
Academic Journal of Environment & Earth Science 
ISSN 2616-5872 Vol.5, Issue 6: 35-43, DOI: 10.25236/AJEE.2023.050607 

Published by Francis Academic Press, UK 
-35- 

Research on the Spatial and Temporal Evolution of 
Carbon Emission Intensity in China and its 
Influencing Factors from 2011 to 2020 

Shaoxiong Wu1,*, Zheng Wei2 

1School of Mathematics and Statistics, Xiamen Institute of Technology, Xiamen, Fujian, 361024, China 
2College of Sciences, Northeastern University, Shenyang, Liaoning, 110004, China 
*Corresponding author 

Abstract: Based on the data of China's provincial carbon emissions and provincial GDP from 2011 to 
2019, the carbon emission intensity (t/w Chinese yuan) is calculated, a descriptive analysis of China's 
provincial carbon emission intensity is conducted to demonstrate its spatial and temporal distribution, 
and the spatial autocorrelation analysis and geographic detector methods are used to quantitatively 
analyze the spatial and temporal variation characteristics of China's provincial carbon emission 
intensity from 2011 to 2019. The spatial autocorrelation analysis and the geodetector method are used 
to quantify the spatial and temporal characteristics of China's provincial carbon emissions intensity 
from 2011 to 2019. Finally, the top nine factors with the greatest explanatory power selected by the 
geographic detector are used as input variables, and the GRNN neural network is used to forecast 
China's carbon emission intensity in 2020. The study shows that (1) China's provincial carbon emission 
intensity collated in a decreasing trend from 2011 to 2019, indicating the significant effect of 
environmental protection policy implementation in these years (2) the spatial agglomeration of China's 
provincial carbon emission intensity from 2011 to 2019 is obvious, with an expanding trend in both the 
H-H region and the L-L region, with H-H spreading from Northwest China to Northeast China and the 
L-L region expanding to surrounding cities, (3) There is a spatially heterogeneous pattern of 
inter-provincial carbon emission intensity in China from 2011 to 2019. (4) From 2011 to 2019, the 
factor with the greatest explanatory power for China's provincial carbon emission intensity is average 
temperature, followed by industrial output, topographic relief, and science and technology expenditure. 
(4) For the projection of China's inter-provincial carbon emission intensity in 2020, the trend of carbon 
emission intensity is greatly related to geographical differences, which indicates that inter-regional 
exchanges and cooperation have a facilitating effect on carbon reduction policies. 

Keywords: carbon emissions intensity, spatial and temporal distribution, spatial autocorrelation, 
geodetectors, GRNN 

1. Introduction 

With the continuous socio-economic development and the massive use of fossil energy, leading to 
the intensification of global climate problems, low carbon development has become a worldwide 
consensus, and China is the world's largest emitter of carbon dioxide, therefore, China's carbon dioxide 
emissions are of concern to the world. Carbon intensity is the amount of carbon dioxide emissions per 
unit of GDP growth (in t/w GDP) and is one of the most important indicators of carbon emissions. In 
order to accelerate the reduction of carbon intensity and achieve carbon emission targets, only by 
finding out the influencing factors of carbon intensity and understanding the process of carbon intensity 
change, can we take scientific measures to reduce carbon intensity. 

International scholars have analyzed the spatial and temporal characteristics of the factors 
influencing carbon emissions and the intensity of carbon emissions through various econometric 
models. Grazios et al[1], showed that the amount of gas pollution generated by manufacturing industries 
in Europe is related to the technology adopted. Richard York et al[2] used the STIRPAT model to find 
that population size, affluence, urbanization, and industrialization have an impact on carbon emissions. 
Peer Rebecca et al[3] explored the relationship between electricity production and carbon emissions. 
Sharma Rajesh et al[4] empirically showed that stock market development, per capita income and trade 
expansion have a catalytic effect on carbon intensity in South Asian countries based on the CS-ARDL 
approach. Talukdar et al[5] conducted data collection for 44 developing countries and concluded that an 
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increase in the share of secondary sector is directly related to an increase in carbon intensity.  

