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Abstract: Non-contact infrared thermography for core body temperature prediction faces challenges
from measurement uncertainties caused by inter-device variability and environmental factors. This study
develops a machine learning framework to establish the relationship between superficial thermal
patterns and core temperature using empirical data from FLIR and ICI infrared imaging systems. The
framework integrates multi-region facial thermographic data, device-specific metadata, and ambient
environmental parameters. A feature set was developed incorporating statistical descriptors of regional
temperature distributions, device-specific correction factors, environmental parameters, and
spatiotemporally derived attributes. Three machine learning algorithms—Support Vector Regression,
Extreme Gradient Boosting, and Random Forests—were compared for cross-device core temperature
estimation. The optimized Support Vector Regression model achieved the highest predictive accuracy,
with results most consistent with clinical reference measurements in both cross-device generalization
and environmental robustness tests. The model demonstrated consistent performance across different
device types and environmental conditions, and effectively characterized the interactive effects of device
heterogeneity and environmental complexity. The integration of data-driven modeling with biothermal
principles provides a framework for advancing accuracy in multi-device infrared thermometry.
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1. Introduction

Infrared thermography represents a non-contact temperature measurement technique that has gained
widespread adoption in public health screening, clinical monitoring, and personal healthcare
management due to its operational efficiency and safety. Global deployment of infrared-based screening
devices has shown an annual growth rate of approximately 15%, establishing this technology as a
standard tool for preliminary screening during public health emergencies. The practical implementation
of infrared thermography faces technical challenges: systematic inter-device variations originating from
differences in sensor characteristics, calibration protocols, and imaging principles can introduce
measurement biases of 0.3-0.5°C [1], while environmental factors including ambient temperature,
humidity, and measurement distance contribute additional uncertainties of 0.2-0.4°C [2]. These device-
specific and environment-dependent variations, combined with individual physiological differences,
create a complex measurement scenario that affects accuracy and reliability in cross-device applications.

Current methodologies for core body temperature estimation primarily include physics-based heat
conduction models, statistical regression approaches, and feature-driven machine learning techniques.
Heat conduction models require specific boundary conditions and demonstrate limited generalization
capabilities [3], while conventional statistical methods show limitations in capturing nonlinear
interactions between device-specific characteristics and environmental variables [4]. Previous
investigations have incorporated geostatistical spatial variogram analysis and medical image
enhancement techniques [5] into thermal field characterization, though these approaches primarily
address local accuracy rather than cross-device consistency.

Advances in data science have provided new approaches for complex system modeling. Machine
learning algorithms, capable of identifying nonlinear mappings and processing high-dimensional feature
spaces, have been successfully applied in medical image analysis [6-9], environmental monitoring [10],
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and industrial quality control [11-12]. Within infrared thermometry, machine learning frameworks enable
the integration of multi-source data—including regional temperature distributions, device metadata, and
environmental parameters—to establish relationships between superficial thermal patterns and core body
temperature [13]. Feature engineering techniques facilitate the construction of comprehensive feature
sets that encode thermal field statistics, device-specific biases, and environmental modulation effects.

Modern public health infrastructure typically incorporates diverse infrared device models operating
under varied environmental conditions, while accounting for substantial inter-individual physiological
variation. Previous research has developed device-specific calibration methods and environmental
compensation approaches, though these typically address individual factors rather than system-level
integration. Machine learning provides an approach for addressing the combined effects of device
heterogeneity and environmental influence through data-driven modeling.

This study integrates empirical datasets from FLIR and ICI infrared imaging systems to construct a
comprehensive data repository containing multi-region facial thermal data, device identifiers, and
environmental parameters. Through development of a multidimensional feature architecture
incorporating statistical distribution descriptors, device-specific correction factors, and environmental
moderators, we compare three supervised learning methods: Support Vector Regression, Extreme
Gradient Boosting, and Random Forest. The investigation examines algorithmic performance in cross-
device generalization and environmental robustness, with the objective of identifying suitable modeling
approaches for multi-device scenarios and contributing to the standardization of infrared thermometry
applications.

