
Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 7, Issue 7: 17-22, DOI: 10.25236/AJCIS.2024.070703

Published by Francis Academic Press, UK

-17-

Design of a Self-Balancing Vehicle with PID Control

Based on Improved Particle Swarm Optimization

Algorithm

Liu Nana,*, Lv Yue, You Cheng, Zhang Ranhua, Yao Qijun

School of Mechanical and Electrical Engineering and Automation, Xiamen University Tan Kah Kee

College, Zhangzhou, China
aliunan1208@foxmail.com
*Corresponding author

Abstract: As a typical nonlinear, time-varying, and strongly coupled system, the stability control of a

self-balancing vehicle imposes high demands on control algorithms. Traditional PID control often relies

on empiricalparameter tuning when dealing with complex dynamic environments, making it challenging

to achieve optimalcontrol performance. Therefore, this study adopts an improved Particle Swarm

Optimization (PSO) algorithm tooptimize the parameters of the PID controller. By enhancing the global

search capability and local optimizationability of the PSO algorithm, the proportional, integral, and

derivative parameters of the PID controller areautomatically adjusted to improve the system's response

speed and stability. Experimental results demonstrate that the PID controller based on the improved

PSO algorithm outperforms the traditional PID controller in controlling the self-balancing vehicle,

effectively enhancing its stability and control accuracy.

Keywords: Particle Swarm, Adaptive, PID, Self-Balancing Vehicle

1. Introduction

A self-balancing vehicle is a typical nonlinear, time-varying, and strongly coupled system[1], and its

stability control demands high precision and response speed from the control algorithm. Traditional PID

control methods, when applied to self-balancing vehicle control, often struggle to achieve satisfactory

results due to their parameter tuning being dependent on experience, which makes them inadequate for

dealing with complex and dynamic environments. Therefore, optimizing PID parameters is necessary[2].

To address this issue, this paper introduces an improved Particle Swarm Optimization (PSO)

algorithm to optimize PID controller parameters. While the PSO algorithm is simple and effective in

principle, its traditional form has limited local optimization capabilities in complex environments[3]. To

enhance the performance of the PSO algorithm, this paper improves upon the traditional PSO algorithm

by dynamically adjusting the inertia weight, adaptively tuning parameters, and adjusting population

diversity, thereby enhancing its global search and local optimization capabilities. The improved PSO

algorithm is then used to solve the problem of PID parameter optimization[4].

2. Self-Balancing Vehicle PID Control

The self-balancing vehicle exhibits characteristics of a traditional first-order inverted pendulum

system[5]. In this paper, we study the first-order inverted pendulum model, as shown in Figure 1.

Figure 1: Establishment of the First-Order Inverted Pendulum Model for the Self-Balancing Vehicle

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 7, Issue 7: 17-22, DOI: 10.25236/AJCIS.2024.070703

Published by Francis Academic Press, UK

-18-

The establishment of the first-order inverted pendulum model as shown in the above figure includes

the following parameters: the mass of the cart m, the tilt angle θ, the distance from the center of mass

to the wheel axle l, the acceleration of the cart's wheels a(t), and the external force applied to the self-

balancing vehicle to maintain balance X(t).

According to Newton's Second Law of Motion, the analysis of forces in the horizontal direction for

the model in Figure 2 leads to the establishment of the force equilibrium equation[6]. The equation is as

follows:

𝐿
𝜕2𝜃(𝑡)

𝜕𝑡2 = 𝑔𝑠𝑖𝑛𝜃(𝑡) − 𝑎(𝑡)𝑐𝑜𝑠𝜃(𝑡) + 𝐿𝑥(𝑡) (1)

Generally, the tilt angle of the self-balancing vehicle is not large. Therefore, when θ < 10°,

linearization is performed, and let sinθ(t) ≈ θ(t). Equation (1) can then be transformed into:

L
∂2θ(t)

∂t2 = gθ(t) − a(t) + Lx(t) (2)

At this point, the self-balancing vehicle has reached equilibrium, a(t)=0.Therefore, we can obtain:

L
∂2θ(t)

∂t2 = gθ(t) + Lx(t) (3)

According to control theory, applying the Laplace transform to Equation (3) and simplifying it yields

the system transfer function as follows:

H(S) =
Θ(s)

X(s)
=

1

s2−
g

L

 (4)

The system's two poles can be obtained as:

S = ±√
g

L
 (5)

From the above equation, it can be seen that the system's two poles are not on the same side.

