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Abstract: Deep uncertainty usually refers to problems with epistemic uncertainty in which the analyst or 
decision maker has very little information about the system, data are severely lacking, and different 
mathematical models to describe the system may be possible. Since little information is available to 
forecast the future, selecting probability distributions to represent this uncertainty is very challenging. 
Traditional methods of decision making with uncertainty may not be appropriate for deep uncertainty 
problems. This paper introduces a novel approach to allocate resources within complex and very 
uncertain situations. The resource allocation model, which is built by nonlinear optimization within 
utility function for deep uncertainty (RAM-DU) incorporates different types of uncertainty (e.g., 
parameter, structural, model uncertainty) and can consider every possible model, different probability 
distributions, and possible futures. Instead of identifying a single optimal alternative as in most resource 
allocation models, RAM-DU recommends an interval of allocation amounts. The RAM-DU solution 
generates an interval for one or multiple decision variables so that the decision maker can allocate any 
amount within that interval and still ensure that the objective function is within a predefined level of 
optimality for all the different parameters, models, and futures under consideration. RAM-DU is applied 
to allocating resources to prepare for and respond to a Deepwater Horizon-type oil spill. The application 
identifies allocation intervals for how much should be spent to prepare for this type of oil spill and how 
much should be spent to help industries recover from the spill. 
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1. Introduction 

Uncertainty is perhaps the biggest factor that makes decision making challenging for many people, 
especially for complex systems. Examples of complex decisions with significant uncertainty exist in new 
product development [19], investments [18], climate change [20], and national security. Uncertainty can 
be classified into aleatory or epistemic uncertainty. Aleatory uncertainty results from natural or stochastic 
variation within a physical system or environment. Epistemic uncertainty results from a lack of 
knowledge or information about a system. Uncertainty can also be classified based on its severity [8] or 
the source of uncertainty [15]. In scientific research and modeling, uncertainties can include parametric 
uncertainty, structural or model uncertainty, algorithm uncertainty, experimental uncertainty, and 
interpolation uncertainty. 

Probability is the most popular way to measure and model uncertainty. Paté-Cornell defines six levels 
of treatment for uncertainty in risk analysis where the lowest levels focus on identifying hazards and the 
worst cases for those hazards and the highest level models uncertainty over probability distributions. In 
problems with a lot of epistemic uncertainty where the analyst or decision maker has very little 
information about the system, the use of probabilities to measure that uncertainty can pose challenges. 
This type of uncertainty is known as deep uncertainty. According to Walker et al., uncertainty about the 
future can be divided into five categories. Increasing levels signifies increasing uncertainty, from a fairly 
certain future in level 1 to a completely unknown future in level 5. Deep uncertainty refers to uncertainty 
at level 4 (multiple possible futures with several system models) and level 5 (unknown or unidentified 
futures, unknown unknowns). This article will treat deep uncertainty at level 4, in which multiple 
plausible futures exist and multiple system models can represent those future scenarios, and an analyst 
or decision maker does not know which model is most appropriate or which futures are more likely. In 
this context, choosing a probability distribution to represent the uncertainty in model parameters or the 
different futures and selecting value functions to represent the desirability of different outcomes can be 
very challenging. 
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Several decision-making methods have been proposed to handle deep uncertainty. Robust decision 
framework was first proposed by Rosenhead. Robust decision making (RDM) is perhaps one of the most 
widely used. A robust strategy is an alternative that performs well under many or even all possible futures, 
and RDM helps a decision maker identify robust strategies, characterize the vulnerabilities of such 
strategies, and evaluate the trade-offs among strategies [9]. RDM allows for the possibility that 
stakeholders in a problem do not know or cannot agree on the systems model or the probabilities that 
should be used in the models (i.e., deep uncertainty). Information-gap theory [3][4] seeks to identify the 
optimal alternative that performs well as the uncertainty around a parameter grows. Probability boxes, or 
p-boxes, calculate every possible probability distribution that could fit within a predefined bound around 
that uncertainty [14]. Exploratory modeling and analysis [2] copes with deep uncertainty by calculating 
model outcomes across a large group of plausible representations of the future. The uncertainty can exist 
due to unknown external scenarios, model parameters, and problem structure [1]. Model uncertainty can 
also result from large amounts data because it is not clear which model is suitable for such a large data 
set. Adaptive boosting addresses that model uncertainty by weighting different models based on a 
training set [7]. Other methods for deep uncertainty include the adaptive decision-making framework [19] 
and using real options to hedge against uncertain futures [17-18]. 

