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Abstract: Inspired by the classification idea of the K-nearest neighbors (KNN) algorithm, this paper 
proposes a new method for numerically solving partial differential equations (PDE) using the 
Feynman-Kac formula. The method involves establishing a connection between PDE and stochastic 
differential equations through the Feynman-Kac formula. Random points are selected within the 
domain of the equation, and the KNN algorithm is used to partition these points into different regions. 
Then, Monte Carlo simulation is performed on the random points within each region to obtain a series 
of simulated values. These simulated values are substituted into the corresponding Feynman-Kac 
formula for each random point to obtain the solution. Finally, within each region, the average of the 
solutions for all random points belonging to that region is calculated, resulting in the corresponding 
approximate solution. By selecting an appropriate partitioning approach, a higher-precision global 
solution to the PDE can be constructed. Through a series of numerical simulations, the results show 
that the PDE global solution constructed by the new method achieves higher accuracy compared to 
traditional interpolation methods. 
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1. Introduction 

As early as the 17th century, Newton and others had discovered some simple differential equations 
and also explored some preliminary solutions. Subsequently, numerical solutions for differential 
equations emerged. With the development of differential equations, we have obtained various methods 
for constructing numerical solutions to differential equations, such as the finite difference method, the 
finite element method, the Runge-Kutta method, and the Von Neumann analysis method. American 
mathematician Richard Feynman and French mathematician Michelle Kac also proposed the Feynman-
Kac formula for constructing numerical solutions to differential equations. It is often used in the field 
of mathematical finance to solve various mathematical modeling problems, such as issues in Monte 
Carlo simulations and financial risk management. The finite difference method and the finite element 
method can achieve good results in solving ordinary differential equations and some general PDE 
numerically. For example, when solving second-order nonlinear elliptic PDE, the finite difference 
formulas with sixth-order truncation errors can be employed to obtain solutions [2]; We can utilize the 
fourth-order unfitted characteristic finite element method to study free-boundary problems of time-
dependent partial differential equations, and through numerical experiments, discover some 
convergence properties [3]. However, when solving more complex PDE, the obtained numerical 
solutions may have significant deviations, rendering these methods unsuitable. 

The Feynman-Kac formula can be used to solve PDE by utilizing stochastic differential equations, 
which is why it is often employed for numerical solutions of PDE. By utilizing the Feynman-Kac 
formula, we can explore a new relationship between diffusion and solutions in hyperbolic PDE. 
Additionally, we can transform the Laplace transform of wave equations with axial symmetry into a 
simpler form [1]. As for the current methods for numerical solutions of PDE, a common issue is that 
most of them do not construct global solutions. Alternatively, interpolation and others are used to 
construct global solutions, but these methods often result in significant deviations in the obtained 
results. Inspired by the KNN, we propose a new method for constructing global solutions of PDE based 
on the Feynman-Kac formula, referring to this method as the K-method. In this paper, we will use the 
heat conduction equation as an example to provide a detailed introduction to the K-method. 
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2. Propaedeutics 

2.1 Heat Conduction Equation 

The origin of the heat conduction equation lies in the need to solve for the temperature function of a 
disc. It is used to describe how the temperature in a region changes over time. However, as it has been 
generalized, this equation has been applied in various fields. The heat conduction equation is not only 
applicable in the field of thermodynamics but also plays a crucial role in areas such as finance, image 
processing, and machine learning. To solve a practical problem described by a heat conduction 
equation, we often incorporate corresponding boundary conditions based on reality. Examples of such 
boundary conditions include homogeneous boundary conditions and growth conditions. The heat 
conduction equation is a classic example of PDE. In this paper, we will introduce the K-method using 
the following heat conduction equation as an example: 
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2.2 Feynman-Kac Formular 

The Feynman-Kac formula is named after Richard Feynman and Mark Kac, who successfully 
combined stochastic differential equations with parabolic partial differential equations. By expressing 
the solutions of certain parabolic partial differential equations as conditional expectations of stochastic 
processes using the Feynman-Kac formula, it is possible to transform the numerical solution of such 
equations into a probability problem. For example, we can simplify the heat equation driven by time-
homogeneous white noise potential using the Feynman-Kac formula [12]. Therefore, the Feynman-Kac 
formula plays an important role in solving complex mathematical modeling problems. In this paper, we 
derive the corresponding Feynman-Kac formula using the heat conduction equation (1) as an example: 
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𝑢𝑢(𝑥𝑥, 𝑡𝑡0)  is the point to be determined, 𝑇𝑇  is the termination time of the stochastic differential 
equation, and 𝑋𝑋𝑇𝑇 is the simulated point at the end of the simulation. 

