
Academic Journal of Mathematical Sciences
ISSN 2616-5805 Vol. 4, Issue 4: 36-44, DOI: 10.25236/AJMS.2023.040406

Published by Francis Academic Press, UK
-36-

A modified method based on the K-nearest neighbor
approach for solving PDE global solutions using the
Feynman-Kac formula

Shirui Zheng1,*, Xin Gui2

1Zhizhen College, Beihang University, Beijing, 100191, China
2School of Civil Engineering, Shandong Jianzhu University, Jinan, 250101, China
*Corresponding author: APTX4869zsr@outlook.com

Abstract: Inspired by the classification idea of the K-nearest neighbors (KNN) algorithm, this paper
proposes a new method for numerically solving partial differential equations (PDE) using the
Feynman-Kac formula. The method involves establishing a connection between PDE and stochastic
differential equations through the Feynman-Kac formula. Random points are selected within the
domain of the equation, and the KNN algorithm is used to partition these points into different regions.
Then, Monte Carlo simulation is performed on the random points within each region to obtain a series
of simulated values. These simulated values are substituted into the corresponding Feynman-Kac
formula for each random point to obtain the solution. Finally, within each region, the average of the
solutions for all random points belonging to that region is calculated, resulting in the corresponding
approximate solution. By selecting an appropriate partitioning approach, a higher-precision global
solution to the PDE can be constructed. Through a series of numerical simulations, the results show
that the PDE global solution constructed by the new method achieves higher accuracy compared to
traditional interpolation methods.

Keywords: Monte Carlo Simulation, Feynman-Kac formula, Numerical method of PDE, KNN

1. Introduction

As early as the 17th century, Newton and others had discovered some simple differential equations
and also explored some preliminary solutions. Subsequently, numerical solutions for differential
equations emerged. With the development of differential equations, we have obtained various methods
for constructing numerical solutions to differential equations, such as the finite difference method, the
finite element method, the Runge-Kutta method, and the Von Neumann analysis method. American
mathematician Richard Feynman and French mathematician Michelle Kac also proposed the Feynman-
Kac formula for constructing numerical solutions to differential equations. It is often used in the field
of mathematical finance to solve various mathematical modeling problems, such as issues in Monte
Carlo simulations and financial risk management. The finite difference method and the finite element
method can achieve good results in solving ordinary differential equations and some general PDE
numerically. For example, when solving second-order nonlinear elliptic PDE, the finite difference
formulas with sixth-order truncation errors can be employed to obtain solutions [2]; We can utilize the
fourth-order unfitted characteristic finite element method to study free-boundary problems of time-
dependent partial differential equations, and through numerical experiments, discover some
convergence properties [3]. However, when solving more complex PDE, the obtained numerical
solutions may have significant deviations, rendering these methods unsuitable.

The Feynman-Kac formula can be used to solve PDE by utilizing stochastic differential equations,
which is why it is often employed for numerical solutions of PDE. By utilizing the Feynman-Kac
formula, we can explore a new relationship between diffusion and solutions in hyperbolic PDE.
Additionally, we can transform the Laplace transform of wave equations with axial symmetry into a
simpler form [1]. As for the current methods for numerical solutions of PDE, a common issue is that
most of them do not construct global solutions. Alternatively, interpolation and others are used to
construct global solutions, but these methods often result in significant deviations in the obtained
results. Inspired by the KNN, we propose a new method for constructing global solutions of PDE based
on the Feynman-Kac formula, referring to this method as the K-method. In this paper, we will use the
heat conduction equation as an example to provide a detailed introduction to the K-method.