A Bayesian approach to uncertainty and decision making can also address deep uncertainty through 
the use of probabilities. According to Bayesians, probability represents an individual’s subjective degree 
of belief about the future, and an individual can always assign a probability for an uncertainty [10-12]. 
If the individual has very little information about the uncertainty, he or she should select a very diffuse 
or uninformative probability distribution. If several probability distributions are possible to describe a 
single uncertainty, Bayesians can also assign probabilities for each of these distributions, which is similar 
to the level 6 treatment of uncertainty in Paté-Cornell. 

Despite this wealth of proposed solutions, making decisions with deep uncertainty still represents 
challenges. Selecting robust strategies tends to emphasize worst-case scenarios, which may be very 
unlikely. Using subjective probabilities for deep uncertainty can be subject to individual biases, 
especially the tendency to be overconfident about the future. This can result in disastrous outcomes. For 
complex problems with parameter uncertainty, structural and model uncertainty, and uncertainty over 
possible futures, it is not clear if different methods should address each type of uncertainty.  

This paper offers a novel approach to decision making with deep uncertainty, specifically for a 
problem in which a decision maker is allocating resources in a complex, uncertain situation. The resource 
allocation model is constructed by nonlinear optimization model within utility function, which is used to 
describe the effects of resource allocation from human-being’s perspective. The resource allocation 
model for deep uncertainty (RAM-DU) incorporates all of the different types of uncertainty and can 
consider every possible model, different probability distributions, and possible futures. Similar to RDM, 
RAM-DU identifies allocation strategies that perform well across the possible parameters, models, and 
future outcomes. However, RAM-DU is unique because it recommends an interval of possible allocation 
strategies rather than a single optimal alternative. This paper focuses on allocating infinitely divisible 
resources, such as money, as opposed to discrete resources, such as the number of people or trucks. The 
RAM-DU solution generates an interval for the decision variable. Allocating any amount within that 
interval ensures that the objective function is within a predefined optimality gap for all the different 
parameters, models, and futures under consideration. 

An interval solution is also beneficial because mathematical models are abstractions of the real world 
and cannot capture every possible factor. A decision maker may have other considerations that are not 
captured in the models but that should also influence his or her decision. By providing an interval rather 
than a point solution, RAM-DU gives the decision maker flexibility to select a resource allocation 
strategy within that interval. The decision maker can more easily incorporate other considerations not 
captured by the model but still follow recommendations of the model. For example, Floricel and Miller 
[13] argue that strategies for large-scale engineering projects turbulent environments should include 
flexibility. RAM-DU can also consider multiple stakeholders with different assumptions or opinions 
about the model by incorporating those different factors within the interval solution.  

This paper introduces the methodology of RAM-DU and applies the method to a real-world 
application of an oil spill. Section 2 introduces the general model structure for RAM-DU and examines 
interval solutions for a single decision variable and for multiple decision variables. Section 3 applies 
RAM-DU to the problem of allocating resources to prevent and respond to a Deepwater Horizon-type oil 
spill. Concluding remarks and possible future extensions of this methodology appear in Section 4.  
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2. Methodology And Modeling 

A resource allocation model seeks to optimally distribute resources in order to minimize or maximize 
an objective. Resources can be discrete or continuous. Discrete resources are represented by integers 
such as the number of people, trucks, or equipment. Continuous resources are infinitely divisible, such 
as money or time, and are represented by positive real numbers. RAM-DU assumes continuous resources, 
and the decision variables z1, z2, . . . , zn are non-negative real numbers and z = (z1, z2, . . . , zn)T  is a 
vector of length n. A decision maker seeks to allocate each zi in order to minimize a real-valued function 
f(z, θ) where θ denotes a vector of exogenous parameters. Constraints are represented by h(z, θ), a vector-
valued function of the decision variables z and exogenous parameters θ. The resource allocation model 
can be expressed as an optimization problem in (1):  