2. Related Works

Non-contact infrared thermography for core body temperature estimation faces challenges stemming
from device heterogeneity and environmental variability, leading to the application of machine learning
methods for nonlinear modeling and multi-source data integration. In feature engineering, studies have
integrated facial temperature measurements with environmental parameters and device metadata,
employing dimensionality reduction techniques to optimize feature combinations using clinical
temperatures as reference standards. Model development has explored various architectures, with support
vector regression showing advantages over ensemble methods and linear regression in processing facial
thermal imagery. Data integration approaches have combined thermal sequences with demographic and
ambient parameters to capture interactions between temperature distributions and environmental factors.
Optimization methods have addressed technical issues including missing data imputation through hybrid
algorithms and dataset imbalance through ensemble strategies with weighted mechanisms. For cross-
device applications, comparative analyses of machine learning paradigms have been conducted using
multi-device thermal datasets, with tree-based ensembles demonstrating robust performance across
different infrared camera models, though requiring comprehensive calibration procedures. Feature
selection strategies have been systematically evaluated, with mutual information-based methods
combined with tree algorithms producing consistent results across device configurations. Current
research indicates that while substantial progress has been made in algorithm development, systematic
comparisons of cross-device generalization capability remain limited, particularly regarding the
integration of device-specific calibration with environmental compensation mechanisms, and most
existing approaches focus on single-device optimization without sufficient evaluation of cross-platform
compatibility.

3. Principles of the Randomized Search Optimization Algorithm
3.1 Algorithm Background

Randomized search optimization provides a computational methodology for hyperparameter tuning
in machine learning, particularly suited for high-dimensional parameter spaces. This approach employs
stochastic sampling from predefined parameter distributions, enabling efficient exploration of the search
space with reduced computational requirements compared to exhaustive methods. The algorithm
operates on the principle that hyperparameter importance varies across different machine learning tasks,
utilizing probability-based sampling to navigate complex, non-convex optimization landscapes
commonly encountered in model training.

The implementation follows a structured workflow comprising parameter distribution definition,
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iterative candidate configuration generation, and cross-validation based evaluation. This process
continues until reaching predetermined computational budgets or convergence thresholds. The
methodology demonstrates inherent scalability to high-dimensional problems and adaptability to various
machine learning paradigms, while supporting parallel evaluation and early stopping mechanisms.

The theoretical foundation of randomized search aligns with principles of experimental design and
statistical optimization, providing a framework that balances search comprehensiveness with
computational constraints. This optimization strategy serves as a practical alternative to more
computationally intensive methods, establishing the basis for automated machine learning workflows
where computational efficiency represents a primary consideration.

3.2 Establishment of Model

The randomized search optimization framework comprises three interconnected computational
mechanisms that collectively address the challenges of hyperparameter optimization in high-dimensional
machine learning applications. These mechanisms operate sequentially to sample parameter
configurations, evaluate their performance, and determine optimal termination points.

3.2.1 Parameter Space Probability Sampling Mechanism

The parameter space probability sampling mechanism implements a stochastic approach to
hyperparameter configuration generation. This methodology replaces exhaustive enumeration strategies
with probability-driven sampling, enabling efficient exploration of complex parameter spaces. The
mechanism operates through distinct sampling protocols for different parameter types, maintaining
comprehensive search coverage while controlling computational costs.

For continuous hyperparameters, the sampling process utilizes uniform probability distributions
across defined value ranges:

x; ~U(a,,b,) fori=12,..,n, )

Where each continuous parameter X, is bounded within interval [a,,b;] ,with 1, representing the

total number of continuous parameters in the optimization space.

Discrete hyperparameters employ categorical sampling from finite value sets:
y; ~ Categorical(p,, p,y»---, p,,,) Tor j=12,....n, )

Where each discrete parameter ), selects from 77 possible values according to assigned probabilities

. ,with 11, denoting the count of discrete parameters.
Jjk d g p

The complete parameter configuration construction combines sampled elements from both
continuous and discrete domains:

y; ~ Categorical(p,, p,y»---, p,,,) Tor j=12,....n, (3)

This sampling strategy ensures probabilistic coverage of the entire hyperparameter space while
maintaining computational tractability through controlled configuration generation.

3.2.2 Configuration Parallel Evaluation Mechanism

The configuration parallel evaluation mechanism capitalizes on the inherent independence between
different parameter configurations to enable simultaneous performance assessment. This approach
significantly accelerates the optimization process by leveraging parallel computing architectures while
maintaining evaluation accuracy through rigorous validation methodologies.

