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Abstract: The rogue wave solutions of the (3+1)-dimensional generalized Kadomtsev-Petviashvili
(gKP) equation are constructed by Hirota bilinear method and symbolic computation approach. By
choosing proper polynomial function, the first, the second and the third order rogue wave solutions are
systematically obtained. The maximum amplitude and the minimum amplitude of the first order rogue
wave solution are given. Moreover, the first three order generalised rogue wave solutions are also
explicitly presented. Finally, some features of rogue wave solutions are graphically discussed.
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1. Introduction

Extreme wave events occurring in seas and oceans almost every week are reported. There are a
number of physical mechanisms that focus the water wave energy into a small area and produce the
occurrence of extreme waves called freak or rogue waves [1]. This kinds of waves are localized in both
space and time, which can describe many significant nonlinear phenomena, such as ocean's waves [2],
optical fibers [3-5], Bose-Einstein condensates [6-8], financial markets [9-10], etc.

The characteristic of rogue waves is that "they appear from nowhere and disappear without a trace"
[11-12]. It is believed that the modulation instability is the fundamental mechanism for the generation
of the rogue waves. And one of the most important models for modulation instability is the nonlinear
SchrOdinger equation (NLSE) [13]. The first order rogue wave solution of NLSE in mathematical form
is given by Peregrine [14]. There are many other nonlinear evolution equations (NLEES) possessing
rouge waves, such as the Gerdjikov-lvanov equation [15], the generalized NLSE [16-17], the Hirota
equation [18], the Fokas-Lenells equation [19], the coupled SchrOdinger equations [20-21], the
(2+1)-dimensional B-type Kadomtsev-Petviashvili equation [22-23], the (3 + 1)-dimensional
generalized Kadomtsev-Petviashvili (gKP) equation [24], etc.

At present, there exist many approaches to solve these NLEEs, such as inverse scattering method
[25-26], Hirota bilinear method [27], Darboux transformation [28], B&klund transformation [29], the
variable separation method [30], and Lie group method [31]. Based on these methods, the Hirota
bilinear method is an effective way to find soliton solutions. Recently, the rogue wave solutions of
many NLEEs have been constructed based on the Hirota bilinear method and symbolic computation
approach, such as the Boussinesq equation [32], the (2+1)-dimensional gKP equation [33-34], the
(3+1)-dimensional gKP equation [35], the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation
[36], the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation [37], the (3+1)-dimensional
Kadomtsev-Petviashvili-Boussinesq equation [38], and so on.

Different from the above equations, in this paper, we focus on the (3+1)-dimensional gKP equation
[39]

(U, +hug, +huu), +hu, +hu, +hu, +hu, +hu, +hu, =0, Q.0

Whereu =u(x; y; z;t),h (i=1,2,3,4,5,6,7,8) are arbitrary constants? The gKP equation (1.1) can be
reduced to some other form KP equation by taking appropriate parameters for h;.

The primary purpose of this paper is to construct the rogue wave solutions of the (3+1)-dimensional

gKP equation (1.1) through symbolic computation approach. By giving the polynomial function f
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with the form

1/2 K
_n(n+ f X2i n(n+1)-2k 1 2
= z zan(n+l)—2k,2i z ) 1.2)

k=0 -0

We get the rogue wave solutions of the gKP equation (1.1). Further more, we add two parameters
aand B to the polynomial function f, then we get the generalised rogue wave solutions of the gKP
equation (1.1).

The structure of this paper is as follows. In Section 2, we present the bilinear form equation by
variable substitution. In Section 3, we derive the first, the second and the third order rogue wave
solutions of the gKP equation (1.1), respectively. In Section 4, we derive the first three order
generalised rogue wave solutions of the gKP equation (1.1).

2. The Bilinear form Equation of the Gkp Equation

In order to obtain the rogue wave solutions of the gKP equation (1.1) we set X =x+ay-bt
equation (1.1) can be rewritten as follows

(_qu + hluXXX +h2qu)X +(h3 +a'h6 +a2h4)uXX + hSUZZ +(h7 +ahB)u)<Z :07 (21)

Where a and b are two real parameters. Under the transformation

u :12hﬁan ) s (2.2)

2

Equation (2.1) is equivalent to
(_beX + hl fXXXX + meX + h5 fzz + Ssz) f : + (bfx2 _4h1fX fXX)( _3h1fX2X + h2 fXZX
—mfZ—h f2)f2+@2nh f2f,, —2h,f2f, —sf, f)f+(h,—6h)f =0, (2.3)
Where m=h,+ah,+a’h, ands=h, +ah,.

For the sake of simplicity, we set h, =6h,and set s=0to eliminate the impact of mixed partial
derivativeuy, . And then the equation (2.3) becomes

(-bf o +h fop +mf +hf, +sf ) f+(0f—4hf, f . —3nf5 +hf2 —mfZ-hf?)=0, (2.4)

Where m=h,+ah,+a’h,.

