
Frontiers in Educational Research
ISSN 2522-6398 Vol. 8, Issue 10: 127-132, DOI: 10.25236/FER.2025.081019

Published by Francis Academic Press, UK
-127-

Learning Effectiveness Evaluation System
Construction – Taking Python Programming as an
Example

Xu Li1,*, Mengyuan Jing1

1School of Computer Science and Technology, Xinjiang Normal University, Urumqi, 830054, China
*Corresponding author:1165297698@qq.com

Abstract: Learning effectiveness evaluation is an important part of diagnosing problems in the teaching
process and optimizing the precise delivery of teaching resources. Taking undergraduate students from
the School of Computer Science at a certain university as the research object, this study aims to address
prominent issues such as the teacher's "monologue" mode and excessive reliance on quantitative results
in the teaching process of Python programming. Using mathematical models to identify process data
characteristics, a learning effectiveness evaluation system is constructed, and a multi-dimensional
learning effectiveness evaluation model with strong operability is established. At the same time, using
the learning effectiveness evaluation model to conduct relevant empirical research, suggestions and
measures for programming courses such as Python programming design are proposed, and the research
results are attempted to be promoted to other classes in related majors in universities to enhance learners'
practical programming abilities.

Keywords: Learning Outcome; Evaluation; Importance; Python Programming; Indicator System

1. Introduction

Under information-rich conditions, fine-grained management and intelligent services constitute an
exemplary pathway for teaching and learning, and simultaneously constitute a pivotal methodology for
reforming learning-outcome assessment in the context of Emerging Engineering Education. From the
learner’s perspective, the systematic mining of process data enables a holistic diagnosis of individual
learning profiles and a real-time enhancement of metacognitive awareness. From the educator’s
perspective, the construction of evidence-based course-assessment frameworks uncovers students’
critical and core needs, thereby furnishing a rigorous empirical basis for the iterative re-design of
curricular architectures.

Research conducted within the context of medical schools [1] explored issues such as curriculum
design, teaching methodology reform, and assessment approaches. Addressing the prominent disconnect
between theory and practice [2], an embedded hardware integration model was designed for programming
courses. This model provides reference and insights for optimizing university programming curricula by
evaluating goal attainment and practical skill mastery. Guided by engineering education accreditation
principles[3], this study reconfigured course objectives and improved teaching models to explore
mechanisms for cultivating students' engineering application capabilities, thereby enhancing their
problem-solving abilities in engineering contexts. Tailored to specific teaching scenarios[4], this study
investigates application strategies for large language models in programming instruction, specifying
corresponding teaching interventions such as intelligent tutoring systems. As an innovative teaching
model, the split-classroom approach addresses passive teaching methods in Python programming courses
by breaking the teacher-centered “monologue” model. It proposes diversified assessment schemes and
learning strategies leveraging digital technologies[5]. Addressing shortcomings in programming course
delivery, this approach constructs a curriculum knowledge framework using knowledge graph entities
and relationships [6], enabling knowledge reorganization and reconstruction. Knowledge graph
technology is applied to programming course teaching practice. Tailored to programming course
requirements [7], it selects programming cases and develops instructional experimental programs to build
foundational experiments of various types. An application platform for practical systems is also
constructed, providing a vital experimental environment for learners to conduct programming exercises.

Frontiers in Educational Research
ISSN 2522-6398 Vol. 8, Issue 10: 127-132, DOI: 10.25236/FER.2025.081019

Published by Francis Academic Press, UK
-128-

The scientific rigor and effectiveness of the evaluation system are pivotal to assessing course
objectives. Within the context of new engineering education development, the degree of course objective
attainment serves as a key indicator for educational quality evaluation. By integrating dimensions such
as training objectives and curriculum frameworks, this approach proposes a method for calculating
multidimensional objective attainment levels. It facilitates timely teaching quality assessments and
establishes a comprehensive teaching quality management plan. Addressing the primary factors causing
learning difficulties in programming courses, this study proposes optimization strategies for
programming course learning by refining learning pathways and constructing progressive knowledge
state paths[8]. Object-oriented Java programming is a vital course for cultivating practical programming
skills. Focusing on aspects such as course nature, positioning, and teaching objectives, this study
proposes project-based learning as the main approach[9]. It reconstructs teaching module design, refines
instructional content, and presents actionable teaching strategies. Research indicates that traditional
teaching models can hinder students' mastery of programming skills. By leveraging online course
resources, a blended teaching model is designed to propose strategies for programming course
development. By analyzing key concepts in C++ such as functions, pointers, and loop statements, this
study explores integration points for modules like template metaprogramming and function call
optimization[10], proposing concrete methods to enhance C++ learners' application capabilities. Modular
programming serves as a vital approach for decomposing complex systems into programmable units.
Drawing from practical cases, this work introduces modular programming[11] and proposes optimization
strategies to enhance code readability.