Chinese scholars have also conducted studies on carbon emissions. Li Qianwen et al[6] demonstrated 
the existence of spatial aggregation of carbon emissions in China. Li Jianbao et al[7] used a spatial 
econometric model to analyse the factors influencing per capita CO2 emissions in China. Meng Xiaona 
et al[8] used an SDN model and a mediating effects model to find that industrial intelligence indirectly 
suppresses carbon intensity by promoting industrial structure optimization and industrial structure 
rationalization. Clarke-Sather[9] et al. found that the uneven distribution of carbon emissions in China 
was mainly caused by geographical factors based on the IPCC method. 

The factors influencing carbon intensity are directly related to the prediction of carbon intensity 
trends. There are many studies on carbon intensity prediction, such as using ELM model[10] , STRIPAT 
model[11,12] , IPAT[13,14] . 

China uses carbon emission intensity as an indicator to formulate emission reduction policies[15] , 
but due to the large number and complexity of factors influencing carbon emission intensity, only a few 
simple driving factors were analysed in the above study, and the factors considered were rather 
homogeneous, which also led to the reduced stability and low accuracy of the prediction results of 
carbon emission intensity. In this paper, we analyse the spatial and temporal patterns and interannual 
variability of carbon emission intensity in China from 2011 to 2019 by mapping it with ARCGIS, and 
analyse the spatial correlation and local spatial correlation characteristics of carbon emission intensity 
by calculating Moran's I index and LISA clustering maps. A geographical probe was used to select 17 
factors from four perspectives: socio-economic, climate, geographic environment and policy, to analyse 
the impact of carbon emissions intensity at the national scale. The top 9 factors with the greatest 
explanatory power were selected as input variables by the geographic detector, and a GRNN neural 
network was used to forecast the carbon emission intensity in 2020. The aim of this study is to provide 
a more scientifically sound and specific basis for decision-making on carbon emission reduction in 
China's provinces. 

2. Materials and methods 

2.1 Study area 

China is located in the east of Asia and on the west coast of the Pacific Ocean. It has a vast and 
extensive territory with a total land area of approximately 9.6 million square kilometres, ranking 3rd in 
the world after Russia and Canada. China can be subdivided into seven major regions according to 
geographical location, namely North China, Northeast China, East China, Central China, South China, 
Southwest China and Northwest China. The study area for this paper is shown in Figure 1 and includes 
30 mainland provincial cities in China, except for Hong Kong SAR, Macau SAR and Taiwan Province, 
and Tibet Autonomous Region. 

 
Note: The plan has an examination number of GS (2020)4619 and the base plan has not been amended 

Figure 1: A schematic diagram of the study area 
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2.2 Data sources 

Based on the above literature and given the availability of data, 17 influencing factors were selected 
in the four dimensions of socio-economic, climate, geographical environment, and policy, using 30 
Chinese provinces (urban areas) other than Tibet, Hong Kong, Macau and Taiwan as the study 
population (x1~x17). Carbon emissions data were obtained from the China Carbon Accounting 
Database (CEADs), spanning 2011 to 2019, and GDP data of each province were obtained from the 
China Statistical Yearbook, and carbon emissions intensity data from 2011 to 2019 were calculated by 
the carbon emissions intensity formula (carbon emissions/GDP) in (t/w Chinese yuan). gDp, total 
population (x1), GDP per capita (x2), amount of foreign investment (x3), the proportion of people 
employed in the secondary sector (x4), the proportion of employment in the tertiary sector (x5), 
investment in science and technology (x6), electricity consumption(x8), per capita consumption 
expenditure (x9)Data from the China Statistical Yearbook. Industrial output value (x7)Data from the 
China Industrial Statistics Yearbook. Average temperature (x11 ), average wind speed (x12 ) and 
precipitation (x10)Data from the National Center for Environmental Information (NCEI) under the 
National Oceanic and Atmospheric Administration (NOAA), green coverage of built-up areas (x14), 
industrial wastewater emissions (x15), industrial sulphur dioxide emissions (x16)Data from the China 
Environmental Statistics Yearbook. Search volume of environmental protection keywords (x17) are 
from the Baidu Index website. Topographic relief (x13)[16] is a comprehensive representation of regional 
altitude and surface cut. Based on the definition of topographic relief and its calculation formulae in the 
context of habitat evaluation in China, the digital elevation model (SRTM 90 m) data were resampled 
into 1 km, and the model was used to calculate the terrain relief km grid dataset in China. 

