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Abstract: Non-contact infrared thermography for core body temperature prediction faces challenges 
from measurement uncertainties caused by inter-device variability and environmental factors. This study 
develops a machine learning framework to establish the relationship between superficial thermal 
patterns and core temperature using empirical data from FLIR and ICI infrared imaging systems. The 
framework integrates multi-region facial thermographic data, device-specific metadata, and ambient 
environmental parameters. A feature set was developed incorporating statistical descriptors of regional 
temperature distributions, device-specific correction factors, environmental parameters, and 
spatiotemporally derived attributes. Three machine learning algorithms—Support Vector Regression, 
Extreme Gradient Boosting, and Random Forests—were compared for cross-device core temperature 
estimation. The optimized Support Vector Regression model achieved the highest predictive accuracy, 
with results most consistent with clinical reference measurements in both cross-device generalization 
and environmental robustness tests. The model demonstrated consistent performance across different 
device types and environmental conditions, and effectively characterized the interactive effects of device 
heterogeneity and environmental complexity. The integration of data-driven modeling with biothermal 
principles provides a framework for advancing accuracy in multi-device infrared thermometry. 
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1. Introduction 

Infrared thermography represents a non-contact temperature measurement technique that has gained 
widespread adoption in public health screening, clinical monitoring, and personal healthcare 
management due to its operational efficiency and safety. Global deployment of infrared-based screening 
devices has shown an annual growth rate of approximately 15%, establishing this technology as a 
standard tool for preliminary screening during public health emergencies. The practical implementation 
of infrared thermography faces technical challenges: systematic inter-device variations originating from 
differences in sensor characteristics, calibration protocols, and imaging principles can introduce 
measurement biases of 0.3-0.5°C [1], while environmental factors including ambient temperature, 
humidity, and measurement distance contribute additional uncertainties of 0.2-0.4°C [2]. These device-
specific and environment-dependent variations, combined with individual physiological differences, 
create a complex measurement scenario that affects accuracy and reliability in cross-device applications. 

Current methodologies for core body temperature estimation primarily include physics-based heat 
conduction models, statistical regression approaches, and feature-driven machine learning techniques. 
Heat conduction models require specific boundary conditions and demonstrate limited generalization 
capabilities [3], while conventional statistical methods show limitations in capturing nonlinear 
interactions between device-specific characteristics and environmental variables [4]. Previous 
investigations have incorporated geostatistical spatial variogram analysis and medical image 
enhancement techniques [5] into thermal field characterization, though these approaches primarily 
address local accuracy rather than cross-device consistency. 

Advances in data science have provided new approaches for complex system modeling. Machine 
learning algorithms, capable of identifying nonlinear mappings and processing high-dimensional feature 
spaces, have been successfully applied in medical image analysis [6-9], environmental monitoring [10], 
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and industrial quality control [11-12]. Within infrared thermometry, machine learning frameworks enable 
the integration of multi-source data—including regional temperature distributions, device metadata, and 
environmental parameters—to establish relationships between superficial thermal patterns and core body 
temperature [13]. Feature engineering techniques facilitate the construction of comprehensive feature 
sets that encode thermal field statistics, device-specific biases, and environmental modulation effects. 

Modern public health infrastructure typically incorporates diverse infrared device models operating 
under varied environmental conditions, while accounting for substantial inter-individual physiological 
variation. Previous research has developed device-specific calibration methods and environmental 
compensation approaches, though these typically address individual factors rather than system-level 
integration. Machine learning provides an approach for addressing the combined effects of device 
heterogeneity and environmental influence through data-driven modeling. 

This study integrates empirical datasets from FLIR and ICI infrared imaging systems to construct a 
comprehensive data repository containing multi-region facial thermal data, device identifiers, and 
environmental parameters. Through development of a multidimensional feature architecture 
incorporating statistical distribution descriptors, device-specific correction factors, and environmental 
moderators, we compare three supervised learning methods: Support Vector Regression, Extreme 
Gradient Boosting, and Random Forest. The investigation examines algorithmic performance in cross-
device generalization and environmental robustness, with the objective of identifying suitable modeling 
approaches for multi-device scenarios and contributing to the standardization of infrared thermometry 
applications. 

