature map upsampled by the 
decoder are spliced by channel to obtain the spliced feature map, and then a convolution of size 1 1 1× ×  
is used to perform feature fusion on the spliced feature map, and then average pooling and maximum 
pooling are used to perform feature fusion on the input features The feature information aggregation 
operation is followed by compressing the spatial dimension of the input feature map, summing and 
merging element by element, and finally generating the encoding feature enhanced attention map after 
passing through the Sigmoid activation function. At this time, the attention map places more weight in 
the channel encoding the feature map. 

(2) In large deformation feature fusion, the enhanced feature map is given more weight to the fusion 
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of detailed feature information. Specifically, average pooling and maximum pooling are first used to 
compress the enhanced feature map in height and width. , then perform the concat operation, and then 
use the convolution with a size of 1 1 1× ×  operation to reduce the dimension of the feature map to 1. 
Finally, the feature fusion attention map is generated after the Sigmoid activation function. At this time, 
the attention map puts more weight on the fusion of large deformation features. 

2.4 Loss function 

In this paper, the optimal registration fieldφ  is calculated by maximizing the loss function, which is 
shown in formula (1): 

( ( , ) ( ))f mMax Sim I I Regφ φ φ= +                                                (1) 

( , )f mSim I I φ  is used to calculate the similarity between the fixed image fI
 
and the registered 

image mI φ , and Re ( )g φ  is used to calculate the regularization of the registration field φ . 

We achieve ( , )f mSim I I φ  by calculating NCC, as shown in Equation (2): 

( , ) ( , )f m f mSim I I NCC I Iφ φ=                                                  (2) 

Maximizing ( , )f mSim I I φ  will make m φ  closer and closer to f , but may cause the 
deformation field to fold. Therefore, this paper uses the spatial gradient of the deformation field to 
smooth the deformation field, as shown in Equation (3): 

2( ) ( )
p

Reg u pφ
∈Ω

= ∇∑                                                        (3) 

( )u p∇  is the spatial gradient, and is calculated as shown in Equation (4): 

( ) ( ) ( )( ) , ,u p u p u pu p
x y z

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 

                                             (4) 

We use the difference between adjacent voxels in the deformation field to be approximately equal 

to the spatial gradient, and the calculation of ( )u p
x

∂
∂

 is shown in Equation (5): 

( ) (( 1, , )) (( , , ))x y z x y z
u p u p p p u p p p

x
∂

≈ + −
∂

                                 (5) 

The calculations of ( )u p
y

∂
∂

 and ( )u p
z

∂
∂

 are similar to ( )u p
x

∂
∂
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3. Results and discussion 

3.1 Dataset 

We use the IXI[13] dataset for registration experiments. The IXI dataset contains 576 sets of 
images,the training set, verification set, and test set are 403, 58, and 115 (7:1:2) respectively. The 
evaluation metrics are calculated using the segmentation values of 29 anatomical structures that come 
with the image. 

3.2 Experimental setup 

The hardware environment configuration of this experiment  CPU is Intel(R) Xeon(R) Gold 6326, 
memory 50GB, GPU is Nvidia Tesla A30, video memory 24GB. The experiment in this paper was 
conducted on Ubuntu 20.04. We use PyTorch to implement the deep learning framework. 

The Adam optimizer is used during training, the maximum number of training iterations is set to 
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100, the batch size is 1, and the initial learning rate is 0.0001. 

3.3 Evaluation metrics 

In this paper, visual analysis and quantitative analysis are used to evaluate the registration results. 
Visual analysis mainly uses registration result visualization and difference result visualization to 
measure the quality of the registration results; quantitative analysis uses Dice and Jacobian to evaluate 
the performance of the registration algorithm. The Dice represents the overlapping degree of the 
moving image and the fixed image in the corresponding anatomical area, and the calculation of the 
Dice is shown in formula (6): 

Dice(A, B) 2
A B
A B
∩

= ×
+

                                                             (6) 

Where A and B represent the anatomical areas corresponding to the moving image and the fixed 
image respectively. When the Dice value is closer to 1, it means that the similarity between the two 
images in the corresponding area is higher, that is, the registration accuracy is higher; otherwise, it is 
lower. 

The Jacobian is a commonly used metric to evaluate the topological properties of dense 
displacement fields. Taking three-dimensional data as an example, the Jacobian determinant at each 
point in the dense displacement field is calculated as shown in Equation (7): 

det( ( , , ))

i j k
x x x
i j kJ i j k
y y y
i j k
z z z

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

=
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

                                                      (7) 

When det( ( , , )) 1J i j k = , it means that there is no spatial change at this point; 
det( ( , , )) 1J i j k >  means that expansion occurs; when 0 det( ( , , )) 1J i j k< <  means that shrinkage 
occurs; when det( ( , , )) 0J i j k <=  means that the image collapses at this point. In the following 
description, use | | 0Jφ ≤  to represent the percentage of the voxel number of det( ( , , )) 0J i j k <=  in 
the overall prime number. 

