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Abstract: Learning effectiveness evaluation is an important part of diagnosing problems in the teaching 
process and optimizing the precise delivery of teaching resources. Taking undergraduate students from 
the School of Computer Science at a certain university as the research object, this study aims to address 
prominent issues such as the teacher's "monologue" mode and excessive reliance on quantitative results 
in the teaching process of Python programming. Using mathematical models to identify process data 
characteristics, a learning effectiveness evaluation system is constructed, and a multi-dimensional 
learning effectiveness evaluation model with strong operability is established. At the same time, using 
the learning effectiveness evaluation model to conduct relevant empirical research, suggestions and 
measures for programming courses such as Python programming design are proposed, and the research 
results are attempted to be promoted to other classes in related majors in universities to enhance learners' 
practical programming abilities. 
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1. Introduction 

Under information-rich conditions, fine-grained management and intelligent services constitute an 
exemplary pathway for teaching and learning, and simultaneously constitute a pivotal methodology for 
reforming learning-outcome assessment in the context of Emerging Engineering Education. From the 
learner’s perspective, the systematic mining of process data enables a holistic diagnosis of individual 
learning profiles and a real-time enhancement of metacognitive awareness. From the educator’s 
perspective, the construction of evidence-based course-assessment frameworks uncovers students’ 
critical and core needs, thereby furnishing a rigorous empirical basis for the iterative re-design of 
curricular architectures. 

Research conducted within the context of medical schools [1] explored issues such as curriculum 
design, teaching methodology reform, and assessment approaches. Addressing the prominent disconnect 
between theory and practice [2], an embedded hardware integration model was designed for programming 
courses. This model provides reference and insights for optimizing university programming curricula by 
evaluating goal attainment and practical skill mastery. Guided by engineering education accreditation 
principles[3], this study reconfigured course objectives and improved teaching models to explore 
mechanisms for cultivating students' engineering application capabilities, thereby enhancing their 
problem-solving abilities in engineering contexts. Tailored to specific teaching scenarios[4], this study 
investigates application strategies for large language models in programming instruction, specifying 
corresponding teaching interventions such as intelligent tutoring systems. As an innovative teaching 
model, the split-classroom approach addresses passive teaching methods in Python programming courses 
by breaking the teacher-centered “monologue” model. It proposes diversified assessment schemes and 
learning strategies leveraging digital technologies[5]. Addressing shortcomings in programming course 
delivery, this approach constructs a curriculum knowledge framework using knowledge graph entities 
and relationships [6], enabling knowledge reorganization and reconstruction. Knowledge graph 
technology is applied to programming course teaching practice. Tailored to programming course 
requirements [7], it selects programming cases and develops instructional experimental programs to build 
foundational experiments of various types. An application platform for practical systems is also 
constructed, providing a vital experimental environment for learners to conduct programming exercises. 
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The scientific rigor and effectiveness of the evaluation system are pivotal to assessing course 
objectives. Within the context of new engineering education development, the degree of course objective 
attainment serves as a key indicator for educational quality evaluation. By integrating dimensions such 
as training objectives and curriculum frameworks, this approach proposes a method for calculating 
multidimensional objective attainment levels. It facilitates timely teaching quality assessments and 
establishes a comprehensive teaching quality management plan. Addressing the primary factors causing 
learning difficulties in programming courses, this study proposes optimization strategies for 
programming course learning by refining learning pathways and constructing progressive knowledge 
state paths[8]. Object-oriented Java programming is a vital course for cultivating practical programming 
skills. Focusing on aspects such as course nature, positioning, and teaching objectives, this study 
proposes project-based learning as the main approach[9]. It reconstructs teaching module design, refines 
instructional content, and presents actionable teaching strategies. Research indicates that traditional 
teaching models can hinder students' mastery of programming skills. By leveraging online course 
resources, a blended teaching model is designed to propose strategies for programming course 
development. By analyzing key concepts in C++ such as functions, pointers, and loop statements, this 
study explores integration points for modules like template metaprogramming and function call 
optimization[10], proposing concrete methods to enhance C++ learners' application capabilities. Modular 
programming serves as a vital approach for decomposing complex systems into programmable units. 
Drawing from practical cases, this work introduces modular programming[11] and proposes optimization 
strategies to enhance code readability. 