2. Related Works 

Non-contact infrared thermography for core body temperature estimation faces challenges stemming 
from device heterogeneity and environmental variability, leading to the application of machine learning 
methods for nonlinear modeling and multi-source data integration. In feature engineering, studies have 
integrated facial temperature measurements with environmental parameters and device metadata, 
employing dimensionality reduction techniques to optimize feature combinations using clinical 
temperatures as reference standards. Model development has explored various architectures, with support 
vector regression showing advantages over ensemble methods and linear regression in processing facial 
thermal imagery. Data integration approaches have combined thermal sequences with demographic and 
ambient parameters to capture interactions between temperature distributions and environmental factors. 
Optimization methods have addressed technical issues including missing data imputation through hybrid 
algorithms and dataset imbalance through ensemble strategies with weighted mechanisms. For cross-
device applications, comparative analyses of machine learning paradigms have been conducted using 
multi-device thermal datasets, with tree-based ensembles demonstrating robust performance across 
different infrared camera models, though requiring comprehensive calibration procedures. Feature 
selection strategies have been systematically evaluated, with mutual information-based methods 
combined with tree algorithms producing consistent results across device configurations. Current 
research indicates that while substantial progress has been made in algorithm development, systematic 
comparisons of cross-device generalization capability remain limited, particularly regarding the 
integration of device-specific calibration with environmental compensation mechanisms, and most 
existing approaches focus on single-device optimization without sufficient evaluation of cross-platform 
compatibility. 

3. Principles of the Randomized Search Optimization Algorithm 

3.1 Algorithm Background 

Randomized search optimization provides a computational methodology for hyperparameter tuning 
in machine learning, particularly suited for high-dimensional parameter spaces. This approach employs 
stochastic sampling from predefined parameter distributions, enabling efficient exploration of the search 
space with reduced computational requirements compared to exhaustive methods. The algorithm 
operates on the principle that hyperparameter importance varies across different machine learning tasks, 
utilizing probability-based sampling to navigate complex, non-convex optimization landscapes 
commonly encountered in model training. 

The implementation follows a structured workflow comprising parameter distribution definition, 
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iterative candidate configuration generation, and cross-validation based evaluation. This process 
continues until reaching predetermined computational budgets or convergence thresholds. The 
methodology demonstrates inherent scalability to high-dimensional problems and adaptability to various 
machine learning paradigms, while supporting parallel evaluation and early stopping mechanisms. 

The theoretical foundation of randomized search aligns with principles of experimental design and 
statistical optimization, providing a framework that balances search comprehensiveness with 
computational constraints. This optimization strategy serves as a practical alternative to more 
computationally intensive methods, establishing the basis for automated machine learning workflows 
where computational efficiency represents a primary consideration. 

3.2 Establishment of Model 

The randomized search optimization framework comprises three interconnected computational 
mechanisms that collectively address the challenges of hyperparameter optimization in high-dimensional 
machine learning applications. These mechanisms operate sequentially to sample parameter 
configurations, evaluate their performance, and determine optimal termination points. 

3.2.1 Parameter Space Probability Sampling Mechanism 

The parameter space probability sampling mechanism implements a stochastic approach to 
hyperparameter configuration generation. This methodology replaces exhaustive enumeration strategies 
with probability-driven sampling, enabling efficient exploration of complex parameter spaces. The 
mechanism operates through distinct sampling protocols for different parameter types, maintaining 
comprehensive search coverage while controlling computational costs. 

For continuous hyperparameters, the sampling process utilizes uniform probability distributions 
across defined value ranges: 
 

ciii nibaU ,...,2,1for    ),(~x =  (1) 

Where each continuous parameter ix is bounded within interval ],[ ii ba ,with cn representing the 
total number of continuous parameters in the optimization space. 

Discrete hyperparameters employ categorical sampling from finite value sets: 

 djmjj njppp ,...,2,1for   ),...,,(lCategorica~y 21i =  (2)
 

Where each discrete parameter iy selects from m possible values according to assigned probabilities

jkp ,with dn denoting the count of discrete parameters. 

The complete parameter configuration construction combines sampled elements from both 
continuous and discrete domains: 

 djmjj njppp ,...,2,1for   ),...,,(lCategorica~y 21i =  (3)
 

This sampling strategy ensures probabilistic coverage of the entire hyperparameter space while 
maintaining computational tractability through controlled configuration generation. 

3.2.2 Configuration Parallel Evaluation Mechanism 

The configuration parallel evaluation mechanism capitalizes on the inherent independence between 
different parameter configurations to enable simultaneous performance assessment. This approach 
significantly accelerates the optimization process by leveraging parallel computing architectures while 
maintaining evaluation accuracy through rigorous validation methodologies. 