                              (1) 

As discussed in the Introduction, a decision maker may be uncertain about many aspects of this 
resource allocation model. Parameter uncertainty may exist in some, or even all, of the parameters 
represented by θ, and a decision maker may not be comfortable assigning probabilities to represent the 
uncertainty in θ. Model uncertainty may exist with the constraints h(z, θ) and the objective function f(z, 
θ). Different functions could represent the decision maker’s objective because the objective is difficult 
to model or the decision maker is unsure of his or her true objective. Given this parameter and model 
uncertainty and the difficulty of assigning probabilities to represent the uncertainty, the resource 
allocation model becomes a problem with deep uncertainty. 

We assume that every possible value for the parameter θ and every possible function for f(z, θ) and 
h(z, θ) can be identified. We assume m unique versions of the optimization problem in (1) exist where 
the jth version of the problem is denoted by θj , fj (z, θj), and hj (z, θj) for j = 1, . . . , m. For example, fj 
(z, θj ) could differ from fj’ (z, θj’ ) because the objective function in j is exponential and the objective 
function in j’ is logarithmic. Or, fj (z, θj ) could differ from fj’ (z, θj’ ) because θj = [1, 2] and θj’ = [1, 3]. 
It could also be true that fj (z, θj ) and fj’ (z, θj’ ) are identical but that hj (z, θj ) differs from hj’ (z, θj’ ) for 
at least one of the constraints.  

The goal of RAM-DU is to find an interval for a single decision variable or multiple intervals for 
multiple decision variables that account for the m unique optimization problems so that every solution 
within the interval guarantees that every objective function is within a predefined optimality gap of its  
true minimum. We initially address a situation for a single interval and let zi be the decision variable 
around which we want an interval. Identifying an interval means that the objective function fj (z, θj ) is 
close to its minimum value for all zi between ai and bi where bi > ai ≥ 0. Let fj ∗ be the minimum value 
for the jth optimization problem. The function fj (z, θj ) can be considered close to its minimum fj ∗ , if fj 
(z, θj ) is within δj of fj ∗ where δj ≥ 0. We define αj ≡ fj

∗ + δj , where αj denotes the maximum acceptable 
threshold and δj denotes the difference between the optimal value and the maximum acceptable threshold 
for the jth optimization problem. We seek to maximize the interval width bi − ai such that fj (z, θj ) ≤ αj 
for all zi within the interval [ai ,bi ]: 

                (2) 

The other decision variables zi’ i’ ≠ i are chosen in order that the constraints in (2) are satisfied. 

Algorithm 1 illustrates a method to solve the optimization problem in (2) if fj (z, θj ) is squasiconvex 
and hj (z, θj ) is convex in zi for all j = 1, . . . , m. A function f(y) is quasiconvex if and only if f(λy1+(1−λ)y2) 
≤ max{f(y1), f(y2)} for all y1 and y2 in the domain of f and λ ∈ [0, 1] [6]. Quasiconvexity ensures that f 
decreases and then increases. According to Algorithm 1, minimizing zi subject to fj (z, θj ) ≤ αj returns 
aij , which is a candidate for the lower bound of the interval. Similarly, maximizing zi subject to fj (z, θj ) 
≤ αj returns bij, which is a candidate for the upper bound of the interval. After minimizing and maximizing 
zi for each of the m possible optimization problems, ai equals the largest aij and bi equals the smallest bij 
for all j = 1, . . . , m. 
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A pictorial representation of the interval endpoints ai and bi appears in Fig. 1 for three possible 