The performance evaluation for each candidate configuration 9k employs K-fold cross-validation to

estimate generalization capability:

L(0) = =211 Li (0x) @

Where L[ (Hk) quantifies the performance metric on the i-th validation partition, and K determines
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the number of cross-validation folds, balancing estimation variance and computational load.

The parallel evaluation process for multiple configurations operates as:
0=1{0,0,,...0,} (5)
['={L(6)),L(6,).....L(6y)} (6)
Where N configurations undergo concurrent assessment, with results aggregated for comparative
analysis.

3.2.3 Adaptive Termination Mechanism

The adaptive termination mechanism implements decision criteria to conclude the optimization
process based on either computational resource constraints or performance convergence metrics. This
dual-criterion approach ensures efficient resource utilization while maintaining solution quality standards.

The computational budget criterion terminates optimization when:
I'={L(6,),L(6,)....,L(0y)} @)

Where T

current

computational duration.

monitors elapsed processing time and 7|, establishes the maximum allowable

The performance convergence criterion monitors optimization progress through relative
improvement assessment:

Lyosi=Lpese

es es
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Where Lge)st records the optimal performance metric at iteration , A defines the observation interval

for improvement calculation, and €e establishes the minimum relative improvement threshold for
continued optimization.

This structured optimization approach provides a methodological foundation for hyperparameter
search in machine learning applications, systematically addressing the trade-off between search
comprehensiveness and computational efficiency through probabilistic sampling, parallel evaluation, and
adaptive termination strategies.

4. Experimental Results and Analysis
4.1 Experimental Framework and Data Configuration

The experimental evaluation utilized four distinct datasets obtained from infrared imaging systems
under controlled environmental conditions representing two temperature ranges. The dataset comprised
facial thermal imaging data from participants, with each sample containing multi-region temperature
measurements referenced against clinical oral temperature standards.The experimental dataset
configuration is summarized in Table 1.

Table 1: Dataset specifications for experimental validation

Dataset | Imaging Device | Environmental Condition Sample Size Feature Dimensions
Groupl Type A 20-24°C 185 47
Group2 Type B 20-24°C 183 45
Group3 Type C 24-29°C 192 46
Group4 Type D 24-29°C 190 44

Feature selection through correlation analysis identified thermal characteristics demonstrating
consistent predictive capability across device platforms. These features included statistical descriptors of
temperature distributions in facial regions, along with environmental compensation parameters.
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4.2 AHyperparameter Optimization Outcomes

The hyperparameter optimization process employed randomized search with cross-validation to
identify optimal configurations for four machine learning algorithms. Convergence patterns observed in
Figure 1 demonstrate distinct optimization trajectories across different algorithmic architectures.

Hyperparameter Optimization Convergence Curves)
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Figure 1: Hyperparameter optimization convergence curves

The resulting configurations showed variation across algorithms. One method achieved optimal
performance with specific parameter values, while ensemble approaches selected different architectural
configurations.

The convergence analysis reveals varying optimization efficiency among the evaluated algorithms.
Support vector regression exhibits the most rapid error reduction during initial iterations, achieving
stability after approximately 8-10 iterations. Tree-based ensembles, including random forest and xgboost,
demonstrate gradual but consistent error reduction throughout the optimization process. The elastic net
algorithm shows faster convergence initially but reaches a higher final error level compared to other
methods.

The final convergence values indicate that support vector regression achieves the lowest mean
squared error (0.06), followed by XGBoost (0.069) and Random Forest (0.065). These convergence
patterns reflect the inherent characteristics of each algorithm's parameter space and their responsiveness
to the optimization methodology.

4.3 Cross-Device Generalization Performance

Multiple experimental configurations evaluated model transfer capability across device platforms and
environmental conditions. Performance assessment used standard evaluation metrics including MAE,
RMSE, and R2Figure 2 presents the cross-device generalization performance across different
experimental configurations.