Academic Journal of Mathematical Sciences
ISSN 2616-5805 Vol. 4, Issue 4: 36-44, DOI: 10.25236/AJMS.2023.040406

Published by Francis Academic Press, UK
-37-

2. Propaedeutics

2.1 Heat Conduction Equation

The origin of the heat conduction equation lies in the need to solve for the temperature function of a
disc. It is used to describe how the temperature in a region changes over time. However, as it has been
generalized, this equation has been applied in various fields. The heat conduction equation is not only
applicable in the field of thermodynamics but also plays a crucial role in areas such as finance, image
processing, and machine learning. To solve a practical problem described by a heat conduction
equation, we often incorporate corresponding boundary conditions based on reality. Examples of such
boundary conditions include homogeneous boundary conditions and growth conditions. The heat
conduction equation is a classic example of PDE. In this paper, we will introduce the K-method using
the following heat conduction equation as an example:

⎩
⎪
⎨

⎪
⎧ 2 2

2

(,) ()(,) (,) (,) 0, , [0,]
2

u u x t u xx t k x t u f x t x R t T
t t x

σµ∂ ∂ ∂
+ + + + = ∈ ∈

∂ ∂ ∂
(,) ()u x T G x=

 (1)

2.2 Feynman-Kac Formular

The Feynman-Kac formula is named after Richard Feynman and Mark Kac, who successfully
combined stochastic differential equations with parabolic partial differential equations. By expressing
the solutions of certain parabolic partial differential equations as conditional expectations of stochastic
processes using the Feynman-Kac formula, it is possible to transform the numerical solution of such
equations into a probability problem. For example, we can simplify the heat equation driven by time-
homogeneous white noise potential using the Feynman-Kac formula [12]. Therefore, the Feynman-Kac
formula plays an important role in solving complex mathematical modeling problems. In this paper, we
derive the corresponding Feynman-Kac formula using the heat conduction equation (1) as an example:

⎩
⎪
⎨

⎪
⎧

0 0
0 0

(,) [(,) exp((,))] exp((,)) ()
T t T

s r s Tt t
u x t E f X t k X r dr ds k X s ds G X= +∫ ∫ ∫

(,) (,)s tdX x t dx x t dBµ σ= +

0X x=

 (2)

𝑢𝑢(𝑥𝑥, 𝑡𝑡0) is the point to be determined, 𝑇𝑇 is the termination time of the stochastic differential
equation, and 𝑋𝑋𝑇𝑇 is the simulated point at the end of the simulation.

2.3 Monte Carlo Simulation

The Monte Carlo simulation algorithm, also known as the statistical simulation method, is
commonly used to solve problems involving approximate calculations. Its fundamental idea is to: By
generating random numbers and performing multiple simulations, the Monte Carlo simulation
algorithm calculates a more accurate probability of the event occurring. In this way, it provides an
approximation of the exact value of the solution to the problem. By using this method, various
problems can be transformed into probability calculation problems. The main steps of Monte Carlo
simulation are as follows: constructing a random process and generating random numbers; randomly
sampling different events and calculating their respective probabilities; using these probabilities to
compute the corresponding estimation values. The more simulations conducted, the closer the
estimated value gets to the true value. Due to its simplicity in operation, Monte Carlo simulation is
commonly used in various fields. For example, it can be used to compute the integral value of complex
shapes and handle problems involving multidimensional arrays. However, Monte Carlo simulation also
has some limitations: it has a slow convergence rate; its errors have a probabilistic nature rather than
the traditional sense of error; in order to make the estimated value approach the true value, a large
number of simulations and samples are required, resulting in a significant increase in computational
complexity. However, there is a recent method called Multilevel Monte Carlo Simulation that
combines Approximate Bayesian Computation to reduce the overall computational cost while
maintaining inference accuracy. This approach is particularly useful for complex Bayesian computation

Academic Journal of Mathematical Sciences
ISSN 2616-5805 Vol. 4, Issue 4: 36-44, DOI: 10.25236/AJMS.2023.040406

Published by Francis Academic Press, UK
-38-

problems, especially when simulation and computational costs are high. [5].