optimization models, i.e. m = 3. Three objective functions fj (z, θj ) are drawn in dotted, solid, and dashed 
lines as a function of zi , and each corresponding maximum acceptable threshold αj is depicted  as a 
horizontal line. Objective functions f1(z, θ1) < α1 and f2(z, θ2) < α2 when zi = 0; however, f3(z, θ3) > α3 
when zi = 0. The value of ai corresponds to the smallest value of zi when f3(z, θ3) = α3 (the dashed curve 
and line). For bi , the largest value of zi at which fj (z, θj ) ≤ αj corresponds to the largest value of zi at 
which f1(z, θ1) ≤ α1 (the dotted curve and line). For all values of zi such that ai ≤ zi ≤ bi , the objective 
function for each of the three possible models is less than or equal to the maximum acceptable threshold 
aj . The interval [ai , bi ] also represents the largest interval because at least one of the objective functions 
is greater than the maximum acceptable threshold for zi < ai and zi > bi . 

 
Figure 1: Interval with 3 possible optimization problems 

The prior discussion focused on finding an interval for a single decision variable zi even if several 
decision variables exist in the resource allocation model. It might be desirable to have intervals around 
multiple decision variables to provide the decision maker with greater flexibility than a single interval. 
Instead of maximizing the width of a single interval bi − ai , the objective function in (2) becomes a 
multi-objective optimization problem. In this case, RAM-DU finds intervals for  decision variables 
where ≤ n. The optimization problem in (3) seeks to maximize the interval widths for decision variables 
z1, z2, . . . , z˜n: 

                       (3) 

Since (3) is a multi-objective optimization problem, it is necessary to identify a set of Pareto optimal 
solutions in order to create a hypervolume in  dimensions such that any set of solutions (z1, z2, . . . , 
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z˜n) contained within that hypervolume will ensure that fj (z, θj ) ≤ αj for all j = 1, . . . , m. The application 
in Section 3 provides an example in two dimensions, i.e.  = 2. 

The optimization problems in (2) and (3) may not have feasible solutions. If δj is very small for several 
fj (z, θj ), there might not be any zi that can satisfy fj (z, θj ) ≤ αj . If this occurs, it is necessary to increase 
δj .  

The use of intervals in RAM-DU enables resources to be allocated to account for situations where 
deep uncertainty exists. Any allocation within the interval or hypervolume guarantees that each objective 
function is less than or equal to an acceptable threshold. The interval also provides flexibility for the 
decision maker because the decision maker can choose to allocate any zi within [ai , bi ]. If the decision 
maker prefers to allocate less—perhaps because there are other demands for resources that have not been 
modeled—he or she should select an allocation closer to ai. If the decision maker prefers to allocate 
more—perhaps because these resources will have additional benefits that are not modeled—he or she 
should select an allocation closer to bi. 

3. Illustrative Example of The Deepwater Horizon Oil Spill 

On April 20, 2010, an explosion occurred on the Deepwater Horizon semi-submersible mobile 
offshore drilling unit, which led to 11 dead workers, 17 injured workers, the loss of almost 5 million 
barrels of oil, and enormous environmental damage. This section applies RAM-DU to a large oil spill in 
the Gulf of Mexico similar to that of the Deepwater Horizon oil spill. The resource allocation model is 
derived from MacKenzie in which a decision maker allocates resources to prevent and prepare for an oil 
spill and then allocates resources to help the Gulf region recover if an oil spill occurs. This section first 
presents the resource allocation model for the oil spill and then demonstrates how RAM-DU can be 
applied to this situation to help a decision maker determine how much should be spent to prevent and 
prepare for an oil spill and how much should be spent to help the region recover from a large oil spill. 

3.1. Resource Allocation Model for an Oil Spill  

Although the Deepwater Horizon oil spill resulted in fatalities, injuries, environmental damage, and 
lost business, the resource allocation model focuses exclusively on economic losses. The economic losses 
from an oil spill result from less drilling for oil, decreased demand for seafood and real estate, and a drop 
in tourism. Economic losses for this model are calculated for the five U.S. states touching the Gulf of 
Mexico: Florida, Alabama, Mississippi, Louisiana, and Texas. A single decision maker in the model 
controls resources that can help prevent an oil spill and limit the economic losses if a spill occurs. In 
reality, resources to prepare for and respond to an oil spill are controlled by federal, state, and local 
governments and the private sector. 