This study focuses on the implicit information within process data, such as learning styles and 
preferences, employing theoretical methods including dimension selection and data analysis. The process 
data referred to in this research encompasses data generated throughout all stages of the learning process 
that reflects learners' authentic behavioral performance in natural settings. Based on learner profiles, both 
fundamental static labels and dynamic learning labels are constructed, leading to the proposal of an 
evaluation metric system for programming courses. 

2. Theoretical Foundation 

This study focuses on undergraduate students in the School of Computer Science at a university. It 
sequentially constructs a learning effectiveness evaluation model for the group, analyzing the model's 
efficacy and learning outcomes from multiple dimensions including academic performance, 
characteristic expression, and the depth of attribute influence. The research delves into the impact of 
various learner attributes on learning effectiveness and examines how learning outcomes vary across 
individual factors such as majors and classes. It summarizes relevant issues encountered during the 
learning process and conducts differential analyses of learning effectiveness across different groups. 
Simultaneously, utilizing decision tables to screen effective and redundant features helps reduce 
cognitive load from massive datasets. This enables timely identification of critical needs and core 
requirements, pinpointing the foundation and direction for teaching efforts. It further supports the 
formulation and adjustment of instructional strategies. 

A tuple ( , ,{ | },{ | })a aS U AT V a AT I a AT= ∈ ∈ is called an information table[12,13], where U  is a 
universal set and AT is a finite, non-empty set of attributes. If AT C D=   and C D = ∅ , where C  
is the conditional attribute set and D  is the decision attribute set, then the tuple S  is called a decision 
table[14-16], denoted as ( , )U C D . 

As an expression form, decision tables can describe objects based on human cognition and establish 
relationships between them, reflecting the essence of objective phenomena to a certain extent. They are 
increasingly becoming an important tool for solving complex problems. Building upon this foundation, 
different mathematical models can be employed to address practical issues in engineering applications 
and other fields according to varying objective requirements. Within decision tables, conditional attribute 
sets are primarily used to describe the characteristics possessed by objects. Key concepts such as attribute 
importance can characterize the significance of different features within the decision table and further 
describe the interrelationships between these features. Decision attribute sets primarily classify global 
sets through multi-label data. 

Definition 1 Given a subset A AT⊆ , the equivalence relation is defined as
{( , ) ( , ) , ( ) ( ), }A a aR x y x y U U I x I y a A= ∈ × = ∀ ∈∣ . The equivalence class of a property subset is denoted as



Frontiers in Educational Research 
ISSN 2522-6398 Vol. 8, Issue 10: 127-132, DOI: 10.25236/FER.2025.081019 

Published by Francis Academic Press, UK 
-129- 

[ ] { ( , ) }A Ax y x y R= ∈∣ . 

According to set theory, equivalence classes are determined by equivalence relations, which satisfy 
reflexivity, symmetry, and transitivity. Since learner process data encompasses multiple data types—such 
as symbolic data, continuous-value data, and others—it is generally necessary to process learner-related 
data through discretization methods to establish a foundation for data analysis. 

Definition 2 Set { | [ ] [ ] }C C DPos D x x x= ⊆ , where | |CPos D represents the cardinality of CPos D . 

By Definition 2, when the attribute set grows larger, the corresponding CPos D increases accordingly; 
conversely, when the attribute set grows larger, the corresponding CPos D decreases accordingly. 
Definition 2 describes the set of objects that can be completely determined under the given conditional 
attribute set, characterizing classification capability from a set-theoretic perspective and employing the 
concept of equivalence classes to depict the certainty of object classification. 

Definition 3: let ( , )U C D be the decision table and the indicator importance be defined as follows, 

where |∙| is the cardinality, { }| |
( , )

| |
C C a

a

Pos D Pos D
Sig C D

U
−−

= . 

Using Definition 3, weight analysis can be performed on each indicator within the evaluation metric 
system to identify effective indicators. Clearly, the greater the importance of an indicator, the more 
significant its role within the evaluation metric system. Leveraging the real-time characteristics of 
process data, attribute importance is calculated and an invariant matrix for attribute importance is 
established. To address model reliability issues caused by partial data inconsistencies, we attempt to break 
through by analyzing correlations between attributes. The focus is on mining clustering features such as 
learner profiles and learner group profiles to reconstruct the learner profiling model. 

Existing models heavily rely on subjective experience when calculating evaluation metric weights. 
The process of constructing evaluation metric systems involves multiple subjective factors, such as using 
expert scoring methods to describe metric system weights. This approach lacks rationality in the 
evaluation metric construction process, leading to evaluation result biases to a certain extent. Based on 
data concerning different learner types, specific characteristics of the programming learning process, and 
evaluation outcomes, learner data is described through various elements within decision table 
structures—such as objects, attributes, and attribute values—to construct decision tables tailored to 
distinct learners. 