2.4 K-Nearest Neighbor

The KNN is a classic and simple machine learning algorithm that helps solve classification and
regression prediction problems. Its main steps are as follows: collect samples within a certain range;
calculate the Euclidean distance between each point in the sample and the current point; arrange and
classify them based on the distance magnitude; calculate the occurrence frequency of each class of
points within the range; sort them based on frequency, and select the corresponding number of points
with high frequencies as the current estimation. Using KNN for classification is crucial in imbalanced
data classification applications. It not only saves the process of handling data but also reduces the cost
of misclassification [4]. Inspired by the ability of the K-Nearest Neighbor algorithm to classify data, we
can also utilize the KNN to partition random points in stochastic differential equations. We can set the
Euclidean distance to be 𝑘𝑘, randomly select a point 𝑥𝑥, and classify the points whose Euclidean distance
from 𝑥𝑥 is less than 𝑘𝑘 (points within [𝑥𝑥 − 𝑘𝑘, 𝑥𝑥 + 𝑘𝑘]) into one class. Then, we can separately calculate the
exact solutions of the PDE for each region. Recently, an improved KNN algorithm has been proposed
which enhances the classification efficiency while maintaining classification accuracy, demonstrating
good classification performance[6-7].

3. The Idea of Constructing the Global Solution to PDE Using the Feynman-Kac Formula

3.1 Construct the Global Solution to a PDE Using Interpolation Methods

When solving partial differential equations, we often utilize traditional methods, like interpolation
method, to construct the global solution. For example, when dealing with computationally and
analytically challenging PDE, we can employ the approximation method of interpolating polynomials
to represent infinite-dimensional PDE as higher-order ordinary differential equations. This approach
also incorporates certain characteristics of the PDE, thereby simplifying the handling process of the
PDE [8]. By linearizing the nonlinear part, we can solve the Kolmogorov-Petrovskii-Piskunov (KPP)
equation and obtain the corresponding results using barycentric rational interpolation basis function [9].
In this paper, we will take the heat conduction equation (1) as an example and use Lagrange
interpolation method to construct the global solution on the interval [𝑎𝑎, 𝑏𝑏].

Taking interpolation points on the interval [𝑎𝑎, 𝑏𝑏], denoted as {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛}, we conduct Monte
Carlo simulations for these points. With the time step size of 𝛥𝛥𝑡𝑡, we utilize the following formula:

1n n nX X tR+ = + ∆ (3)

We simulate the discrete path of the stochastic differential equation starting from the point 𝑥𝑥𝑖𝑖 ,
where 𝑋𝑋0 = 𝑥𝑥𝑖𝑖. The increments 𝑅𝑅𝑛𝑛 are generated from a standard normal distribution. If the simulation
time reaches 𝑇𝑇, the simulation is terminated. We denote the time nodes as {𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑁𝑁}, where 𝑡𝑡𝑁𝑁 = 𝑇𝑇.
The simulated points are denoted as {𝑋𝑋0,𝑋𝑋1, . . . ,𝑋𝑋𝑁𝑁}, with 𝑋𝑋𝑁𝑁 = 𝑋𝑋𝑇𝑇. This represents one simulation for
an interpolation point. Let the number of simulations for each interpolation point be denoted as 𝑚𝑚.
Then we perform 𝑚𝑚 simulations for each interpolation point as described above.

We substitute the simulated points {𝑋𝑋0,𝑋𝑋1, . . . ,𝑋𝑋𝑁𝑁}, time nodes {𝑡𝑡0, 𝑡𝑡1, . . . , 𝑡𝑡𝑁𝑁}, and the simulation
end time 𝑇𝑇 into equation (2). The specific integration process is as follows:

0 0
(,) (,)

Nt

r i it
i

k X r dr tk X t
=

= ∆∑∫
 (4)

From this, we can obtain:

0 0 0 0
(,) exp((,)) () exp((,))

N NT t

s r j i it t
j i

f X t k X r dr ds tf X tk X t
= =

= ∆ ∆∑ ∑∫ ∫ (5)

and:

Academic Journal of Mathematical Sciences
ISSN 2616-5805 Vol. 4, Issue 4: 36-44, DOI: 10.25236/AJMS.2023.040406

Published by Francis Academic Press, UK
-39-

0 0
exp((,)) () exp((,)) ()

NT

s N i i Tt
i

k X s ds G X tk X t G X
=

= ∆∑∫ (6)

Add equation (5) to equation (6):

0 0 0
() () exp((,)) exp((,)) ()

N N N

i j i i i i T
j i i

u x tf X tk X t tk X t G X
= = =

= ∆ ∆ + ∆∑ ∑ ∑ (7)