The objective function seeks to minimize the expected economic loss from an oil spill. The oil spill 
directly impacts  industries (fishing and forestry, real estate, amusement, accommodations, and 
oil and gas) out of a total of l = 63 industries in the economy. The Inoperability Input-Output Model 
translates these direct impacts into total production losses in all industries, and the total economic loss 
equals x > Dc∗ where x is a vector of length l representing normal production for each industry and D is 
an  interdependency matrix that translates direct losses to direct and indirect losses. The vector c∗ 
is of length where c ∗ i measures the direct impacts, in proportional terms, to industry i. Economic data 
to populate x and D are collected by the U.S. Bureau of Economic Analysis.  

The decision maker can allocate resources before the oil spill for prevention and preparedness, z1, to 
help all industries recover after the oil spill z2, and help each of the  = 5 directly impacted industries 
recover z3, . . . , z7. The total number of decision variables is n = 7. The parameter  is the probability 
of a spill if no money is spent to prevent a spill. Allocating z1 helps prevent an oil spill by reducing the 
initial probability from  to p, where p ≤  and can also help to reduce the direct impacts. The direct 
impacts, c ∗ i , for industry i are a function of money allocated before an oil spill z1, money allocated to 
help all industries simultaneously z2, and money allocated to industry i zi , where i = 3, . . . , n = 7. Based 
on these decisions, the direct impacts from an oil spill are reduced from  to  . The total available 
budget is Z. The minimum expected economic losses can be calculated by solving (4) in which allocating 
resources reduces the probability and impacts according to an exponential function [5][11][16]. 
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                  (4) 

where kp denotes the effectiveness of allocating z1 to reduce the probability of an oil spill; kq describes 
the effectiveness of allocating z1 to reduce the impacts; k0 describes the effectiveness of allocating z2 to 
help all industries recover; and ki denotes the effectiveness of allocating zi to help industry i recover, 
where i = 3, . . . , n. 

The right-hand part of the objective function g(z1, Z) in Eqs. (4) is the opportunity cost and represents 
what could be done with the resources to increase regional production if no oil spill occurs. If there is no 
oil spill, the amount Z − z1 could be spent on other projects or returned to taxpayers which should increase 
production in the region. The function g(z1, Z) is strictly decreasing in z1, increasing in Z, and non-
negative for z1 ≤ Z. Since a decision maker desires to minimize the expected economic losses if an oil 
spill occurs and maximize the expected production gain if the oil spill does not occur, minimizing the 
objective function requires inserting a negative sign before the expected gain in production (1 − p)g(z1, 
Z) where 1 − p denotes the probability of no spill. When the objective function in (4) is negative, it means 
the region experiences expected production gains because the expected production gains from (1 − p)g(z1, 
Z) are larger than the expected production losses from the spill, pxT > Dc∗ . If the objective function is 
positive, the region has expected production losses. 

 
Figure 2: Types of g(·) function 

The function to describe production gains g(z1, Z) can take on different forms to describe how 
resources impact regional production. Three possible functions are proposed in this article: linear, 
exponential, and concave as described in Eqs. (5)-(7). Fig. 2 depicts the linear, exponential, and concave 
g(·) functions. A linear g(·) function indicates that every dollar not spent on the oil spill increases regional 
production by a constant amount. An exponential g(·) indicates that smaller values of z1 have a much 
bigger impact on production than larger values of z1. A concave g(·) function is opposite to the 
exponential function. Larger values of z1 have a larger impact on production than smaller values of z1. 
The concave function indicates that decision maker is using resources more efficiently because he or she 
is initially removing money from projects that that are less effective in increasing regional production. 

                              (5) 

                                (6) 

                                (7) 
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where qi and γi , i = 1, 2, 3 are parameters of the g(·) function. In this oil spill case study, γi = 1.6 and 
qi = 1.6 × 10−4. 

Table 1: Initial Parameter Values for Deepwater Horizon Oil Spill. 