According to Nyquist's theorem, one of the poles is on the positive real axis, making the overall system

of the self-balancing vehicle unstable and unable to maintain balance[7]. The stability of the self-balancing

vehicle, represented by a(t), is determined by both θ and a(θ). To maintain balance, a feedback

differential control loop needs to be established[8].

The position closed-loop control adopts:

𝑃𝑊𝑀 = 𝑘𝑝𝑒(𝑘) + 𝑘𝑖∑𝑒(𝑘) + 𝑘𝑑[𝑒(𝑘) − 𝑒(𝑘 − 1)] (6)

Here, e(k) is the position deviation at time k, and the position information is read by the encoder. 𝑘𝑝

is the proportional coefficient, 𝑘𝑖 is the integral coefficient, and 𝑘𝑑 is the differential coefficient.

The velocity closed-loop control adopts incremental PID control:

𝑃𝑊𝑀+= 𝑘𝑝[ℎ(𝑘) − ℎ(𝑘 − 1)] + 𝑘𝑖ℎ(𝑘) + 𝑘𝑑[ℎ(𝑘) − 2ℎ(𝑘 − 1) − ℎ(𝑘 − 2) (7)

Here, h(k) is the velocity deviation at time k, obtained from the encoder readings within a unit of time.

Different combinations of 𝑘𝑝,𝑘𝑖h, and 𝑘𝑑will affect the performance of the PID controller. Traditionally,

PID parameters are determined through empirical tuning methods. In this paper, an improved Particle

Swarm Optimization (IPSO) algorithm is used to optimize the PID parameters.

3. Standard Particle Swarm Optimization (PSO) Algorithm

The Particle Swarm Optimization (PSO) algorithm, proposed by Kennedy and Eberhart in 1995, is

an intelligent optimization algorithm based on the foraging behavior of birds. This algorithm uses

information sharing among individuals in the swarm to gradually approach the optimal solution to the

problem[9].

Treating a single bird as a particle, let the position of the i-th particle at time t be Xi(t) and its velocity

be
)(V ti . The position and velocity update formulas at time t+1 are as follows[10]:

)]()([)()1(11 tXtPrctVtV iiii  )]()([22 txtgrc i
 (8)

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 7, Issue 7: 17-22, DOI: 10.25236/AJCIS.2024.070703

Published by Francis Academic Press, UK

-19-

)1()()1( tvtxtx iii (9)

Here,  is the inertia weight, controlling the influence of the particle's previous velocity on the

current velocity; 1c
 and 2c

 are the cognitive (self-learning) and social learning factors, respectively;

1r and 2r are random numbers between 0 and 1;
)(tPi is the best position found by the i-th particle so

far; and)(tg is the best position found by the entire swarm.

start

Initialize

particle

swarm

Calculate

fitness value

Update

individual

and global

best

positions

Does the

calculated p and g

satisfy the

condition

end

no

yes

Figure 2: Standard Particle Swarm Optimization Algorithm Flowchart

4. Improved Particle Swarm Optimization Algorithm

4.1 Dynamic Adjustment of Inertia Weight

In the Particle Swarm Optimization algorithm, the value of  affects the particle's velocity. When
 is fixed, it may lead to local optima[11]. Therefore, this paper adopts a cosine annealing decrement

strategy.

)(*5.0)(minmaxmin  t))/(cos1* Tt（ (10)

Where:
)(t
is the inertia weight at generation t; max

is the initial inertia weight; nmi
is the final

inertia weight; T is a constant that controls the decay rate; t is the current iteration number.

The cosine annealing variation strategy provides a larger weight in the early and middle stages to

promote global search and avoid premature convergence to local optima. In the later stages, it provides

a smaller weight to promote local search. The cosine annealing decrement strategy offers a smooth cosine

change curve, which helps maintain the stability of the particle swarm and reduces oscillations during

the search process.

4.2 Adaptive Parameter Adjustment Strategy Based on Population Diversity

In the Particle Swarm Optimization algorithm, the learning factors 1c
and 2c

control the particle's

movement towards its own best position and the global best position, respectively. Therefore, when the

population diversity is large, more global search should be conducted; when the population diversity is

small, more local search should be performed[12].