We can obtain the simulated value 𝑢𝑢�𝑙𝑙(𝑥𝑥𝑖𝑖) of 𝑥𝑥𝑖𝑖 in the l-th simulation. Then, taking the average of
the simulated values for each point over 𝑚𝑚 simulations give the exact solution of 𝑥𝑥𝑖𝑖 :
𝑢𝑢�(𝑥𝑥1),𝑢𝑢�(𝑥𝑥2), . . . ,𝑢𝑢�(𝑥𝑥𝑛𝑛)

Then, we perform interpolation fitting on these 𝑛𝑛 points to obtain an interpolation polynomial,
thereby obtaining the global solution of the aforementioned equation:

1 1,

() [()]
nn

j
i

i j j i i j

x x
u x u x

x x= = ≠

−
=

−∑ ∏

 (8)

From the aforementioned steps, it can be observed that the process of constructing the global
solution using interpolation is relatively straightforward. However, it also comes with certain
challenges. Firstly, due to the random nature of Brownian motion itself, the simulated values obtained
in each simulation exhibit significant randomness. As a result, the average of the simulated values (i.e.,
the exact solution) also carries some level of randomness and may deviate from the actual values.
Secondly, when adding new interpolation points, all polynomial coefficients need to be recalculated,
leading to computational inefficiency. Lastly, when dealing with high-dimensional PDE, in order to
approximate the actual solution accurately, it becomes necessary to select a larger number of
interpolation points. However, this increases the computational workload and may potentially lead to
the curse of dimensionality[10-11].

3.2 K-method for Constructing a Global Solution

Inspired by the KNN, this article proposes a novel approach to construct global solutions for PDE.
To illustrate the methodology, this paper will focus on solving the heat conduction equation (1) for the
interval [𝑎𝑎, 𝑏𝑏], and provide a detailed description of the relevant steps.

Uniformly select 𝑛𝑛 initial points within the defined interval [𝑎𝑎, 𝑏𝑏], denoted as {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛}. Set
the threshold (Euclidean distance) as 𝑘𝑘, and perform Monte Carlo simulations for these points within
the range [𝑎𝑎 − 𝑘𝑘, 𝑏𝑏 + 𝑘𝑘]. Assuming a time step size of 𝛥𝛥𝑡𝑡 , according to the equation (3), we can
simulate a random differential equation path starting from each point, where 𝑋𝑋0 = 𝑥𝑥𝑖𝑖 and 𝑅𝑅𝑛𝑛 is
generated from a standard normal distribution. If the simulation time reaches 𝑇𝑇, the simulation ends
and the simulation point at the end, 𝑋𝑋𝑁𝑁, is recorded. Subsequently, the simulated points {𝑋𝑋0,𝑋𝑋1, . . . ,𝑋𝑋𝑁𝑁}
after each simulation, the termination time 𝑇𝑇, and the termination simulation point 𝑋𝑋𝑁𝑁 are substituted
into equation (2), which is consistent with equations (5) and (6) in the interpolation method. This
process will yield an estimated value for each initial point: 𝑢𝑢�(𝑥𝑥1),𝑢𝑢�(𝑥𝑥2), . . . ,𝑢𝑢�(𝑥𝑥𝑛𝑛)

Randomly select a number 𝑥𝑥𝑖𝑖 within the interval [𝑎𝑎, 𝑏𝑏], and define the corresponding interval as
[𝑥𝑥𝑖𝑖 − 𝑘𝑘, 𝑥𝑥𝑖𝑖 + 𝑘𝑘]. For 𝑙𝑙 initial points �𝑥𝑥𝑖𝑖1 , 𝑥𝑥𝑖𝑖2 , . . . , 𝑥𝑥𝑖𝑖𝑙𝑙� within this interval, calculate the average of the
estimated values:, denoted as 𝑢𝑢�𝑖𝑖. Thus, 𝑢𝑢�𝑖𝑖 represents the exact solution of 𝑢𝑢(𝑥𝑥) at 𝑥𝑥𝑖𝑖. To construct a
global solution, we select multiple points within the region [𝑎𝑎, 𝑏𝑏] and utilize the exact solutions of these
points to form the global solution.