Probability of oil spill pˆ = 0.045 
Prevention effectiveness kp = 2.8 × 10−4 

Preparedness effectiveness kq = 1.6 × 10−4 
Recovery for all industries effectiveness k0 = 1.0 × 10−5 

i Industry ki (per $1 million)  
1 Fishing and forestry 0.074 0.0084 
2 Real estate 0 0.047 
3 Amusements 0.0038 0.21 
4 Accommodations 0.0027 0.16 
5 Oil and gas 0.0057 0.079 

Table 2: Optimal Allocation Amounts for Deepwater Horizon Oil Spill for Different Opportunity Cost 
Functions (Millions of $) 

 Linear g(·) function  Exponential  
g(·) function 

Concave  
g(·) function  

Objective function (fj∗)  -14,383 -14,383 -14,730 
Pre oil spill allocation amount 0 0 1,205 

Post oil spill allocation 
amount 5,982 5,982 4,777 

Fishing & Forestry 46 46 46 
Real Estate 0 0 0 

Amusements 1,209 1,209 1,209 
Accommodations 1,752 1,752 1,752 

Oil & Gas 1,011 1,011 1,011 

3.2. Optimal Allocation Results  

As depicted in Table 1, the parameters for the Deepwater Horizon oil spill are explained in 
MacKenzie et al. and MacKenzie and are based on public economic data, government reports, and journal 
articles. The five directly impacted industries are fishing and forestry (which reflects the lack of seafood), 
real estate, amusements, accommodations, and oil and gas. We choose a budget of Z = $10 billion, which 
is a little less than what BP spent to stop the Deepwater Horizon oil spill. 

With these parameter values, the optimal allocation from the budget is calculated for each of the three 
possible g(·) functions as illustrated in Eqs. (5)-(7). All the parameters and functions are considered as 
known. Table 2 depicts the optimal amount to spend to prevent and prepare for an oil spill, to help all 
industries recover, and to help each individual industry recovery. 

If g(·) is linear or exponential, the decision maker should not allocate any money to prevent or prepare 
for an oil spill. Since the probability of an oil spill is small, it is better to spend the budget to increase 
regional production via the opportunity cost function than prevent and prepare for an oil spill. If an oil 
spill occurs, the decision maker should spend z2 = $5.98 billion to help all industries recover and 
distribute the remainder of budget among four industries (fishing and forestry, amusements, 
accommodations, and oil and gas). If the opportunity cost function is concave, the decision maker should 
spend z1 = $1.20 billion before a spill. The amounts allocated for the five industries remain the same, but 
the money to help all industries recover simultaneously is reduced to z2 = $4.78 billion. The concave g(·) 
function should induce a positive z1 because the concave function indicates that production does not 
decrease as much as in the linear and exponential functions for small values of z1. Thus, it is rational to 
spend that money to prevent and prepare for an oil spill.  

Table 3: Input Values for Deepwater Horizon Oil Spill. 

Category Initial value Range 
Preparedness kq = 1.6 × 10−4 kq ∈ [1.0 × 10−5 , 0.1] 

Prevention 
kp = 2.8 × 10−4  kp ∈ [1.0 × 10−5 , 0.1]  
kp ∈ [1.0 × 10−5 , 0.1]  k0 ∈ [6.67 × 10−7 , 6.67 × 10−3 ]  
pˆ = 0.045 / year pˆ ∈ [0.01, 0.08]  
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3.3. Interval for allocating resources before an oil spill  

The preceding illustration demonstrates that a different function for g(·) can result in a different 
allocation amount to spend before an oil spill. This is an example of model uncertainty. Many of the 
parameters used in the model also have considerable uncertainty in part because the rarity of really big 
oil spills limits the availability of historical data. In particular, the probability of an oil spill pˆ and the 
effectiveness parameters kp, kq, and k0 are very difficult to estimate. 