2.3 Research Methodology. 

1) Spatial autocorrelation analysis: is a collection of spatial data analysis methods and techniques 
that can be applied to the study of carbon intensity to identify the degree of spatial agglomeration and 
dispersion of carbon emissions, which can be distinguished as global spatial autocorrelation, 
represented by the global Moran's I index, and local spatial autocorrelation, represented by the local 
Moran's I index, or by using the LISA aggregation diagram. There are five types of LISA clustering 
diagrams, regions with insignificant spatial correlation and four similar regions with significant spatial 
correlation. H-H is high-high clustering, L-L is low-low clustering, L-H is low-high clustering and H-L 
is high-low clustering. 

2) Geographical detector: the carbon emission intensity of the 30 provinces in this study is taken as 
y. The factor detector in the geographical detector is used for the indicators obtained from the data 
collection from 2011 to 2019, and these indicators are taken as factor X. The extent to which factor X 
explains the spatial variation of the dependent variable y can be detected. The statistical value of q is 
commonly used to indicate that the value of q ranges from [0,1], and the larger the value of q, the 
stronger the influencing factor is in explaining the carbon emission intensity. 

3) GRNN: A modification of RBF, the structure of both is similar. The difference lies in the addition 
of a summation layer and the removal of the connection between the implied layer and the weights of 
the output layer. The first layer is the input layer, which consists of the source nodes. The second layer 
is the pattern layer, where the number of neurons is equal to the number of samples learned. The third 
layer is the summation layer. 

3. Results and analysis 

3.1 Spatial and temporal patterns and interannual variation in carbon emissions intensity 

The carbon emission intensity of China from 2011 to 2019 is divided into five levels: (low intensity) 
areas, which are set as carbon emission intensity less than or equal to 1 t/w; (medium and low intensity) 
areas, which are set as carbon emission intensity greater than 1 and less than or equal to 2; (medium 
intensity) areas, which are set as carbon emission intensity greater than 2 and less than or equal to 3; 
(medium and high intensity) areas, which are set as carbon emission intensity greater than 3 and less 
than or equal to 5; and (high intensity) areas, which are set as carbon emission intensity greater than or 
equal to 5. For (medium-intensity) areas, the carbon intensity is set to be greater than 3 and less than or 
equal to 5, and for (high-intensity) areas, the carbon intensity is set to be greater than 5, as shown in 
Figure 2. 
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(1) From 2011 to 2019, the spatial variation of carbon emission intensity of each province in China 
is obvious, East China, Central China and South China largely changed from medium-low intensity to 
low intensity, Northeast China except Jilin reduced from medium intensity to medium-low intensity, the 
remaining two provinces did not change significantly, Northwest China except Xinjiang and Ningxia 
the rest of the provinces changed from medium, medium-low intensity to medium-low intensity and 
low intensity, North China carbon emission intensity declined steadily, Beijing and Tianjin provinces 
dropped to low intensity. In 2011, there were only two provinces and cities in the low-intensity region, 
and six provinces and cities in the medium-intensity and above region; in 2019, there will be 14 
provinces and cities in the low-intensity region, and only four provinces and cities in the 
medium-intensity and above region. Provinces and municipalities. 

 
Note: The plan has an examination number of GS (2020)4619 and the base plan has not been amended 

Figure 2: Changes in carbon intensity in 30 provinces and cities from 2011 to 2019. 