2.3 Monte Carlo Simulation 

The Monte Carlo simulation algorithm, also known as the statistical simulation method, is 
commonly used to solve problems involving approximate calculations. Its fundamental idea is to: By 
generating random numbers and performing multiple simulations, the Monte Carlo simulation 
algorithm calculates a more accurate probability of the event occurring. In this way, it provides an 
approximation of the exact value of the solution to the problem. By using this method, various 
problems can be transformed into probability calculation problems. The main steps of Monte Carlo 
simulation are as follows: constructing a random process and generating random numbers; randomly 
sampling different events and calculating their respective probabilities; using these probabilities to 
compute the corresponding estimation values. The more simulations conducted, the closer the 
estimated value gets to the true value. Due to its simplicity in operation, Monte Carlo simulation is 
commonly used in various fields. For example, it can be used to compute the integral value of complex 
shapes and handle problems involving multidimensional arrays. However, Monte Carlo simulation also 
has some limitations: it has a slow convergence rate; its errors have a probabilistic nature rather than 
the traditional sense of error; in order to make the estimated value approach the true value, a large 
number of simulations and samples are required, resulting in a significant increase in computational 
complexity. However, there is a recent method called Multilevel Monte Carlo Simulation that 
combines Approximate Bayesian Computation to reduce the overall computational cost while 
maintaining inference accuracy. This approach is particularly useful for complex Bayesian computation 
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problems, especially when simulation and computational costs are high. [5]. 

2.4 K-Nearest Neighbor 

The KNN is a classic and simple machine learning algorithm that helps solve classification and 
regression prediction problems. Its main steps are as follows: collect samples within a certain range; 
calculate the Euclidean distance between each point in the sample and the current point; arrange and 
classify them based on the distance magnitude; calculate the occurrence frequency of each class of 
points within the range; sort them based on frequency, and select the corresponding number of points 
with high frequencies as the current estimation. Using KNN for classification is crucial in imbalanced 
data classification applications. It not only saves the process of handling data but also reduces the cost 
of misclassification [4]. Inspired by the ability of the K-Nearest Neighbor algorithm to classify data, we 
can also utilize the KNN to partition random points in stochastic differential equations. We can set the 
Euclidean distance to be 𝑘𝑘, randomly select a point 𝑥𝑥, and classify the points whose Euclidean distance 
from 𝑥𝑥 is less than 𝑘𝑘 (points within [𝑥𝑥 − 𝑘𝑘, 𝑥𝑥 + 𝑘𝑘]) into one class. Then, we can separately calculate the 
exact solutions of the PDE for each region. Recently, an improved KNN algorithm has been proposed 
which enhances the classification efficiency while maintaining classification accuracy, demonstrating 
good classification performance[6-7]. 

3. The Idea of Constructing the Global Solution to PDE Using the Feynman-Kac Formula 

3.1 Construct the Global Solution to a PDE Using Interpolation Methods 

When solving partial differential equations, we often utilize traditional methods, like interpolation 
method, to construct the global solution. For example, when dealing with computationally and 
analytically challenging PDE, we can employ the approximation method of interpolating polynomials 
to represent infinite-dimensional PDE as higher-order ordinary differential equations. This approach 
also incorporates certain characteristics of the PDE, thereby simplifying the handling process of the 
PDE [8]. By linearizing the nonlinear part, we can solve the Kolmogorov-Petrovskii-Piskunov (KPP) 
equation and obtain the corresponding results using barycentric rational interpolation basis function [9]. 
In this paper, we will take the heat conduction equation (1) as an example and use Lagrange 
interpolation method to construct the global solution on the interval [𝑎𝑎, 𝑏𝑏]. 

Taking interpolation points on the interval [𝑎𝑎, 𝑏𝑏], denoted as {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛}, we conduct Monte 
Carlo simulations for these points. With the time step size of 𝛥𝛥𝛥𝛥, we utilize the following formula: 

1n n nX X tR+ = + ∆                                                               (3) 

We simulate the discrete path of the stochastic differential equation starting from the point 𝑥𝑥𝑖𝑖 , 
where 𝑋𝑋0 = 𝑥𝑥𝑖𝑖. The increments 𝑅𝑅𝑛𝑛 are generated from a standard normal distribution. If the simulation 
time reaches 𝑇𝑇, the simulation is terminated. We denote the time nodes as {𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑁𝑁}, where 𝑡𝑡𝑁𝑁 = 𝑇𝑇. 
The simulated points are denoted as {𝑋𝑋0,𝑋𝑋1, . . . ,𝑋𝑋𝑁𝑁}, with 𝑋𝑋𝑁𝑁 = 𝑋𝑋𝑇𝑇. This represents one simulation for 
an interpolation point. Let the number of simulations for each interpolation point be denoted as 𝑚𝑚. 
Then we perform 𝑚𝑚 simulations for each interpolation point as described above. 