The performance evaluation for each candidate configuration kθ employs K-fold cross-validation to 
estimate generalization capability: 

  (4) 

Where )( kiL θ quantifies the performance metric on the i-th validation partition, and K determines 
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the number of cross-validation folds, balancing estimation variance and computational load. 

The parallel evaluation process for multiple configurations operates as: 

 },...,,{ 21 Nθθθ=Θ  (5) 

 )}(),...,(),({ 21 NLLL θθθ=Γ  (6) 

Where N configurations undergo concurrent assessment, with results aggregated for comparative 
analysis. 

3.2.3 Adaptive Termination Mechanism 

The adaptive termination mechanism implements decision criteria to conclude the optimization 
process based on either computational resource constraints or performance convergence metrics. This 
dual-criterion approach ensures efficient resource utilization while maintaining solution quality standards. 

The computational budget criterion terminates optimization when: 

 )}(),...,(),({ 21 NLLL θθθ=Γ  (7) 

Where currentT monitors elapsed processing time and maxT establishes the maximum allowable 
computational duration. 

The performance convergence criterion monitors optimization progress through relative 
improvement assessment: 

  (8) 

Where )(t
bestL records the optimal performance metric at iteration t ,∆ defines the observation interval 

for improvement calculation, and ϵϵ establishes the minimum relative improvement threshold for 
continued optimization. 

This structured optimization approach provides a methodological foundation for hyperparameter 
search in machine learning applications, systematically addressing the trade-off between search 
comprehensiveness and computational efficiency through probabilistic sampling, parallel evaluation, and 
adaptive termination strategies. 

4. Experimental Results and Analysis 

4.1 Experimental Framework and Data Configuration 

The experimental evaluation utilized four distinct datasets obtained from infrared imaging systems 
under controlled environmental conditions representing two temperature ranges. The dataset comprised 
facial thermal imaging data from participants, with each sample containing multi-region temperature 
measurements referenced against clinical oral temperature standards.The experimental dataset 
configuration is summarized in Table 1. 

Table 1: Dataset specifications for experimental validation 

Dataset Imaging Device Environmental Condition Sample Size Feature Dimensions 
Group1 Type A 20-24°C 185 47 
Group2 Type B 20-24°C 183 45 
Group3 Type C 24-29°C 192 46 
Group4 Type D 24-29°C 190 44 
Feature selection through correlation analysis identified thermal characteristics demonstrating 

consistent predictive capability across device platforms. These features included statistical descriptors of 
temperature distributions in facial regions, along with environmental compensation parameters. 
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4.2 AHyperparameter Optimization Outcomes 

The hyperparameter optimization process employed randomized search with cross-validation to 
identify optimal configurations for four machine learning algorithms. Convergence patterns observed in 
Figure 1 demonstrate distinct optimization trajectories across different algorithmic architectures. 

 
Figure 1: Hyperparameter optimization convergence curves 

The resulting configurations showed variation across algorithms. One method achieved optimal 
performance with specific parameter values, while ensemble approaches selected different architectural 
configurations. 

The convergence analysis reveals varying optimization efficiency among the evaluated algorithms. 
Support vector regression exhibits the most rapid error reduction during initial iterations, achieving 
stability after approximately 8-10 iterations. Tree-based ensembles, including random forest and xgboost, 
demonstrate gradual but consistent error reduction throughout the optimization process. The elastic net 
algorithm shows faster convergence initially but reaches a higher final error level compared to other 
methods. 

The final convergence values indicate that support vector regression achieves the lowest mean 
squared error (0.06), followed by XGBoost (0.069) and Random Forest (0.065). These convergence 
patterns reflect the inherent characteristics of each algorithm's parameter space and their responsiveness 
to the optimization methodology. 

4.3 Cross-Device Generalization Performance 

Multiple experimental configurations evaluated model transfer capability across device platforms and 
environmental conditions. Performance assessment used standard evaluation metrics including MAE, 
RMSE, and R².Figure 2 presents the cross-device generalization performance across different 
experimental configurations. 

Experimental results showed performance variations across methods and conditions. Some models 
maintained consistent performance in device transfer tasks, while others displayed environment-
dependent characteristics. Cross-condition transfers resulted in measurable performance changes across 
all models. 
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Figure 2: Cross-device generalization performance 

4.4 Predictive Feature Analysis and Model Interpretation 

Feature importance analysis provides insights into the relative contribution of different thermal 
characteristics to prediction accuracy. The SHAP dependence plot in Figure 3 illustrates the relationship 
between feature values and their impact on model predictions.Figure 3 displays the SHAP dependence 
analysis for key predictive features. 