3.2 Global spatial autocorrelation analysis of carbon emission intensity 

Figure 3 shows the global autocorrelation Moran's I index of China's carbon emission intensity from 
2011 to 2019. At the 1% significance level, the Moran's I index values for these nine years are all 
greater than zero, ranging from 0.29 ~ 0.397, which indicates that the carbon emission intensity of all 
Chinese provinces and cities show a positive correlation in these nine periods, with the overall Moran's 
I index from 2011 to 2019 Moran's I index fluctuates, but has an overall upward trend, peaking in 2019. 
It declines slightly during the period 2016-2018, but surges to a peak in 2019. 
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Figure 3: Moran's I changes in 30 provinces, 2011~2019 

3.3 Local spatial autocorrelation analysis of carbon emission intensity 

Figure 4 illustrates the spatial agglomeration characteristics of China's 30 provinces from 2011 to 
2019, with H-H being high-high agglomeration, L-L being low-low agglomeration and L-H being 
low-high agglomeration, with provinces and cities with high carbon emission intensity and low carbon 
emission intensity in neighbouring regions generating relative agglomeration in space respectively. 

(1) High-High Aggregation (H-H), in 2011, the H-H phenomenon appeared in Northwest, North 
China, and the range 2011-2019 showed an overall increasing trend, the carbon emission intensity in 
this region is greater than other regions, forming a spatial agglomeration of high carbon emissions. 
Ningxia has the H-H phenomenon in 2011, 2015, 2017-2019, and the rest of the years are not 
significant. This type of agglomeration spread from some adjacent areas in the northwest to some areas 
in the northeast from 2011-2019, and the provinces with high-high agglomeration were Gansu, Ningxia, 
Inner Mongolia, Jilin and Liaoning. (2) Low-low agglomeration (L-L), in 2011, Jiangxi, Fujian and 
Zhejiang provinces with low carbon emission intensity produced L-L phenomenon, from 2013 to 2015 
this agglomeration area decreased, only two provinces in Fujian and Jiangxi, from 2016 to 2019 this 
agglomeration area increased, spread to the surrounding regions, reducing the carbon emission intensity 
of surrounding provinces and cities, in 2019, the H-H phenomenon increased to four provinces, 
respectively Jiangxi, Fujian and Zhejiang. Jiangxi, Fujian, Zhejiang and Anhui, respectively. (3) 
Low-high agglomeration (L-H), this type of region is less frequent and scattered, Shaanxi Province 
shows L-H phenomenon from 2011 to 2019. The distribution is around high carbon emission regions. 
2018, Jilin Province showed L-H phenomenon, and then passed into H-H phenomenon in 2019. 

 
Note: The plan has an examination number of GS (2020)4619 and the base plan has not been amended 

Figure 4: Spatial clustering characteristics of carbon emission intensity from 2011 to 2019 
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3.4 Spatial heterogeneity analysis of carbon emission intensity 

As shown in Figure 5, the spatial heterogeneity of China's provincial carbon emission intensity is 
shown by dividing the 30 provinces in this study into seven major regions, East China, North China, 
South China, Central China, Southwest China, Northwest China and Northeast China, with X in order 
1~7, based on the geographic detector. According to the geodetector detection results, the q-values of 
spatial heterogeneity measures from 2011 to 2019 range from 0.329 to 0.439. q-values steadily 
increased from 2011 to 2016, reaching the maximum in 2016, indicating that the spatial heterogeneity 
is most obvious at this time. q-values fluctuated steadily from 2016 to 2019, reaching 0.423 in 2019. 
between 2014 and 2019 The q-values were all above 0.4 between 

 
Figure 5: Spatial heterogeneity measure from 2011 to 2019 

3.5 Analysis of factors influencing carbon emission intensity 

 
Figure 6: Radar chart of detection results of factors affecting national carbon emission intensity 