3. Evaluation System Development 

The evaluation system construction process primarily involves key stages such as defining evaluation 
objectives, data collection and cleaning, data analysis and processing, establishing mathematical models, 
and data output. Based on evaluation requirements and precise delivery needs, the construction objectives 
are clarified and requirements are determined. Activity data and sentiment data related to teaching 
content are collected from classroom teaching processes and question-answering records. The data 
collection and cleaning workflow is then implemented through data cleansing, integration, and 
transformation. Concurrently, decision table models are utilized to construct feature importance analysis, 
enhancing the stability of mathematical models. 

The data collected by the institute includes learners' basic information such as age, gender, and 
learning background. It also encompasses behavioral data during the programming learning process (see 
Table 1), including code submission status, number of debugging attempts, online learning duration, and 
discussion participation frequency. Additionally, it captures learners' learning abilities and styles, such as 
logical thinking skills and problem-solving capabilities. Concurrently, process data—including 
instructional content and activity records, learner characteristics, and affective data—is gathered from 
classroom teaching videos, online platforms, and question-answering logs. Through data cleansing, 
integration, transformation, and reduction processes, the data format is standardized. Missing, erroneous, 
redundant, and uncertain data are filtered out, converting the dataset into a consistent dimensional format 
for enhanced comprehension and analysis. Learner tags are categorized into static tags and dynamic 
learning tags, establishing a tagging system for learner profiles. A simplified model calculates feature 
importance to identify key characteristics for learner profiling. 

First, learner characteristics are preliminarily determined through comprehensive consideration of 
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general learner attributes, learning engagement, and motivation. Second, multimodal data is integrated 
to explore mapping relationships between learner characteristics and diverse assessment metrics—such 
as process-oriented data from peer-to-peer and teacher-student interactions, as well as learning styles—
establishing correlations between learner traits and factors influencing learning outcomes. Third, features 
reflecting learner characteristics are extracted from aspects such as innovative thinking and problem-
solving abilities, encompassing human-computer interaction, interpersonal interaction, and creative 
practice. Finally, construct an object set based on learner data and an attribute set based on analyzed 
characteristics to propose a learning effectiveness evaluation model grounded in rough set theory. Utilize 
this model to extract cross-factors between profile characteristics and learning outcomes, focusing 
particularly on student innovation thinking and problem-solving abilities. This establishes a highly 
operational, multi-dimensional learning effectiveness evaluation model. 

Table 1 Overview of Data Dimensions and Evaluation Criteria for Python Programming Courses 
Level 

Indicator 
 Sub-level 
Indicator 

Evaluation Criteria Evaluation Grade Selection 

Teaching 
Dimension 

Curriculum 
Content 
Analysis  

1. Analyze teaching materials to clarify connections 
between this section and preceding/subsequent 

knowledge; 
2. Align with course standards and accurately delineate 

knowledge points; 
3. Identify key points and difficulties appropriate to 

learner levels with feasible measures. 

Excellent/Good/Average/Poor 

Learner Profile 
Analysis 

1. Accounts for individual differences (cognitive styles, 
intelligence, error factors); 

2. Identifies existing knowledge/skill foundations and 
gaps; 

3. Assesses current information literacy and attitudes. 

Excellent/Good/Average/Poor 

 Learning 
Objectives 
Analysis  

1. Objectives are clearly stated, measurable, and use 
standardized terminology; 

2. Includes scope and difficulty levels, emphasizing key 
points; 

3. Reflects multidimensional values, emphasizes 
competency development. 

Excellent/Good/Average/Poor 

Learning 
Dimensions 

 Static Tags  Age, gender, learning background, logical thinking 
ability, problem-solving ability. 

Excellent/Good/Average/Poor 

Dynamic Tags Code submission frequency, debugging attempts, online 
duration, discussion participation, emotional tendencies. 

Excellent/Good/Average/Poor 

Process 
Dimensions  

 Teaching 
Content & 
Activities 

Classroom teaching videos, online platform activities, 
Q&A records, assignment trajectories. 

Excellent/Good/Average/Poor 

Data Quality 
Assurance 

 Cleaning of missing values, erroneous values, 
redundant values, and uncertain values; dimensional 

consistency. 