3. The Rogue Wave Solutions of the Gkp Equation

In this section, we assume that the function f has the following form [32,35]

n(n+l)/2 k .
f = Fn(21 X) = Z Zan(m-l)—zk,ziX2IZn(n+l)72k' (31)
k=0 i=0

Then we get the first, the second and the third order rogue wave solutions of the gKP equation (1.1),
respectively. Without losing generality, we set &, 10 =1.

Casel: n=1

1 k
f=F(zX)= ZZaHk,Zi X227 =72 va,,+a,,X°. (3.2)

k=0 i=0
And then substituting equation (3.2) into equation (2.4), we have
h5 a 3h1h5

aO'Z:_b,m’ 0'0:_(b7m)2' (3.3)
We get the first order rogue wave solution of the gKP equation (1.1) as
U, = 2(In flr)XX’ (3.4)
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Where

he oo 3hhs
b—m (b—m)*

Case2: Nn=2

3k )
f=F(z,X)= ZZaG—Zk,ZiX A
k=0 i=0
=2%+(a,0+a,,X%) 2" +(a,, +a,,X* +a,, X ) 2* +
(Ao +ah, X2 +ag,X* +a,6X°).

Substituting equation (3.6) into equation (2.4), we get

o, = 18TUN . _loSwhg 2% R
0,0 — (b_m)s v %02 T (b_m)s v %04 T (b_m)4 v %06 T (b_m)3 ’
_ 4750’ _ 90hh _ 3y 17hh
2,0 (b_m)4 ! 2,2 (b_m)3 ! 2,4 (b_m)z 1 Y40 (b—m)2 ’
3h,
Q=" -
' b-m

Then we get the second order rogue wave solution of the gKP equation (1.1) as
Uy = 2(In f2r)xx J
Where f,, is derived from equation (3.6) with parameters in equation (3.7).

Case3: n=3

6 K _
f=FK(z,X)= Zzaﬁ—Zk,ZiX AgieE

k=0 i=0

=7+ (a10,0 +ay,X 2)210 +(aa‘o +as,2X2 +aﬁ,4x4)28
(B0 +35, X2 +85, X" +a5,X°%)2°

2 4 6 8\,4
+(a,0+8,,X"+8,,X" +a,X°+3,,X")z

+(By0 + 8, , X7 +8,, X +2, X +8,,X° +a,,,X)2°

o+, X2 +ay, X+, X% +ag X +ay, X +a,,X"™.

Substituting equation (3.9) into equation (2.4), we get

_ 87882602%h? ~ 159786550M°h? W 518787H,'h?
? 9b-my?2 " 2 3b-my* 3b-m®*
_ 754600°he _735n2h? I 98hh?
aO.ﬁ 3(b _ m)g ’ a0.8 (b _ m)g ’ 0,10 (b _ m)7 ’
h 300896750M°h? 56595Ch'h?
a(l,lz = 6 aZ,O = T A/l 10 ! a2,2 = T L N9
(b—m) 3(b—m) (b—m)

o __22080thh 186200 690hKS
2,4 (b_m)s ' 2,6 (b_m)7 ' 2,8 (b_m)el
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o 6he  16391725'h! _ 14700’k
200 (b-m)*" T 3(-m)® T Y (b-m)”

3745/’h! 1540n,h! 15h!

Qo= % XsT 5 Qg=—
(b—m) (b—m) (b—m)
W - 79898h’h? _35420n°h; _ 146007

&0 3b-m)° = *? (b-m)* " " (b-m)*’
20h? 43350 h; 570hh?

855 =— 70 Bgo =i, 8, = 3
(b—m) (b—m) (b—m)

. 15R? _ 58hh, _ 6h,

a8,4_(b_m)2’ 0,0 — (b_m)z’ a10,2_ b_m'

Then we get the third order rogue wave solution of the gKP equation (1.1) as
Uy =2(In f5 ),

Where f; is derived from equation (3.9) with parameters in equation (3.10).

(3.10)

(3.10)

@ u, (b) u,, ©) u,
Figure 1: The rogue wave solutions U,,,U,,,Us, of the gKP equation (1.1) with

a=1b=7h =1h =2,h,=1h =-3,h, =1.

\_3 To @ 5 ’U w2
I
(0) u,,

Figure 2: The cross-sectional views of Fig.1 respectively.