Population diversity is represented by the population standard deviation:

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 7, Issue 7: 17-22, DOI: 10.25236/AJCIS.2024.070703

Published by Francis Academic Press, UK

-20-

  

2

1))()((1)(tXtX
N

t i

N

i
 (11)

Where:
)(t

is the standard deviation of the population positions at generation t ; N is the population

size;
)(tX i is the position of the i-th particle at generation t;)(tX is the mean position of all particles

at generation t.

Adaptive Learning Factors:

)()/)((

)()/)((

min2max2maxmax12

min1max1maxmax11

cctcc

cctcc









 (12)

Where: max
is the maximum value of the population position standard deviation; max1c

and min1c

are the maximum and minimum values of 1c
, respectively; max2c

and min2c
are the maximum and

minimum values of 2c
, respectively.

5. Experimental Process and Results Analysis

5.1 Experimental Process

To verify the system performance after optimizing PID parameters using the improved Particle

Swarm Optimization algorithm, the following Simulink model was established.

In-put

+
—

PID(S) +
+ 1667.8

1
2 s

Step0

step1

+
+

out

interfere

Figure 3: PID Simulation Control

In the model shown in Figure 3, the PID controller first calls a step signal and sets the initial

parameters to 0. Then, it calls two step signals to merge their outputs, which are used to simulate the

external force signals affecting the balance state of the cart. Finally, the PID controller is used to restore

the cart to its balanced state[13].

In the process of optimizing PID parameters using the improved Particle Swarm Optimization

algorithm, the number of particles is set to 30, and the maximum number of iterations is 100. Determining

the Value of Inertia Weight 𝜔 According to Equation (8). 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 are set to 0.9 and 0.4,

respectively. According to Equation (10), the learning factors 𝑐1 and 𝑐2 are determined, where

𝑐1𝑚𝑎𝑥and𝑐1𝑚𝑖𝑛are set to 2.5 and 1.5, respectively, and 𝑐2𝑚𝑎𝑥 and 𝑐2𝑚𝑖𝑛 are also set to 2.5 and 1.5,

respectively. The time t for the cart to restore balance is used as the fitness function.

5.2 Experimental Results

The fitness function curve of the Particle Swarm Optimization algorithm is shown in Figure 4. The

horizontal axis represents generations, and the vertical axis represents fitness values. The solid line

depicts the function curve of the improved Particle Swarm Optimization algorithm, while the dashed line

represents the function curve of the standard Particle Swarm Optimization algorithm.

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 7, Issue 7: 17-22, DOI: 10.25236/AJCIS.2024.070703

Published by Francis Academic Press, UK

-21-

Figure 4: Fitness Curves of the Improved Particle Swarm Optimization and Standard Particle Swarm

Optimization Algorithms

As shown in Figure 4, the fitness value of the IPSO algorithm upon convergence is lower than that of

the standard algorithm, and it tends to converge at around 40 generations, while the standard PSO

algorithm converges at around 80 generations. The IPSO algorithm outperforms the standard PSO

algorithm in both speed and quality.

The PID parameters optimized by the IPSO algorithm, the standard PSO algorithm, and the empirical

tuning method were used to control the self-balancing vehicle. After stabilization, an acceleration of 2.1g

was applied. The adjustment time t is the interval between applying the acceleration to the vehicle and

the vehicle reaching balance. The results are shown in Table 1.

Table 1: Comparison of Adjustment Times for Different Algorithms

Performance

Indicator

Empirical Tuning Standard PSO Improved PSO

𝑘𝑝 -400 -512 -480

𝑘𝑖 -0.0024 -0.0021 -0.0029

𝑘𝑑 -1.95 -2.14 -1.92

Adjustment Time t 1.71s 1.21s 0.86s

As shown in the table, the adjustment time for the experimental group with empirically tuned

parameters is 1.71 seconds, which is the longest among all experimental groups. The adjustment time for

the experimental group with parameters tuned using the standard PSO algorithm is slightly shorter, at

1.21 seconds. The experimental group with parameters tuned using the improved PSO algorithm has the

shortest adjustment time, at 0.86 seconds. This indicates that optimizing PID parameters using the

improved PSO algorithm can enhance system performance, enabling the self-balancing vehicle to reach

equilibrium more quickly.