In this paper, 17 factors were selected through four aspects: socio-economic, climate, geography 
and environment, and these 17 factors were divided into seven categories according to their numerical 
magnitudes through a hierarchical clustering method, and the degree of explanation of the spatial 
variation of carbon emission intensity by each factor was calculated through a factor detector. Due to 
the large span of years from 2011 to 2019, the survey was conducted in alternate years, and the five 
periods of 2011, 2013, 2015, 2017 and 2019 were investigated respectively. As shown by the q-values 
of each factor in Figure 6, it can be seen that the q-values of indicators such as topographic relief, the 
proportion of secondary industry and green cover show a decreasing trend, while the q-values of factors 
such as industrial output value, environmental protection keywords, precipitation and average 
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temperature show an increasing trend. From the average q-values of these five years, average 
temperature, industrial output value, terrain undulation degree, and science and technology expenditure 
have the greatest influence on carbon emission intensity. 2011 to 2019, the temperature difference 
between the northern and southern regions is obvious, with the south being warmer compared to the 
north, which leads to lower carbon emission intensity in the south than in the north. It became the main 
factor for the spatial divergence of carbon emission intensity between the south and the north. 
2011~2019, the industrial output value of east China is much larger than that of northwest China, 
although high industrial output value will bring corresponding industrial pollution, but due to more 
advanced pollution control in east China and higher GDP from high industrial output value, the carbon 
emission intensity of east China is lower than that of northwest China. 2011~ 2019, the provinces and 
municipalities in Northwest and Northeast China both spent very little on science and technology, and 
the corresponding low-carbon technologies were not as good as those in other regions, so the carbon 
emission intensity in these two regions was high. 

3.6 Analysis of GRNN prediction results 

The top nine factors with the greatest explanatory power were obtained based on the average annual 
q-values of each factor obtained from the geographic probe, and these nine factors were used as input 
variables to the GRNN model, with the output layer being the carbon intensity. 

The sample is nine indicators from 2011 to 2019, a total of 270 samples. Since the parameters have 
only one spread. So the optimal smooth coefficient spread was selected by getting the minimum RMSE 
one-dimensional, the optimal smooth coefficient spread=0.1 was obtained for prediction, and the test 
was carried out by the leave-one-out method, and the prediction result of the test was (RMSE =
0.33, R2 = 0.9199 ). 

Therefore, under the smooth factor spread=0.1, all data from 2011 to 2019 were used as the training 
set to predict the carbon emission intensity in 2020. Table 1 shows the predicted data of 30 provinces 
and cities in 2020. Compared with the carbon emission intensity in 2019, the carbon emission intensity 
in East China, Central China, South China, Southwest China and Northwest China increases, except for 
Shandong and Ningxia provinces which are decreasing, among which Guizhou province increases the 
most, and the carbon emission intensity in North China and Northeast China decreases, except for 
Beijing which is increasing, among which Inner Mongolia decreases the most. This shows that the 
trend of carbon emission intensity is greatly related to geographical differences. 

Table 1: Carbon intensity forecasts for 30 provinces and cities in 2020 

Carbon intensity projections for 2020 (t/w Chinese yuan) 
Beijing 0.28004  Zhejiang 0.64221  Hainan 0.98723  

Tianjing 0.90847  Anhui 1.45196  Chongqing 1.07939  
Hebei 2.51308  Fujian 0.91073  Sichuan 1.23131  
Shanxi 2.67162  Jiangxi 1.21293  Guizhou 2.61633  

Inner Mongolia 3.59416  Shandong 1.03044  Yunnan 1.66773  
Liaoning 1.99772  Henan 1.26806  Shaanxi 1.61370  

Jilin 1.72312  Hubei 0.97292  Gansu 2.46737  
Heilongjiang 1.84354  Hunan 1.14881  Qinghai 2.09868  

Shanghai 0.62665  Guangdong 0.53423  Ningxia 5.44483  
Jiangsu 0.91235  Guangxi 1.29367  Xinjiang 3.51138  

4. Discussion 

In this study, China's carbon emissions intensity from 2011 to 2019 is decomposed by provinces and 
cities, and it is found that Guizhou, Yunnan, Ningxia and Gansu provinces have higher carbon 
emissions intensity with larger changes, indicating that these provinces and cities have higher potential 
to reduce their carbon emissions intensity and need to take on more emission reduction targets. In 
contrast, Beijing, Shanghai, Fujian and Guangdong have lower carbon emissions intensity with smaller 
changes, indicating that these provinces have less potential to reduce carbon emissions and therefore do 
not need to take on more emission reduction targets. 