Excellent/Good/Average/Poor 

Outcome-
Level 

Dimension 

 Learner 
Profiling 

Reduced model feature importance, static + dynamic 
label profiling, learner labeling system. 

Excellent/Good/Average/Poor 

4. Programming Course Examples Programming Course Examples 

Reviewing relevant domestic and international literature, this study selected a Python programming 
course at a university as a case study and collected experimental data for research. The curriculum 
covered 12 chapters including sequential structures, selection structures, and functions, with teaching 
processes involving classroom instruction, lab operations, and team time. A survey was conducted on 78 
learners across two classes. 

Taking dictionary learning issues as an example (Table 2), metadata from Learning Pass, competitive 
assessments, and virtual simulation platforms revealed: 97.43% mastery rate for everyday scenarios 
(name-phone number mapping), 94.81% for simple learning scenarios (student ID-grade mapping), yet 
only 89.74% for complex structured scenarios (nested dictionaries). Research revealed that learners' 
knowledge gaps primarily stemmed from: disorganized nested hierarchy design, inconsistent naming of 
nested keys, and high error rates in adding, deleting, or modifying nested data. After multiple learning 
cycles, the accuracy of key-value association logic improved from an initial 50% to 92.3% after 
reinforcement, further solidifying to 94.81%. Currently, 2.56% of students still lack proficiency in 
exception handling. 
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Table 2 Python Dictionary Learning Outcomes and Error Tracking (N=78) 
Stage/Scenario Key Metric Mastery Rate (%)  Primary Error Manifestation Remarks 
Daily Scenario Name-Phone 

Mapping 
97.43 Key spelling/format errors Initial Round 

Basic Learning 
Scenario 

Student ID-
Grade Mapping 

94.81 Misaligned single-level key-value 
pairs  

Initial Round 

Complex 
Structured 
Scenario 

Nested 
Dictionary 
Mapping  

89.74 (1)Chaotic nested hierarchy design 
(2)Inconsistent key naming 
(3)Errors in add/delete/modify 
operations  

Initial Round 

Multi-Round 
Learning 

Key-Value 
Association 
Logic 

50→92.3→94.81 Decreasing trends for (1)(2)(3) above  Reinforcement + 
Consolidation 
Rounds 

Exception 
Handling 
Mastery 

 Correct 
Implementation  

97.44 Missing except/finally blocks End of 
Consolidation 
Round 

Unmastered 
Students  

 Incomplete 
exception 
blocks  

2.56 Failed to implement try-catch 
structure  

End of 
Consolidation 
Round 

Reviewing relevant domestic and international literature, this study selected a Python programming 
course at a university as a case study and collected experimental data for research. The curriculum 
covered 12 chapters including sequential structures, selection structures, and functions, with teaching 
processes involving classroom instruction, lab operations, and team time. A survey was conducted on 78 
learners across two classes. 

Taking dictionary learning issues as an example (Table 2), metadata from Learning Pass, competitive 
assessments, and virtual simulation platforms revealed: 97.43% mastery rate for everyday scenarios 
(name-phone number mapping), 94.81% for simple learning scenarios (student ID-grade mapping), yet 
only 89.74% for complex structured scenarios (nested dictionaries). Research revealed that learners' 
knowledge gaps primarily stemmed from: disorganized nested hierarchy design, inconsistent naming of 
nested keys, and high error rates in adding, deleting, or modifying nested data. After multiple learning 
cycles, the accuracy of key-value association logic improved from an initial 50% to 92.3% after 
reinforcement, further solidifying to 94.81%. Currently, 2.56% of students still lack proficiency in 
exception handling. 

5. Conclusion 

Learning effectiveness evaluation is an important part of diagnosing problems in the teaching process 
and optimizing the precise delivery of teaching resources. Actively integrate research findings into the 
practical teaching of programming courses, with the initial application expected in the formative 
assessment of programming courses offered by the college, such as Python and C programming. Based 
on usage outcomes and feedback, the existing model will undergo refinement and upgrades to 
progressively optimize the comprehensive assessment system, ensuring its practicality and effectiveness. 
Following successful application and validation of the model's efficacy, this approach will be extended 
to other classes within relevant university programs. By enhancing the learning effectiveness evaluation 
model, we aim to further stimulate students' proactive engagement in learning. This will encourage every 
student to actively participate in all learning stages, fully integrate into the entire learning process, 
continuously improve learning outcomes, and strengthen learners' practical programming skills. 
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