3.4 Comparative experiment 

In order to verify the effectiveness of LDGNet, the experiment in this section compares LDGNet 
with mainstream medical image registration methods such as SyN[14], LDDMM[15], VoxelMorph[9], 
CycleMorph[12], VTN[10], and NICE-Net[16]. 

The quantification results on the IXI dataset are shown in Table 1. On the IXI dataset, LDGNet 
achieved the best Dice score, which was 0.1223, 0.0853, 0.0118, 0.0100, 0.0130, and 0.0025 higher 
than SyN, LDDMM, VoxelMorph, CycleMorph, VTN, and NICE-Net, respectively. 

Table 1: Quantitative evaluations on IXI dataset 

Dataset IXI 
Evaluation 

metrics 
Dice 

(mean±std) 
| | 0Jφ ≤  

(mean±std) 
SyN[14] 0.6420±0.040 <.0.00001 

LDDMM[15] 0.6790±0.044 <.0.00001 
VoxelMorph[9] 0.7525±0.017 0.860±0.072 
CycleMorph[12] 0.7543±0.015 0.711±0.061 

VTN[10] 0.7513±0.012 0.881±0.054 
NICE-Net[16] 0.7618±0.019 0.672±0.087 

LDGNet 0.7643±0.021 0.790±0.055 
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(a)fixed (b)moving (c)SyN (d)LDDMM (e)VTN (f)VoxelMorph (g)CycleMorph (h)NICE-Net (i)LDGNet  
Figure 5: Visualization of registration results of seven methods on dataset IXI 

(a)Moving (b)SyN (d)VTN(c)LDDMM (e)VoxelMorph (f)CycleMorph (g)NICE-Net (h)LDGNet  
Figure 6: Visualization of difference results of seven methods on dataset IXI 

The visualization results on the IXI dataset are shown in Figure 5 and Figure 6. Figure 5 is the 
visual registration results of seven methods on the brain dataset IXI, where Figure 5(a) and Figure 5(b) 
are fixed images and moving images, Figure 5(c), 5(d), 5(e), 5(f), 5(g), and 5(h) are images registered 
using SyN, LDDMM, VTN, VoxelMorph, CycleMorph, and NICE-Net respectively, and Figure 5(g) is 
registered using the method in this paper image after. Figure 6 shows the differential results of the 
seven methods on the brain dataset LPBA40. Figure 6(a) is the difference result of fixed image and 
floating image, Figure 6(b), 6(c), 6(d), 6(e), 6(f), and 6(g) are obtained using SyN, The differential 
results of LDDMM, VTN, VoxelMorph, CycleMorph, and NICE-Net moved images and fixed images. 
Figure 6(h) is the differential result of moved images and fixed images using this method. The 
difference result can be used to judge the quality of the moved result. When the difference result is 
closer to black, the registration result is better, otherwise, the registration result is worse. As can be 
seen from Figures 5 and 6, compared with other methods, this method achieves better registration 
results in brain fold areas containing large deformations. 

3.5 Ablation study 

In order to verify the effectiveness of the large deformation feature enhancement and large 
deformation feature guidance modules, this paper uses VoxelMorph as the benchmark method to 
conduct ablation experiments. Model A means that the large deformation feature enhancement and 
large deformation feature guidance modules are not used, that is, only the baseline model is used for 
training; Model B means that only the large deformation feature guidance module is added to the 
baseline model; Model C means that only the large deformation feature enhancement module is added 
to the baseline model; Model D means adding large deformation feature enhancement and large 
deformation feature guidance modules at the same time, which is the LDGNet network in this paper. 

The results of ablation experiments on the IXI dataset are shown in Table 2. As can be seen from 
Table 2, on the IXI dataset, the Dice score obtained without using the large deformation feature 
enhancement and large deformation feature guidance modules (VoxelMorph) is 0.7525; while using the 
large deformation feature enhancement and large deformation feature guidance modules respectively, 
the Dice score is increased to 0.7601 and 0.7585; the Dice score obtained by using bothlarge 
deformation feature enhancement and large deformation feature guidance modules finally increased to 
0.7643. To sum up, on the IXI dataset, the large deformation feature enhancement and large 
deformation feature guidance modules respectively contributed to improving the registration accuracy, 
and combines use them further improve the registration accuracy. 
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Table 2: Ablation studies on IXI dataset 

Model large deformation feature 
guidance 

large deformation 
feature enhancement 

IXI (Dice) 

A × × 0.7525±0.017 
B √ × 0.7601±0.031 
C × √ 0.7585±0.022 
D √ √ 0.7643±0.021 

4. Conclusion 

In order to improve the registration effect of large deformation areas, this paper proposes a large 
deformation features guided network(LDGNet) for medical image registration. First, a large 
deformation feature enhancement module is used at the codec connection to help the network enhance 
the extraction of large deformation features. Secondly, a  large deformation feature guidance module is 
designed at the skip connection to fully integrate the large deformation information supplemented by 
the encoder part to promote the network to more accurately generate the registration field of large 
deformation areas. Finally, the experimental results on the public brain dataset IXI show that LDGNet 
has achieved better registration results. 
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