We substitute the simulated points {𝑋𝑋0,𝑋𝑋1, . . . ,𝑋𝑋𝑁𝑁}, time nodes {𝑡𝑡0, 𝑡𝑡1, . . . , 𝑡𝑡𝑁𝑁}, and the simulation 
end time 𝑇𝑇 into equation (2). The specific integration process is as follows: 
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From this, we can obtain: 
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and: 



Academic Journal of Mathematical Sciences 
ISSN 2616-5805 Vol. 4, Issue 4: 36-44, DOI: 10.25236/AJMS.2023.040406 

Published by Francis Academic Press, UK 
-39- 

0 0
exp( ( , ) ) ( ) exp( ( , )) ( )

NT

s N i i Tt
i

k X s ds G X tk X t G X
=

= ∆∑∫                         (6) 

Add equation (5) to equation (6): 
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We can obtain the simulated value 𝑢𝑢�𝑙𝑙(𝑥𝑥𝑖𝑖) of 𝑥𝑥𝑖𝑖 in the l-th simulation. Then, taking the average of 
the simulated values for each point over 𝑚𝑚  simulations give the exact solution of 𝑥𝑥𝑖𝑖 : 
𝑢𝑢�(𝑥𝑥1),𝑢𝑢�(𝑥𝑥2), . . . ,𝑢𝑢�(𝑥𝑥𝑛𝑛) 

Then, we perform interpolation fitting on these 𝑛𝑛 points to obtain an interpolation polynomial, 
thereby obtaining the global solution of the aforementioned equation: 
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From the aforementioned steps, it can be observed that the process of constructing the global 
solution using interpolation is relatively straightforward. However, it also comes with certain 
challenges. Firstly, due to the random nature of Brownian motion itself, the simulated values obtained 
in each simulation exhibit significant randomness. As a result, the average of the simulated values (i.e., 
the exact solution) also carries some level of randomness and may deviate from the actual values. 
Secondly, when adding new interpolation points, all polynomial coefficients need to be recalculated, 
leading to computational inefficiency. Lastly, when dealing with high-dimensional PDE, in order to 
approximate the actual solution accurately, it becomes necessary to select a larger number of 
interpolation points. However, this increases the computational workload and may potentially lead to 
the curse of dimensionality[10-11]. 

3.2 K-method for Constructing a Global Solution 

Inspired by the KNN, this article proposes a novel approach to construct global solutions for PDE. 
To illustrate the methodology, this paper will focus on solving the heat conduction equation (1) for the 
interval [𝑎𝑎, 𝑏𝑏], and provide a detailed description of the relevant steps. 

Uniformly select 𝑛𝑛 initial points within the defined interval [𝑎𝑎, 𝑏𝑏], denoted as {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛}. Set 
the threshold (Euclidean distance) as 𝑘𝑘, and perform Monte Carlo simulations for these points within 
the range [𝑎𝑎 − 𝑘𝑘, 𝑏𝑏 + 𝑘𝑘]. Assuming a time step size of 𝛥𝛥𝛥𝛥 , according to the equation (3), we can 
simulate a random differential equation path starting from each point, where 𝑋𝑋0 = 𝑥𝑥𝑖𝑖  and 𝑅𝑅𝑛𝑛  is 
generated from a standard normal distribution. If the simulation time reaches 𝑇𝑇, the simulation ends 
and the simulation point at the end, 𝑋𝑋𝑁𝑁, is recorded. Subsequently, the simulated points {𝑋𝑋0,𝑋𝑋1, . . . ,𝑋𝑋𝑁𝑁} 
after each simulation, the termination time 𝑇𝑇, and the termination simulation point 𝑋𝑋𝑁𝑁 are substituted 
into equation (2), which is consistent with equations (5) and (6) in the interpolation method. This 
process will yield an estimated value for each initial point: 𝑢𝑢�(𝑥𝑥1),𝑢𝑢�(𝑥𝑥2), . . . ,𝑢𝑢�(𝑥𝑥𝑛𝑛) 