Given the uncertainty in the function g(·) and the parameters pˆ, kp, kq, and k0, RAM-DU is applied to 
the Deepwater Horizon oil spill and we want to find an interval around the amount of money that should 
be spent before an oil spill z1. The resource allocation model in (4) is extended to RAM-DU to find the 
maximum interval [a1, b1] for z1 where the superscript j = 1, . . . , m refers to the different optimization 
problems based on uncertainty in the parameters and the g(·) function: 

               (8) 

Table 3 depicts the ranges for pˆ, kp, kq, and k0. MacKenzie argues that k0 = kq/15, and this relationship 
is preserved in this application. These ranges of parameters are combined with the three different g(·) 
functions in order to establish hundreds of possible optimization problems. The value of αj for each of 
these optimization problems is selected as a percentage of the minimum value of each objective function. 
Algorithm 1 is used to maximize the interval width for z1. 

Figs. 3 and 4 show the objective function value as a function of z1 for several of the possible 
optimization problems when αj corresponds to 91% and 93%, respectively, of the minimum objective 
function value. Although hundreds of optimization problems are considered, the figures only display six 
of these objective functions in order to depict these results on a graph. Each figure shows two objective 
functions with a linear g(·) function, two objective functions with an exponential g(·) function, and two 
objective functions with a concave g(·) function. The horizontal lines represent the maximum acceptable 
threshold αj for each of the six optimization problems. In Fig. 3, when αj is 91% of the minimum objective 
function, a1 = $244 million is determined by the intersection of α6 and objective function f6, which 
corresponds to a concave g(·) function. The upper bound of the interval b1 = $529 million is determined 
by the intersection of α4 and objective function f4, which corresponds to an exponential g(·) function. 
When αj is 93% of the minimum objective function, a1 = $387 million and b1 = $408 million are again 
determined by objective functions f6 and f4, respectively. But the interval is much narrower because the 
maximum acceptable threshold has been tightened. 

 
Figure 3: Pre oil spill allocation interval with acceptable threshold at 91% 
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Figure 4: Pre oil spill allocation interval with acceptable threshold at 93% 

Table 4 depicts the interval for z1 for several different thresholds. As the threshold gets tighter—
signifying that objective function must be closer to the optimal values—the interval gets smaller. For 
several of the optimization problems, the interval does not contain the optimal amount. For example, z1 
= $0 in the base case for the linear and exponential g(·) functions and z1 = $1.2 billion for the concave 
g(·) function. However, neither of those amounts are contained within the intervals. Accounting for all 
of the uncertainty in the resource allocation model seems to recommend allocation amounts that are in 
between the optimal allocations of the various optimization problems. If the decision maker wants to 
guarantee that the objective function is within 91% of the minimum objective function values for the 
hundreds of possible models, the decision maker should allocate between $244 and $529 million to 
prevent and prepare for an oil spill in the Gulf. If the decision maker is really worried about an oil spill, 
he or she should spend closer to the upper bound of the interval. If the decision maker wants to spend 
more money on other priorities, he or she should spend approximately $250 million. If the decision maker 
requires that that the interval is within more than 93% of the optimal values, the optimization problem in 
(8) is infeasible. 

Table 4: Interval for Pre Oil Spill Allocation (Millions of $) 

Threshold 88% 89% 90% 91% 92% 93% 
z1 lower bound $66 $121 $180 $245 $312 $387 
z2 upper bound $716 $653 $591 $529 $468 $408 

3.4. Multiple Allocation Intervals for Pre and Post Oil Spill  

The application of RAM-DU in the previous subsection examined a single interval. Given the 
allocation of z1, the other amounts for recovery are fixed in order to minimize the expected economic 
loss. However, a decision maker may want the allocation to help all industries to recover simultaneously 
to also consider all of the different uncertainties. In this subsection, two intervals will be generated, for 
the pre-oil spill amount and to help all industries after an oil spill. As depicted in the optimization problem 
in (3), it becomes a multi-objective optimization problem in which two interval widths b1 − a1 and b2 − 
a2 are maximized. As with the one interval illustration, the opportunity cost function, pˆ, kp, kq, and k0 are 
uncertain with the ranges for those parameters depicted in Table 3. 