As can be seen from the results in Figure 3, the global Moran's I index is positive over the period of 
this study, ranging from 0.29 ~ 0.397, and is generally on an upward trend. This indicates that the 
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spatial aggregation of provincial carbon intensity in China is becoming more and more evident, with 
neighbouring provinces and municipalities being mostly close to each other. The Lisa aggregation 
diagram reveals that the high carbon emission intensity agglomerations are located in parts of Northeast 
and North China, which geographically belong to the North. These provinces with high carbon 
emission intensity agglomerations have lower economic development and therefore have a greater 
potential for carbon emission decline, and with the exception of Liaoning, these regions' 2019 GDPs 
are in the middle and lower reaches of each Chinese province, so while strengthening environmental 
pollution in these cities. The two-pronged approach of strengthening environmental pollution control in 
these cities while also taking into account economic development will enable the carbon emission 
intensity of these provinces and cities to fall. The low carbon intensity catchment areas are located in 
the southern coastal provinces, which have a high level of economic development and are dominated 
by light industry, which puts less pressure on pollution control and therefore has less potential to reduce 
carbon emissions. Strengthening the exchange of economic and environmental pollution control 
policies between these regions is an important way to expand the low carbon emission intensity 
agglomerations and drive down the carbon emission intensity of surrounding cities. 

According to the results of the analysis in Figure 5, Figure 6, the spatial heterogeneity generated by 
China's provincial carbon emissions intensity becomes more pronounced as the number of years 
increases, according to the seven regions of geographical location. This indicates that within the 30 
provinces studied, China's provincial carbon emissions intensity shows a spatially heterogeneous 
pattern. At the national level, average mean temperature, industrial output, topographic relief and 
expenditure on science and technology have the greatest impact on carbon intensity, which is related to 
the difference in temperature between the north and south due to geographical location, and the 
national emphasis on vigorous industrial development and the improvement of science and technology. 

The GRNN neural network used in this study used the top 9 factors with the strongest explanatory 
power as input variables for the prediction of carbon emission intensity, and cross-validation by the 
leave-one-out method illustrated good results for the prediction of carbon emission intensity. 

5. Conclusion 

(1) From 2011 to 2019, carbon emission intensity is on a downward trend, with low-intensity 
regions shifting from 2 provinces and cities to 14 provinces and cities, and medium-intensity regions 
shifting from 6 provinces and cities to 4 provinces and cities. The overall carbon emission intensity in 
East China, Central China and South China is smaller than that in Northwest China and Northeast 
China. (2) From 2011 to 2019, the carbon emission intensity of each region in China showed positive 
spatial correlation characteristics, and the carbon emission intensity pollution agglomeration from 2011 
to 2019 was obvious, spreading from Northwest China to Northeast China. There is also agglomeration 
in low carbon emission intensity regions, with agglomeration areas in Jiangxi, Fujian and Zhejiang 
provinces spreading to the periphery and having the effect of reducing carbon emissions. There is an 
increasing trend in both the L-L region and the H-H region. (3) Through geographic detectors, at the 
national scale, the factor with the greatest explanatory power of carbon emission intensity in 30 
Chinese provinces and cities is temperature, followed by industrial output value, topographic relief, and 
science and technology expenditure. 2011 to 2019, the spatial heterogeneity of carbon emission 
intensity shows an increasing trend. (4) The top nine most influential factors were obtained through the 
analysis of geographic detectors for GRNN neural network prediction, and the smooth coefficient 
spread was optimally selected using the leave-one-out method of cross-validation to obtain the 2020 
carbon emission prediction data with the best prediction effect, and it can be found that the change 
trend of carbon emission intensity is greatly related to geographical differences. 
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