This study focuses on the implicit information within process data, such as learning styles and
preferences, employing theoretical methods including dimension selection and data analysis. The process
data referred to in this research encompasses data generated throughout all stages of the learning process
that reflects learners' authentic behavioral performance in natural settings. Based on learner profiles, both
fundamental static labels and dynamic learning labels are constructed, leading to the proposal of an
evaluation metric system for programming courses.

2. Theoretical Foundation

This study focuses on undergraduate students in the School of Computer Science at a university. It
sequentially constructs a learning effectiveness evaluation model for the group, analyzing the model's
efficacy and learning outcomes from multiple dimensions including academic performance,
characteristic expression, and the depth of attribute influence. The research delves into the impact of
various learner attributes on learning effectiveness and examines how learning outcomes vary across
individual factors such as majors and classes. It summarizes relevant issues encountered during the
learning process and conducts differential analyses of learning effectiveness across different groups.
Simultaneously, utilizing decision tables to screen effective and redundant features helps reduce
cognitive load from massive datasets. This enables timely identification of critical needs and core
requirements, pinpointing the foundation and direction for teaching efforts. It further supports the
formulation and adjustment of instructional strategies.

A tuple (, ,{ | },{ | })a aS U AT V a AT I a AT= ∈ ∈ is called an information table[12,13], where U is a
universal set and AT is a finite, non-empty set of attributes. If AT C D=  and C D = ∅ , where C
is the conditional attribute set and D is the decision attribute set, then the tuple S is called a decision
table[14-16], denoted as (,)U C D .

As an expression form, decision tables can describe objects based on human cognition and establish
relationships between them, reflecting the essence of objective phenomena to a certain extent. They are
increasingly becoming an important tool for solving complex problems. Building upon this foundation,
different mathematical models can be employed to address practical issues in engineering applications
and other fields according to varying objective requirements. Within decision tables, conditional attribute
sets are primarily used to describe the characteristics possessed by objects. Key concepts such as attribute
importance can characterize the significance of different features within the decision table and further
describe the interrelationships between these features. Decision attribute sets primarily classify global
sets through multi-label data.

Definition 1 Given a subset A AT⊆ , the equivalence relation is defined as
{(,) (,) , () (), }A a aR x y x y U U I x I y a A= ∈ × = ∀ ∈∣ . The equivalence class of a property subset is denoted as

Frontiers in Educational Research
ISSN 2522-6398 Vol. 8, Issue 10: 127-132, DOI: 10.25236/FER.2025.081019

Published by Francis Academic Press, UK
-129-

[] { (,) }A Ax y x y R= ∈∣ .

According to set theory, equivalence classes are determined by equivalence relations, which satisfy
reflexivity, symmetry, and transitivity. Since learner process data encompasses multiple data types—such
as symbolic data, continuous-value data, and others—it is generally necessary to process learner-related
data through discretization methods to establish a foundation for data analysis.

Definition 2 Set { | [] [] }C C DPos D x x x= ⊆ , where | |CPos D represents the cardinality of CPos D .

By Definition 2, when the attribute set grows larger, the corresponding CPos D increases accordingly;
conversely, when the attribute set grows larger, the corresponding CPos D decreases accordingly.
Definition 2 describes the set of objects that can be completely determined under the given conditional
attribute set, characterizing classification capability from a set-theoretic perspective and employing the
concept of equivalence classes to depict the certainty of object classification.

Definition 3: let (,)U C D be the decision table and the indicator importance be defined as follows,

where |∙| is the cardinality, { }| |
(,)

| |
C C a

a

Pos D Pos D
Sig C D

U
−−

= .

Using Definition 3, weight analysis can be performed on each indicator within the evaluation metric
system to identify effective indicators. Clearly, the greater the importance of an indicator, the more
significant its role within the evaluation metric system. Leveraging the real-time characteristics of
process data, attribute importance is calculated and an invariant matrix for attribute importance is
established. To address model reliability issues caused by partial data inconsistencies, we attempt to break
through by analyzing correlations between attributes. The focus is on mining clustering features such as
learner profiles and learner group profiles to reconstruct the learner profiling model.