�𝑢𝑢�(𝑥𝑥𝑖𝑖1),𝑢𝑢�(𝑥𝑥𝑖𝑖2), . . . ,𝑢𝑢�(𝑥𝑥𝑖𝑖𝑙𝑙)�

4. The Numerical Experimental Results

4.1 The Model Settings

In this section, we will conduct experiments using a specific heat conduction equation as an
example. The heat conduction equation is given by:

Academic Journal of Mathematical Sciences
ISSN 2616-5805 Vol. 4, Issue 4: 36-44, DOI: 10.25236/AJMS.2023.040406

Published by Francis Academic Press, UK
-40-

⎩
⎪
⎨

⎪
⎧ 2

2

sin() cos() 0, , [0,1]
2 2t

u x tu x t x R t
x

∂ +
+ + − + = ∈ ∈

∂
sin(1)(,) cos(1)

2
xu x T x+

= − +

 (9)

The Feynman-Kac formula corresponding to equation (9) is:

⎩
⎪⎪
⎨

⎪⎪
⎧

0
0

sin()(,) [cos()] sin()
2

T

Nt

x tu x t x t ds X T+
= − + + +∫

s tdX dB=

0X x=

 (10)

4.2 Interpolation Methods

In this paper, we will utilize interpolation methods to solve the heat conduction equation (9):
Taking five points within the domain [0,1] as {0.1,0.2,0.5,0.8,0.9}, we can obtain the corresponding
function values using Monte Carlo simulation.

Table 1: Function Value

x Function Value 𝑢𝑢(𝑥𝑥) Estimated Value 𝑢𝑢�(𝑥𝑥)
𝑥𝑥 = 0.1 0.1076 0.0998
𝑥𝑥 = 0.2 0.1963 0.1987
𝑥𝑥 = 0.5 0.4845 0.4794
𝑥𝑥 = 0.8 0.7100 0.7174
𝑥𝑥 = 0.9 0.7962 0.7833

According to the estimated values of Table 1, we can perform interpolation fitting to obtain the
interpolation polynomial:

4 3 2() 2.065 4.063 2.464 0.4018 0.04661u x x x x x= − + + + (11)

The graph of the interpolation polynomial function and the actual function is shown in Figure 1:

Figure 1: Lagrange interpolation fitting

4.3 K-method

25000 points are uniformly taken within the domain [0,1]. Random differential equation discrete

Academic Journal of Mathematical Sciences
ISSN 2616-5805 Vol. 4, Issue 4: 36-44, DOI: 10.25236/AJMS.2023.040406

Published by Francis Academic Press, UK
-41-

paths are simulated for these points. The time step size, 𝛥𝛥𝑡𝑡, is set to 0.001, and each point is simulated
only once. The termination time, 𝑇𝑇, is set to 1, and the random number 𝑋𝑋𝑇𝑇 at the end of each simulation
is recorded. These values are then substituted into equation (10) to obtain the estimated values for each
point. Taking the threshold 𝑘𝑘 as 0.05, a random number 𝑥𝑥 is sampled from the interval [0,1], and the
corresponding interval is defined as [𝑥𝑥 − 𝑘𝑘, 𝑥𝑥 + 𝑘𝑘]. The average value 𝑢𝑢�𝑖𝑖 of the estimated values at all
starting points within this interval is considered as the exact solution for 𝑥𝑥 . Now, 20 points are
uniformly taken within [0,1], and the exact solutions for these twenty points are obtained using the K-
method. The fitting effect of the K-method is shown in Figure 2:

Figure 2: K-method fitting

4.4 Error Analysis

After a series of calculations, we can obtain the error values between the results of the interpolation
method and the K-method as follows:

Table 2: Error of two Methods

Fitting Method Absolute Error Value
Interpolation Method 0.0073

K-Method 0.0021
Based on the error of Table 2, it can be observed that the errors corresponding to the K-method are

significantly smaller than the errors corresponding to the interpolation method. Therefore, when
constructing a global solution for PDE, the K-method is expected to yield better results.