Experimental results showed performance variations across methods and conditions. Some models
maintained consistent performance in device transfer tasks, while others displayed environment-
dependent characteristics. Cross-condition transfers resulted in measurable performance changes across
all models.
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Figure 2: Cross-device generalization performance
4.4 Predictive Feature Analysis and Model Interpretation

Feature importance analysis provides insights into the relative contribution of different thermal
characteristics to prediction accuracy. The SHAP dependence plot in Figure 3 illustrates the relationship
between feature values and their impact on model predictions.Figure 3 displays the SHAP dependence
analysis for key predictive features.
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Figure 3: Feature importance distribution

The SHAP analysis identifies T Max2 as a significant predictive feature, showing a non-linear
relationship with model output. Lower values of T Max2 correspond to negative SHAP values,
indicating reduced predicted temperatures, while moderate to high values exhibit positive contributions.
The color gradient representing T Max4 values suggests interaction effects between these two features,
with higher T Max4 values generally associated with increased positive contributions.

The distribution of data points shows clustering in specific value ranges, reflecting the natural
distribution of thermal characteristics in the dataset. This analysis confirms that multiple facial regions
contribute to temperature prediction, with certain features demonstrating stronger predictive influence
than others.

4.5 Performance Benchmarking and Comparative Evaluation

Comprehensive performance evaluation across multiple metrics provides a holistic view of algorithm
capabilities. The radar chart in Figure 4 presents normalized scores for four key performance indicators.A
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comparative analysis of optimization methods is presented in Table 2.

Table 2: Optimization method performance comparison

Optimization Method Mean R? MAE (°C) Computational Duration
Method A 0.852 0.24 45
Method B 0.841 0.26 128
Method C 0.848 0.25 67
Method D 0.823 0.29 90
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Figure 4: Model performance radar chart

The radar chart visualization reveals distinct performance profiles across the evaluated algorithms.
Support Vector Regression demonstrates the most balanced performance characteristics, maintaining
competitive scores across all metrics including MSE, R?, and computational efficiency. Xgboost shows
strong performance in prediction accuracy but exhibits slightly reduced efficiency scores. Random Forest
achieves moderate performance across most metrics, while Elastic Net shows particular strength in
computational efficiency despite lower accuracy metrics.

The comparative analysis indicates trade-offs between prediction accuracy and computational
requirements across different algorithmic approaches. This multi-dimensional assessment provides
practical guidance for algorithm selection based on specific application requirements and resource
constraints.

The experimental results establish that the optimization framework successfully identifies
hyperparameter configurations that balance multiple performance objectives, contributing to the
development of reliable temperature prediction systems.

5. Conclusion
5.1 Validation of Optimization Effectiveness

The randomized search optimization algorithm provides an effective approach for hyperparameter
tuning in multi-device infrared temperature prediction. Experimental results establish that the method
delivers competitive performance while maintaining computational efficiency. The optimization
framework demonstrates capability in navigating high-dimensional parameter spaces, identifying
configurations that sustain robust performance across varied device platforms and environmental
conditions. Quantitative analysis indicates consistent performance improvements across evaluation
metrics, with particularly significant enhancements observed in ensemble methods and support vector
regression architectures.
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5.2 Research Implications and Practical Applications

The implementation of randomized search optimization contributes methodological foundations for
medical thermometry applications. This approach addresses fundamental challenges in cross-device
temperature prediction, including device heterogeneity and environmental variability. Models optimized
through this framework demonstrate potential for clinical temperature assessment, supporting accurate
screening and monitoring applications in healthcare settings. Feature importance analysis offers
interpretable insights into thermal characteristics, advancing understanding of the physiological basis for
infrared temperature prediction.

Current research limitations encompass dataset scope constraints and computational resource
requirements. Future investigations should prioritize several directions: expansion to multi-center clinical
validation studies, enhancement of algorithmic efficiency for real-time applications, development of
hybrid optimization methodologies integrating randomized search with model-based approaches, and
extension to additional physiological parameter monitoring applications. These advancements would
strengthen the technical foundation for reliable medical assessment systems.

5.3 Concluding Remarks

This study establishes randomized search optimization as a viable methodology for hyperparameter
optimization in medical temperature prediction. The developed framework demonstrates consistent
performance in identifying parameter configurations that maintain predictive accuracy across diverse
operational conditions. Experimental evidence validates the approach's capacity to balance
computational demands with prediction performance. The research provides methodological
contributions to medical machine learning optimization and supports the development of precise
temperature assessment systems. Subsequent research initiatives should emphasize clinical validation,
algorithmic refinement, and extension to broader healthcare monitoring applications to advance the field
of medical artificial intelligence.
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