Existing models heavily rely on subjective experience when calculating evaluation metric weights.
The process of constructing evaluation metric systems involves multiple subjective factors, such as using
expert scoring methods to describe metric system weights. This approach lacks rationality in the
evaluation metric construction process, leading to evaluation result biases to a certain extent. Based on
data concerning different learner types, specific characteristics of the programming learning process, and
evaluation outcomes, learner data is described through various elements within decision table
structures—such as objects, attributes, and attribute values—to construct decision tables tailored to
distinct learners.

3. Evaluation System Development

The evaluation system construction process primarily involves key stages such as defining evaluation
objectives, data collection and cleaning, data analysis and processing, establishing mathematical models,
and data output. Based on evaluation requirements and precise delivery needs, the construction objectives
are clarified and requirements are determined. Activity data and sentiment data related to teaching
content are collected from classroom teaching processes and question-answering records. The data
collection and cleaning workflow is then implemented through data cleansing, integration, and
transformation. Concurrently, decision table models are utilized to construct feature importance analysis,
enhancing the stability of mathematical models.

The data collected by the institute includes learners' basic information such as age, gender, and
learning background. It also encompasses behavioral data during the programming learning process (see
Table 1), including code submission status, number of debugging attempts, online learning duration, and
discussion participation frequency. Additionally, it captures learners' learning abilities and styles, such as
logical thinking skills and problem-solving capabilities. Concurrently, process data—including
instructional content and activity records, learner characteristics, and affective data—is gathered from
classroom teaching videos, online platforms, and question-answering logs. Through data cleansing,
integration, transformation, and reduction processes, the data format is standardized. Missing, erroneous,
redundant, and uncertain data are filtered out, converting the dataset into a consistent dimensional format
for enhanced comprehension and analysis. Learner tags are categorized into static tags and dynamic
learning tags, establishing a tagging system for learner profiles. A simplified model calculates feature
importance to identify key characteristics for learner profiling.

First, learner characteristics are preliminarily determined through comprehensive consideration of

Frontiers in Educational Research
ISSN 2522-6398 Vol. 8, Issue 10: 127-132, DOI: 10.25236/FER.2025.081019

Published by Francis Academic Press, UK
-130-

general learner attributes, learning engagement, and motivation. Second, multimodal data is integrated
to explore mapping relationships between learner characteristics and diverse assessment metrics—such
as process-oriented data from peer-to-peer and teacher-student interactions, as well as learning styles—
establishing correlations between learner traits and factors influencing learning outcomes. Third, features
reflecting learner characteristics are extracted from aspects such as innovative thinking and problem-
solving abilities, encompassing human-computer interaction, interpersonal interaction, and creative
practice. Finally, construct an object set based on learner data and an attribute set based on analyzed
characteristics to propose a learning effectiveness evaluation model grounded in rough set theory. Utilize
this model to extract cross-factors between profile characteristics and learning outcomes, focusing
particularly on student innovation thinking and problem-solving abilities. This establishes a highly
operational, multi-dimensional learning effectiveness evaluation model.

Table 1 Overview of Data Dimensions and Evaluation Criteria for Python Programming Courses
Level

Indicator
 Sub-level
Indicator

Evaluation Criteria Evaluation Grade Selection

Teaching
Dimension

Curriculum
Content
Analysis

1. Analyze teaching materials to clarify connections
between this section and preceding/subsequent

knowledge;
2. Align with course standards and accurately delineate

knowledge points;
3. Identify key points and difficulties appropriate to

learner levels with feasible measures.

Excellent/Good/Average/Poor

Learner Profile
Analysis

1. Accounts for individual differences (cognitive styles,
intelligence, error factors);

2. Identifies existing knowledge/skill foundations and
gaps;

3. Assesses current information literacy and attitudes.

Excellent/Good/Average/Poor

 Learning
Objectives
Analysis

1. Objectives are clearly stated, measurable, and use
standardized terminology;

2. Includes scope and difficulty levels, emphasizing key
points;

3. Reflects multidimensional values, emphasizes
competency development.

Excellent/Good/Average/Poor

Learning
Dimensions

 Static Tags Age, gender, learning background, logical thinking
ability, problem-solving ability.