5. The Convergence Behavior of the K-method under Different Parameter Settings

Based on the above numerical experimental process, it can be observed that the error in
constructing the global solution for PDEs using the K-method is mainly influenced by the time step
size 𝛥𝛥𝑡𝑡, the number of simulations 𝑚𝑚, and the threshold value 𝑘𝑘. This section will discuss the impact of
these three parameters on the error.

For the sake of convenience, let’s consider the above heat conduction equation (9) as the object of
study. We will also set the sampling points for error analysis as follows:

{0.1,0.2,0.5,0.6,0.8,0.9}

5.1 The Convergence Situation under Different Time Step Sizes

The time step size affects the stochastic process. A smaller time step size results in a less-dispersed
stochastic process, allowing the estimated values to approach the true values more closely. However,
this also leads to a significant increase in computational cost. On the other hand, a larger time step size
increases the dispersion of the stochastic process, resulting in larger errors in the estimated values.
Therefore, in order to ensure sufficient accuracy while controlling the computational cost, it is
necessary to find a suitable time step size that strikes a balance between accuracy and efficiency. Let’s

Academic Journal of Mathematical Sciences
ISSN 2616-5805 Vol. 4, Issue 4: 36-44, DOI: 10.25236/AJMS.2023.040406

Published by Francis Academic Press, UK
-42-

consider a series of time step sizes 𝛥𝛥𝑡𝑡 ∈ {0.1,0.05,0.01,0.005,0.001,0.0005} and perform numerical
simulations to obtain the corresponding error values. The convergence behavior is shown in the
following graph:

Figure 3: The change of error with respect to the time step size

From the change of error with respect to the time step size in the figure 3, it can be observed that, in
general, the error decreases as the time step size 𝛥𝛥𝑡𝑡 decreases, and it shows a tendency to approach zero.

5.2 The Convergence Situation under Different Numbers of Simulations

Monte Carlo simulation is a sampling method, and the sampling error mainly arises from an
inappropriate sampling that fails to reflect the characteristics of the population, such as when the
number of samples cannot represent the overall characteristics. In such cases, increasing the number of
samples or the number of simulations can help alleviate the issue. However, if the number of
simulations is too large, it may result in slower convergence. To find an appropriate number of
simulations, it is necessary to explore the error values under different simulation counts. In this study,
we will investigate different simulation counts to analyze the convergence behavior. Let’s consider the
following values for the simulation count:

𝑚𝑚 ∈ {5,10,20,50,200,1000,2000,5000,10000,15000,20000,25000}

The error values are shown in the following graph:

Figure 4: The change of error with respect to the number of simulations

According to the change of error with respect to the number of simulations in the figure 4, it can be
observed that as the number of simulations increases, the error generally decreases. However, as the

Academic Journal of Mathematical Sciences
ISSN 2616-5805 Vol. 4, Issue 4: 36-44, DOI: 10.25236/AJMS.2023.040406

Published by Francis Academic Press, UK
-43-

number of simulations continues to increase, the rate of error reduction diminishes.

5.3 The Convergence Situation under Different Thresholds

KNN plays a role in classification during the solving process by assigning simulated points within a
certain range to a category and then using mean values to approximate the true solution. When dealing
with imbalanced samples, there is a significant prediction bias, and suitable threshold values for 𝑘𝑘 can
only be determined through experience and repeated experiments. A larger 𝑘𝑘 value results in more
dispersed simulated points, increasing the model’s bias and making it less sensitive to noisy data,
potentially leading to underfitting. On the other hand, a smaller 𝑘𝑘 value leads to more concentrated
simulated points, weakening the model’s generalization ability and potentially causing overfitting. To
obtain the most accurate solution possible, it is necessary to experiment with different 𝑘𝑘 values. Let’s
consider the following threshold values for 𝑘𝑘:

𝑘𝑘 ∈ {0.01,0.03,0.05,0.07,0.08,0.10,0.12}

The corresponding error values are shown in the graph below:

Figure 5: The change of error with respect to the number of threshold value

According to the change of error with respect to the number of threshold value in the figure 5, it can
be observed that as the threshold value decreases, the error also gradually decreases, and the reduction
amount increases.