Randomly select a number 𝑥𝑥𝑖𝑖 within the interval [𝑎𝑎, 𝑏𝑏], and define the corresponding interval as 
[𝑥𝑥𝑖𝑖 − 𝑘𝑘, 𝑥𝑥𝑖𝑖 + 𝑘𝑘]. For 𝑙𝑙 initial points �𝑥𝑥𝑖𝑖1 , 𝑥𝑥𝑖𝑖2 , . . . , 𝑥𝑥𝑖𝑖𝑙𝑙� within this interval, calculate the average of the 
estimated values:, denoted as 𝑢𝑢�𝑖𝑖. Thus, 𝑢𝑢�𝑖𝑖 represents the exact solution of 𝑢𝑢(𝑥𝑥) at 𝑥𝑥𝑖𝑖. To construct a 
global solution, we select multiple points within the region [𝑎𝑎, 𝑏𝑏] and utilize the exact solutions of these 
points to form the global solution. 

�𝑢𝑢�(𝑥𝑥𝑖𝑖1),𝑢𝑢�(𝑥𝑥𝑖𝑖2), . . . ,𝑢𝑢�(𝑥𝑥𝑖𝑖𝑙𝑙)� 

4. The Numerical Experimental Results 

4.1 The Model Settings 

In this section, we will conduct experiments using a specific heat conduction equation as an 
example. The heat conduction equation is given by: 
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The Feynman-Kac formula corresponding to equation (9) is: 
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4.2 Interpolation Methods 

In this paper, we will utilize interpolation methods to solve the heat conduction equation (9): 
Taking five points within the domain [0,1] as {0.1,0.2,0.5,0.8,0.9}, we can obtain the corresponding 
function values using Monte Carlo simulation. 

Table 1: Function Value 

x Function Value 𝑢𝑢(𝑥𝑥) Estimated Value 𝑢𝑢�(𝑥𝑥) 
𝑥𝑥 = 0.1 0.1076 0.0998 
𝑥𝑥 = 0.2 0.1963 0.1987 
𝑥𝑥 = 0.5 0.4845 0.4794 
𝑥𝑥 = 0.8 0.7100 0.7174 
𝑥𝑥 = 0.9 0.7962 0.7833 

According to the estimated values of Table 1, we can perform interpolation fitting to obtain the 
interpolation polynomial: 

4 3 2( ) 2.065 4.063 2.464 0.4018 0.04661u x x x x x= − + + +                        (11) 

The graph of the interpolation polynomial function and the actual function is shown in Figure 1: 

 
Figure 1: Lagrange interpolation fitting 

4.3 K-method 

25000 points are uniformly taken within the domain [0,1]. Random differential equation discrete 
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paths are simulated for these points. The time step size, 𝛥𝛥𝛥𝛥, is set to 0.001, and each point is simulated 
only once. The termination time, 𝑇𝑇, is set to 1, and the random number 𝑋𝑋𝑇𝑇 at the end of each simulation 
is recorded. These values are then substituted into equation (10) to obtain the estimated values for each 
point. Taking the threshold 𝑘𝑘 as 0.05, a random number 𝑥𝑥 is sampled from the interval [0,1], and the 
corresponding interval is defined as [𝑥𝑥 − 𝑘𝑘, 𝑥𝑥 + 𝑘𝑘]. The average value 𝑢𝑢�𝑖𝑖 of the estimated values at all 
starting points within this interval is considered as the exact solution for 𝑥𝑥 . Now, 20  points are 
uniformly taken within [0,1], and the exact solutions for these twenty points are obtained using the K-
method. The fitting effect of the K-method is shown in Figure 2: 

 
Figure 2: K-method fitting 

4.4 Error Analysis 

After a series of calculations, we can obtain the error values between the results of the interpolation 
method and the K-method as follows: 

Table 2: Error of two Methods 

Fitting Method Absolute Error Value 
Interpolation Method 0.0073 

K-Method 0.0021 
Based on the error of Table 2, it can be observed that the errors corresponding to the K-method are 

significantly smaller than the errors corresponding to the interpolation method. Therefore, when 
constructing a global solution for PDE, the K-method is expected to yield better results. 

5. The Convergence Behavior of the K-method under Different Parameter Settings 

Based on the above numerical experimental process, it can be observed that the error in 
constructing the global solution for PDEs using the K-method is mainly influenced by the time step 
size 𝛥𝛥𝛥𝛥, the number of simulations 𝑚𝑚, and the threshold value 𝑘𝑘. This section will discuss the impact of 
these three parameters on the error. 