Excellent/Good/Average/Poor

Dynamic Tags Code submission frequency, debugging attempts, online
duration, discussion participation, emotional tendencies.

Excellent/Good/Average/Poor

Process
Dimensions

 Teaching
Content &
Activities

Classroom teaching videos, online platform activities,
Q&A records, assignment trajectories.

Excellent/Good/Average/Poor

Data Quality
Assurance

 Cleaning of missing values, erroneous values,
redundant values, and uncertain values; dimensional

consistency.

Excellent/Good/Average/Poor

Outcome-
Level

Dimension

 Learner
Profiling

Reduced model feature importance, static + dynamic
label profiling, learner labeling system.

Excellent/Good/Average/Poor

4. Programming Course Examples Programming Course Examples

Reviewing relevant domestic and international literature, this study selected a Python programming
course at a university as a case study and collected experimental data for research. The curriculum
covered 12 chapters including sequential structures, selection structures, and functions, with teaching
processes involving classroom instruction, lab operations, and team time. A survey was conducted on 78
learners across two classes.

Taking dictionary learning issues as an example (Table 2), metadata from Learning Pass, competitive
assessments, and virtual simulation platforms revealed: 97.43% mastery rate for everyday scenarios
(name-phone number mapping), 94.81% for simple learning scenarios (student ID-grade mapping), yet
only 89.74% for complex structured scenarios (nested dictionaries). Research revealed that learners'
knowledge gaps primarily stemmed from: disorganized nested hierarchy design, inconsistent naming of
nested keys, and high error rates in adding, deleting, or modifying nested data. After multiple learning
cycles, the accuracy of key-value association logic improved from an initial 50% to 92.3% after
reinforcement, further solidifying to 94.81%. Currently, 2.56% of students still lack proficiency in
exception handling.

Frontiers in Educational Research
ISSN 2522-6398 Vol. 8, Issue 10: 127-132, DOI: 10.25236/FER.2025.081019

Published by Francis Academic Press, UK
-131-

Table 2 Python Dictionary Learning Outcomes and Error Tracking (N=78)
Stage/Scenario Key Metric Mastery Rate (%) Primary Error Manifestation Remarks
Daily Scenario Name-Phone

Mapping
97.43 Key spelling/format errors Initial Round

Basic Learning
Scenario

Student ID-
Grade Mapping

94.81 Misaligned single-level key-value
pairs

Initial Round

Complex
Structured
Scenario

Nested
Dictionary
Mapping

89.74 (1)Chaotic nested hierarchy design
(2)Inconsistent key naming
(3)Errors in add/delete/modify
operations

Initial Round

Multi-Round
Learning

Key-Value
Association
Logic

50→92.3→94.81 Decreasing trends for (1)(2)(3) above Reinforcement +
Consolidation
Rounds

Exception
Handling
Mastery

 Correct
Implementation

97.44 Missing except/finally blocks End of
Consolidation
Round

Unmastered
Students

 Incomplete
exception
blocks

2.56 Failed to implement try-catch
structure

End of
Consolidation
Round

Reviewing relevant domestic and international literature, this study selected a Python programming
course at a university as a case study and collected experimental data for research. The curriculum
covered 12 chapters including sequential structures, selection structures, and functions, with teaching
processes involving classroom instruction, lab operations, and team time. A survey was conducted on 78
learners across two classes.

Taking dictionary learning issues as an example (Table 2), metadata from Learning Pass, competitive
assessments, and virtual simulation platforms revealed: 97.43% mastery rate for everyday scenarios
(name-phone number mapping), 94.81% for simple learning scenarios (student ID-grade mapping), yet
only 89.74% for complex structured scenarios (nested dictionaries). Research revealed that learners'
knowledge gaps primarily stemmed from: disorganized nested hierarchy design, inconsistent naming of
nested keys, and high error rates in adding, deleting, or modifying nested data. After multiple learning
cycles, the accuracy of key-value association logic improved from an initial 50% to 92.3% after
reinforcement, further solidifying to 94.81%. Currently, 2.56% of students still lack proficiency in
exception handling.