6. Conclusion

This paper presents improvements to the standard Particle Swarm Optimization (PSO) algorithm. The

inertia weight values in the standard PSO algorithm are adjusted using a cosine annealing strategy to

prevent the algorithm from getting trapped in local optima when inertia weights are fixed. The learning

factors are optimized based on the population standard deviation to accelerate the algorithm's

convergence speed. The improved PSO algorithm is then used to optimize the PID parameters of the self-

balancing vehicle system. The results show that the adjustment time using the improved PSO algorithm

is reduced by 0.85 seconds compared to the empirical tuning method and by 0.35 seconds compared to

the standard PSO algorithm, demonstrating good effectiveness.

References

[1] Chen Yuanwei. Research on Self-Balancing Vehicle Control System Based on PID Algorithm [J].

Instrumentation Technology, 2024, (01): 64-65+82.

[2] Sun Chao, Guo Naiyu, Yan Mingdie, Ding Jianjun. PID Parameter Optimization Using Improved

Adaptive Particle Swarm Optimization Algorithm [J]. Journal of China Construction Machinery, 2023,

21(05): 377-382.

[3] Yang Rongkun, Zhu Youcheng, Fan Rui. Wind Turbine Gearbox Temperature Control System Based

on PID Optimization with Adaptive Particle Swarm Algorithm [J]. Automation and Instrumentation,

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 7, Issue 7: 17-22, DOI: 10.25236/AJCIS.2024.070703

Published by Francis Academic Press, UK

-22-

2024, 39(05): 64-67.

[4] Feng Le, Tang Huachun, Gao Liang, Zou Hongmei, Wang Lin, Tan Mian. Adaptive Fine-Tuning

Algorithm Based on Particle Swarm Optimization [J]. Intelligent Computing and Applications, 2024,

14(04): 232-237.

[5] Lin Shouguang. Design of Two-Wheel Self-Balancing Vehicle Based on LQR Control [J]. Journal of

Tonghua Normal University, 2024, 45(02): 9-17.

[6] Xue Fan, Sun Jinggao, Yan Huaicheng. Modeling and Control Research of Two-Wheel Self-

Balancing Vehicle [J]. Chemical Engineering Automation and Instrumentation, 2012, 39(11): 1450-

1454+1497.

[7] Pang Xinyu. Design of Two-Stage Inverted Pendulum Control System Based on Two-Wheel Self-

Balancing Vehicle [D]. Harbin Normal University, 2020.

[8] Weng Wenwen, Yin Chenbo, Feng Hao, Zhou Junjing. Application of Improved Particle Swarm

Optimization Algorithm in Excavator Bucket Position Control [J]. Mechanical Design and

Manufacturing, 2020, (02): 166-169.

[9] Nguyen Quy Dang, Milani Sina, Marzbani Hormoz, Jazar Reza Nakahie. Tire-Road Separation Time

Reduction by an Adaptive PID Controller Utilizing Particle Swarm Optimization Algorithm [J]. SAE

International Journal of Commercial Vehicles, 2021, 14(4).

[10] Mohamed Elhaj Ahmed Mohamed, Yanling Guo. Separately Excited DC Motor Speed Tracking

Control Using Adaptive Neuro-Fuzzy Inference System Based on Genetic Algorithm Particle Swarm

Optimization and Fuzzy Auto-Tuning PID [J]. IOP Conference Series: Earth and Environmental Science,

2019, 300(4): 2114-2115.

[11] Ren Jin, Li Yibo, Min Chang. Coverage Optimization of Wireless Sensor Networks Based on

Improved Particle Swarm Optimization Algorithm [J]. Radio Engineering, 2024,(01):1-8.

[12] Zhou Hengtai, Hao Jinqing, Li Long, Liu Jing. Double Closed-Loop Temperature Control System

Based on Particle Swarm Optimization Fuzzy PID [J]. Journal of Taiyuan Normal University (Natural

Science Edition), 2024, 23(01): 53-59.

[13] Han Shuai, Liu Manlu, Zhang Junjun, Zhang Hua. Research on Fuzzy Adaptive Compensation

Algorithm for Two-Wheel Self-Balancing Vehicle [J]. Mechanical Design and Manufacturing, 2020, (09):

197-200.