For the sake of convenience, let’s consider the above heat conduction equation (9) as the object of 
study. We will also set the sampling points for error analysis as follows: 

{0.1,0.2,0.5,0.6,0.8,0.9} 

5.1 The Convergence Situation under Different Time Step Sizes 

The time step size affects the stochastic process. A smaller time step size results in a less-dispersed 
stochastic process, allowing the estimated values to approach the true values more closely. However, 
this also leads to a significant increase in computational cost. On the other hand, a larger time step size 
increases the dispersion of the stochastic process, resulting in larger errors in the estimated values. 
Therefore, in order to ensure sufficient accuracy while controlling the computational cost, it is 
necessary to find a suitable time step size that strikes a balance between accuracy and efficiency. Let’s 
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consider a series of time step sizes 𝛥𝛥𝛥𝛥 ∈ {0.1,0.05,0.01,0.005,0.001,0.0005} and perform numerical 
simulations to obtain the corresponding error values. The convergence behavior is shown in the 
following graph: 

 
Figure 3: The change of error with respect to the time step size 

From the change of error with respect to the time step size in the figure 3, it can be observed that, in 
general, the error decreases as the time step size 𝛥𝛥𝛥𝛥 decreases, and it shows a tendency to approach zero. 

5.2 The Convergence Situation under Different Numbers of Simulations 

Monte Carlo simulation is a sampling method, and the sampling error mainly arises from an 
inappropriate sampling that fails to reflect the characteristics of the population, such as when the 
number of samples cannot represent the overall characteristics. In such cases, increasing the number of 
samples or the number of simulations can help alleviate the issue. However, if the number of 
simulations is too large, it may result in slower convergence. To find an appropriate number of 
simulations, it is necessary to explore the error values under different simulation counts. In this study, 
we will investigate different simulation counts to analyze the convergence behavior. Let’s consider the 
following values for the simulation count: 

𝑚𝑚 ∈ {5,10,20,50,200,1000,2000,5000,10000,15000,20000,25000} 

The error values are shown in the following graph: 

 
Figure 4: The change of error with respect to the number of simulations 

According to the change of error with respect to the number of simulations in the figure 4, it can be 
observed that as the number of simulations increases, the error generally decreases. However, as the 
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number of simulations continues to increase, the rate of error reduction diminishes. 

5.3 The Convergence Situation under Different Thresholds 

KNN plays a role in classification during the solving process by assigning simulated points within a 
certain range to a category and then using mean values to approximate the true solution. When dealing 
with imbalanced samples, there is a significant prediction bias, and suitable threshold values for 𝑘𝑘 can 
only be determined through experience and repeated experiments. A larger 𝑘𝑘 value results in more 
dispersed simulated points, increasing the model’s bias and making it less sensitive to noisy data, 
potentially leading to underfitting. On the other hand, a smaller 𝑘𝑘 value leads to more concentrated 
simulated points, weakening the model’s generalization ability and potentially causing overfitting. To 
obtain the most accurate solution possible, it is necessary to experiment with different 𝑘𝑘 values. Let’s 
consider the following threshold values for 𝑘𝑘: 

𝑘𝑘 ∈ {0.01,0.03,0.05,0.07,0.08,0.10,0.12} 

The corresponding error values are shown in the graph below: 

 
Figure 5: The change of error with respect to the number of threshold value 

According to the change of error with respect to the number of threshold value in the figure 5, it can 
be observed that as the threshold value decreases, the error also gradually decreases, and the reduction 
amount increases. 

6. Conclusion 

This article primarily introduces a new method called the K-method for constructing global 
solutions to partial differential equations (PDE). This method has smaller errors and higher accuracy in 
computation compared to traditional interpolation methods. Additionally, the article explores the 
parameters that affect the computational accuracy of the K-method, including time step size, simulation 
iterations, and threshold values. Setting these parameters too large or too small may make the 
computation process more complex or reduce the precision of the computed results. Therefore, when 
using the K-method, it is necessary to perform multiple numerical simulations and make corresponding 
adjustments to select appropriate parameter values. It is important to note that this article only conducts 
a simple study on the one-dimensional heat conduction equation and does not extend to higher-
dimensional or multivariate equations. However, this does not imply that this method cannot be used to 
solve complex problems, higher-dimensional equations, or other types of equations. In fact, this 
method can also be applied to study equations in higher dimensions and holds extensive application 
prospects in solving other types of PDE as well. In summary, when using this method, it is necessary to 
make suitable adjustments and solutions based on the specific problem at hand. 
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