6. Conclusion

This article primarily introduces a new method called the K-method for constructing global
solutions to partial differential equations (PDE). This method has smaller errors and higher accuracy in
computation compared to traditional interpolation methods. Additionally, the article explores the
parameters that affect the computational accuracy of the K-method, including time step size, simulation
iterations, and threshold values. Setting these parameters too large or too small may make the
computation process more complex or reduce the precision of the computed results. Therefore, when
using the K-method, it is necessary to perform multiple numerical simulations and make corresponding
adjustments to select appropriate parameter values. It is important to note that this article only conducts
a simple study on the one-dimensional heat conduction equation and does not extend to higher-
dimensional or multivariate equations. However, this does not imply that this method cannot be used to
solve complex problems, higher-dimensional equations, or other types of equations. In fact, this
method can also be applied to study equations in higher dimensions and holds extensive application
prospects in solving other types of PDE as well. In summary, when using this method, it is necessary to
make suitable adjustments and solutions based on the specific problem at hand.

References

[1] Jakubowski J, Wiśniewolski M. On matching diffusions, Laplace transforms and partial differential

Academic Journal of Mathematical Sciences
ISSN 2616-5805 Vol. 4, Issue 4: 36-44, DOI: 10.25236/AJMS.2023.040406

Published by Francis Academic Press, UK
-44-

equations [J]. Stochastic Processes and their Applications, 2015, 125(10): 3663-3690.
[2] Gavete L, Ureña F, Benito J J, et al. Solving second order non-linear elliptic partial differential
equations using generalized finite difference method [J]. Journal of Computational and Applied
Mathematics, 2017, 318: 378-387.
[3] Ma C, Zheng W. A fourth-order unfitted characteristic finite element method for free-boundary
problems [J]. Journal of Computational Physics, 2022, 469: 111552.
[4] Zhang S. Cost-sensitive KNN classification [J]. Neurocomputing, 2020, 391: 234-242.
[5] Jasra A, Jo S, Nott D, et al. Multilevel Monte Carlo in approximate Bayesian computation[J].
Stochastic Analysis and Applications, 2019, 37(3): 346-360.
[6] Ferré G, Stoltz G. Error estimates on ergodic properties of discretized Feynman–Kac semigroups
[J]. Numerische Mathematik, 2019, 143: 261-313.
[7] Hutzenthaler M, Jentzen A, Kruse T. On multilevel Picard numerical approximations for high-
dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear
backward stochastic differential equations [J]. Journal of Scientific Computing, 2019, 79(3): 1534-
1571.
[8] Ma T, Cao C. L1 adaptive control for general partial differential equation (PDE) systems [J].
International Journal of General Systems, 2019, 48(6): 656-689.
[9] Li J, Cheng Y. Barycentric rational interpolation method for solving KPP equation [J]. Electronic
Research Archive, 2023, 31(5): 3014-3029.
[10] Arendt W, Urban K. Partial Differential Equations: An Introduction to Analytical and Numerical
Methods [M]. Springer Nature, 2023.
[11] Xing W, Bei Y. Medical health big data classification based on KNN classification algorithm [J].
IEEE Access, 2019, 8: 28808-28819.
[12] Scorolli R. Feynman-Kac formula for the heat equation driven by time-homogeneous white noise
potential [J]. arXiv preprint arXiv: 2108.12406, 2021.

	1. Introduction
	2. Propaedeutics
	2.1 Heat Conduction Equation
	2.2 Feynman-Kac Formular
	2.3 Monte Carlo Simulation
	2.4 K-Nearest Neighbor

	3. The Idea of Constructing the Global Solution to PDE Using the Feynman-Kac Formula
	3.1 Construct the Global Solution to a PDE Using Interpolation Methods
	3.2 K-method for Constructing a Global Solution

	4. The Numerical Experimental Results
	4.1 The Model Settings
	4.2 Interpolation Methods
	4.3 K-method
	4.4 Error Analysis

	5. The Convergence Behavior of the K-method under Different Parameter Settings
	5.1 The Convergence Situation under Different Time Step Sizes
	5.2 The Convergence Situation under Different Numbers of Simulations
	5.3 The Convergence Situation under Different Thresholds

	6. Conclusion
	References