 
Figure 3: Feature importance distribution 

The SHAP analysis identifies T_Max2 as a significant predictive feature, showing a non-linear 
relationship with model output. Lower values of T_Max2 correspond to negative SHAP values, 
indicating reduced predicted temperatures, while moderate to high values exhibit positive contributions. 
The color gradient representing T_Max4 values suggests interaction effects between these two features, 
with higher T_Max4 values generally associated with increased positive contributions. 

The distribution of data points shows clustering in specific value ranges, reflecting the natural 
distribution of thermal characteristics in the dataset. This analysis confirms that multiple facial regions 
contribute to temperature prediction, with certain features demonstrating stronger predictive influence 
than others. 

4.5 Performance Benchmarking and Comparative Evaluation 

Comprehensive performance evaluation across multiple metrics provides a holistic view of algorithm 
capabilities. The radar chart in Figure 4 presents normalized scores for four key performance indicators.A 
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comparative analysis of optimization methods is presented in Table 2. 

Table 2: Optimization method performance comparison 

Optimization Method Mean R² MAE (°C) Computational Duration 
Method A 0.852 0.24 45 
Method B 0.841 0.26 128 
Method C 0.848 0.25 67 
Method D 0.823 0.29 90 

 
Figure 4: Model performance radar chart 

The radar chart visualization reveals distinct performance profiles across the evaluated algorithms. 
Support Vector Regression demonstrates the most balanced performance characteristics, maintaining 
competitive scores across all metrics including MSE, R², and computational efficiency. Xgboost shows 
strong performance in prediction accuracy but exhibits slightly reduced efficiency scores. Random Forest 
achieves moderate performance across most metrics, while Elastic Net shows particular strength in 
computational efficiency despite lower accuracy metrics. 

The comparative analysis indicates trade-offs between prediction accuracy and computational 
requirements across different algorithmic approaches. This multi-dimensional assessment provides 
practical guidance for algorithm selection based on specific application requirements and resource 
constraints. 

The experimental results establish that the optimization framework successfully identifies 
hyperparameter configurations that balance multiple performance objectives, contributing to the 
development of reliable temperature prediction systems. 

5. Conclusion 

5.1 Validation of Optimization Effectiveness 

The randomized search optimization algorithm provides an effective approach for hyperparameter 
tuning in multi-device infrared temperature prediction. Experimental results establish that the method 
delivers competitive performance while maintaining computational efficiency. The optimization 
framework demonstrates capability in navigating high-dimensional parameter spaces, identifying 
configurations that sustain robust performance across varied device platforms and environmental 
conditions. Quantitative analysis indicates consistent performance improvements across evaluation 
metrics, with particularly significant enhancements observed in ensemble methods and support vector 
regression architectures. 
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5.2 Research Implications and Practical Applications 

The implementation of randomized search optimization contributes methodological foundations for 
medical thermometry applications. This approach addresses fundamental challenges in cross-device 
temperature prediction, including device heterogeneity and environmental variability. Models optimized 
through this framework demonstrate potential for clinical temperature assessment, supporting accurate 
screening and monitoring applications in healthcare settings. Feature importance analysis offers 
interpretable insights into thermal characteristics, advancing understanding of the physiological basis for 
infrared temperature prediction. 

Current research limitations encompass dataset scope constraints and computational resource 
requirements. Future investigations should prioritize several directions: expansion to multi-center clinical 
validation studies, enhancement of algorithmic efficiency for real-time applications, development of 
hybrid optimization methodologies integrating randomized search with model-based approaches, and 
extension to additional physiological parameter monitoring applications. These advancements would 
strengthen the technical foundation for reliable medical assessment systems. 

5.3 Concluding Remarks 

This study establishes randomized search optimization as a viable methodology for hyperparameter 
optimization in medical temperature prediction. The developed framework demonstrates consistent 
performance in identifying parameter configurations that maintain predictive accuracy across diverse 
operational conditions. Experimental evidence validates the approach's capacity to balance 
computational demands with prediction performance. The research provides methodological 
contributions to medical machine learning optimization and supports the development of precise 
temperature assessment systems. Subsequent research initiatives should emphasize clinical validation, 
algorithmic refinement, and extension to broader healthcare monitoring applications to advance the field 
of medical artificial intelligence. 
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