Fig. 5 depicts the result of RAM-DU for these two intervals when the acceptable threshold is set at 
91% of the minimum function value. Again, hundreds of possible optimization problems are calculated, 
but only three of these problems are shown in the figure. The shaded region, similar to a rectangular 
shape, represents the set of solutions for (z1, z2) that achieves objective functions less than or equal to αj 
for each optimization problem. The lower bound for z1 (a dashed line) corresponds to the concave g(·) 
function with parameters values pˆ = 0.1, kp = 10−5 , kq = 10−2 , and k0 = 6.67 × 10−4 . The upper bound 
for z1 (a solid line) corresponds to the exponential g(·) function with pˆ = 0.1, kp = 10-5 , kq = 10-5, and k0 
= 6.67 × 10-7 . 
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Figure 5: Allocation intervals for z1 and z2 with acceptable threshold at 91% 

A decision maker should allocate between $244 million and $529 million for prevention and 
preparedness. The allocation interval is between $0 and $5.57 billion to help all industries recover. The 
remainder of budget helps individual industries recover. Fig. 5 shows that as z1 increases, the decision 
maker should also increase its allocation for z2 in order to guarantee that all objective functions are less 
than or equal to the threshold. If the decision maker chooses z1 = $244 million, then he or she can choose 
between $0 and $1.71 billion for z2. If the decision maker chooses z1 = $529 million, then he or she 
should choose between $3.18 and $5.57 billion for z2. 

Fig. 6 shows the results of RAM-DU when the acceptable threshold is 93% on the minimum value-. 
The shaded region in Fig. 6 is much than smaller than that in Fig. 5. When a decision maker requires the 
objective function to be closer to its minimum value, the decision maker has less flexibility in allocating 
resources. If αj corresponds to 91% of the minimum value, a decision maker can choose between $387 
and $404 million for prevention and preparedness and between $0 and $2.21 billion to help all industries 
recover.  

 
Figure 6: Allocation intervals for z1 and z2 with acceptable threshold at 93% 

4. Conclusion 

This article introduces RAM-DU as a solution to incorporate deep uncertainty within resource 
allocation models. The unique elements of RAM-DU include: (i) the incorporation of parameter, model, 
and structural uncertainty within the resource allocation model; (ii) the recommendation of an interval 
for allocation amounts rather than a point solution; and (iii) the objective function of each identified 
model will be no greater than the maximum acceptable threshold for every allocation amount within the 
interval. Extending RAM-DU to multiple decision variables generates a multidimensional hypervolume 
in which every set of values within that space are acceptable allocation amounts. 

Applying RAM-DU to the Deepwater Horizon oil spill shows that allocating between $244 and $529 
million to prevent and prepare for an oil spill will ensure that the economic losses are close to the 
minimum economic loss while accounting for uncertainty in the opportunity cost function, the probability 
of an oil spill, and the effectiveness of allocating resources. If the decision maker requires tighter 
thresholds, the interval becomes narrower, and he or she should allocate between $387 and $408 million 
before the oil spill. When the amount spent to help all industries recover is also considered, the decision 
maker has additional flexibility in spending between $0 and $5.57 billion to help all industries recover. 
The exact interval for this recovery allocation depends on the amount spent before the oil spill. 
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If a decision maker believes that one model or parameter value better reflects reality than other models 
or parameter values, this belief could be represented in the acceptable threshold. For those models that 
do not seem the most accurate but which the decision maker still wants to consider, the threshold could 
be further away from the minimum value. RAM-DU can also be applied to multiple disruptions to 
identify the different ranges to allocate to prevent and prepare for each one of several disruptions. RAM-
DU could also consider different risk attitudes where each risk attitude represents a different objective 
function in the form of a utility function. This could reflect multiple stakeholders where one individual 
is more risk neutral and another individual is more risk averse.  

The Deepwater Horizon case only shows an oil spill application in RAM-DU. However, RAM-DU 
can also be applied to other resource allocation problems with deep uncertainty, especially public sector 
type problems. RAM-DU is particularly suitable for allocating resources in national security, homeland 
security, climate change, and complex system problems that plan for the distant future because these 
problems typically are very uncertain and models and parameters are unknown. RAM-DU provides 
decision makers with flexibility when they face multiple plausible futures. 
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