5. Conclusion

Learning effectiveness evaluation is an important part of diagnosing problems in the teaching process
and optimizing the precise delivery of teaching resources. Actively integrate research findings into the
practical teaching of programming courses, with the initial application expected in the formative
assessment of programming courses offered by the college, such as Python and C programming. Based
on usage outcomes and feedback, the existing model will undergo refinement and upgrades to
progressively optimize the comprehensive assessment system, ensuring its practicality and effectiveness.
Following successful application and validation of the model's efficacy, this approach will be extended
to other classes within relevant university programs. By enhancing the learning effectiveness evaluation
model, we aim to further stimulate students' proactive engagement in learning. This will encourage every
student to actively participate in all learning stages, fully integrate into the entire learning process,
continuously improve learning outcomes, and strengthen learners' practical programming skills.

Acknowledgements

This work was supported by the Teaching Development Project of Xinjiang Normal University (Grant
NO.SDJG2024-25).

References

[1] Fu XiaoXue, Li Xiang. Teaching reform in programming language courses in medical colleges——

Frontiers in Educational Research
ISSN 2522-6398 Vol. 8, Issue 10: 127-132, DOI: 10.25236/FER.2025.081019

Published by Francis Academic Press, UK
-132-

taking C language programming as an example [J/OL].Medical Education Management,1-9[2025-09-
02].
[2] Zhu Lixin, Li Xin, Su Jinchao. A Study on the Design and Application of Computer Network
Programming Course[J].Digital Education,2025,11(03):77-85.
[3] Wang Changyuan, Zhang Yi, Ren Chunhua. Curriculum Teaching Reform and Practice Based on
Engineering Education Philosophy: The Case of Linux Programming and Applications Course
[J].Electronic Components and Information Technology,2025,9(06):249-251.
[4] Wang Dong. Strategies and Application of Large Language Model in the Teaching of Computer
Programming Practice Courses[J].Information & Computer,2025,37(11):239-241.
[5] Yao Jiahui. Exploration of High School Python Teaching Strategies Based on Split Classroom in
Digital Environment[J].Computer Knowledge and Technology,2025,21(03):168-170+173.
[6] Wang Kemeng. Research on the Application of Knowledge Graph Technology in the Teaching of
"Object-Oriented Programming and Design" Course[J].Science & Technology Information, 2025,
23(09): 206-209.
[7] Chen Jia, Wei Lanqi, Liu Lianzhong, et al. Construction of Practice Teaching Platform for Secure
Python Programming[J/OL].Software Guide,1-7[2025-09-02].
[8] Wang Xiaochun, Gu Xiaoqing, Liu Wen. Obstacles and Countermeasures in Learning General
Programming Courses in Universities[J].China University Teaching,2024,(07):45-51+96.
[9] Xu Lifeng, Ding Weilong. Course Design of Object Oriented Java Programming[J].The Theory and
Practice of Innovation and Entrepreneurship,2024,7(11):28-34+71.
[10] Wang Juan. Research on Computer Software Programming Based on C++Language[J].
Information Recording Materials,2025,26(05):157-159+240.DOI:10.16009/j.cnki.cn13-1295/tq. 2025.
05. 072.
[11] Zhou Kai, Huang Weifan. Scientific and Technological Innovation[J].Scientific and Technological
Innovation,2025,(08):68-72.
[12] Li Xu, Tang J.G., Tang J.Y.. Local Indiscernibility Relation Reduction for Information Tables[J].
IEEE Access, 2022, 10: 78588-78596.
[13] Li Xu, Xiao H.P., Tang J.G., Zhu J.. New Variable Precision Reduction Algorithm for Decision
Tables[J]. IEEE Access, 2023.10:42201-20712.
[14] Shangzhi WU , Ren Y , Shuyue G E ,et al.An attribute reduction algorithm of weighting
neighborhood rough sets with Critic method[J].Journal of Beijing University of Aeronautics and
Astronautics, 2025, 51(1):75-84.
[15] Xie, L.; Lin, G.; Li, J.; Lin, Y. A novel fuzzy-rough attribute reduction approach via local
information entropy[J]. Fuzzy Sets and Systems, 2023, 473, 108733.
[16] Wang H, Zhi H, Li Y, et al. A Generalized Multigranulation Rough Set Model by Synthesizing
Optimistic and Pessimistic Attitude Preferences[J]. Mathematics, 2025, 13(9): 1367.

	1. Introduction
	2. Theoretical Foundation
	3. Evaluation System Development
	4. Programming Course Examples Programming Course Examples
	5. Conclusion
	Acknowledgements
	References