@ u,

Fig.1 shows the rogue wave solutions U,,U, U, of the gKP equation (1.1). Fig.2 are the
cross-sectional views of Fig.1 respectively. Fig.1 (a) shows that the first order rogue wave solutionu,,
has one maximum 4 at (0,0) and one minimum -1/2at (-/30 and (+/3,0), in addition the maximum

and the minimum values of the first order rogue wave solution lie on the same line z=0.
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4. The Generalised Rogue Wave Solutions of the Gkp Equation

In this section, we assume that the function f has the following form [32, 35]
f =F ,(z, X)+2aXP,(z, X) +2%Q, (z, X) + (&’ + f*)F, ,(z, X),
Where

n(n+1)/2 k

2i D2k
F.(z,X) = Z Zan(m-l) 2w X2 -
i=0

n(n+1)/2

Kk
2 1 2k
Pn (Z' X) - z zbn(m-l) 2k, 2| I n(n+)

k=0 i=0

n(n+1)/2 k

Qn(za X) = Z ch(n+1) 2k, 2|X2I - 2k’

k=0 i=0

Fo,=LF,=P,=Q,=0, Where a,,,b,,,C,, (M1=0,2,4,6,---,n(n+1))and, B are real parameters.

(4.1

(4.2)

Substituting equation (4.1) into (2.4), we get the generalised rogue wave solutions of the gKP

equation (1.1).
Case1:nN=0
We choose

f =F(z,X)=a,,2° +3y, +a,,X".

(4.3)

In this case, the first order generalised rogue wave Uy is the same as the first order rogue wave u,,

in equation (3.4).
Case2: n=1
f =F,(z, X)+2aXP,(z, X) +2Q,(z, X) + (a® + p*)F,
=2°+ (A, +a,,X )2 + (8,0 +3,,X? +8,,X ) 2% + (a5 + 35, X+, X +3,,X°®)
+2aX (by o +05, X2+, ,2%) +22(Co o +Co , X2 +C, 027 ) +ad” + 2.
Substituting equation (4.4) into equation (2.4), we get
9(b—m)°(a® + A +9(b—m)°ar’bZ, — (b—m)® B?hc?, +16875h7he

o0 9(b—m)°h? ’
_125h7h¢ _ 25hh? _ h?
0,2 — (b_m)5 1 0,4 — (b— m)4 ' a0‘6 - (b— m)3 1
475h7h? 90h,h? 3n?
az,o PRV az,z = \3 az,4 = N2
(b—m) (b—m) (b—m)
_ 17hh, a . —— 3h, b __bo,zhl
4,0 (b—m)2 v P2 b—m’ 0,0 b—m’
b, = 3b0,2(b B m) _ 5Co,2hl _ Co,z(b_ m)
07T %0 om0 an,
5 5

bo,z :bo,zl Co,2 =Co, 21

(4.4)

(4.5)

Where b, ,.C,, are arbitrary constants? Then we get the second order generalised rogue wave

solution of the gKP equation (1.1) as

uZgr = 2(In fZQr)XX 1
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Where f,, is derived from equation (4.4) with parameters in equation (4.5).

Fig.3 shows the second order generalised rogue wave solution U, of the gKP equation (1.1) with
different values of the parameters @and #. And Fig.4 is the density figures of Fig.3 respectively. Fig.3
(a) shows that the second order generalised rogue wave solutionU, is the second order rogue wave

solutionu,, in Fig.1 (b) whena=£=0. With the increase of parameters@ andf, the second order

generalised rogue wave solution is decomposed into three first order rogue wave solutions and form
into a triangle.

E
"15 0 5 15 105

(@ a=0,8=0 (b) «=20p=20 (€) «=50,p=50

0 -15

15
15 10

5
I|5 w s

5

(d) «=100,4=100 (€) & =300, =300 (f) =800 =800
Figure 3: The second order generalised rogue wave solution Yzor of the gKP equation (1.1) with
a=1b=7h =1h,=2h,=Lh =3 h, =1h,, =c,, =1, for different values of the parameters , and , .

s 15

15

(@ «=0p3-0 (b) «=20p5=20 (©) «=50,5=50
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15

15

-10 =5 o0 5 10 15 -10 =5 0 5 10 15
x x

(d) «=1004=100 (8) & =300,4=300 (f) «=8008=800
Figure 4: The density figures of Fig.3 respectively.

Case3: N=2
f= F3(Z,X)+20:XF’2(Z,X)+2,6‘ZQZ(Z,X)+(aZ+ﬁ2)|:l
= 224 (g + 80, X )7+ (B + 8y, X2+ 0, X 2" + (B o 36, X +85, X" +2,6X°)2°

+(ay o+, X2 +a,, X" +a, X% +a,,X*)z*
(@, +3,, X7 +3, X +3,,X°+8,,X® +a,,,X*")z?
+ag+ag, X2+, X +ay X% +ay,X® +a,,,X " +a,,,X" @)
+ 20X (D,02° + (b o+, , X 2)2* + (0, +b, , X2 +D, , X )22 +by o+, X2 +by , X * +D s X °)
+282(Co02° +(Cyp+Cy , X2)Z* +(Cprg +C , X2 4C, , X )27 +Cy g +Co , X2 +Co X +C1sX°)
+(a*+ p*)F.

where

h 3nh
F=2"-—3-X*- 5. 4.8
e N (48)

Substituting equation (4.7) into equation (2.4), we get

_ 675a°hpZs(b—m)" —2752hhicZ (b —m)'™ + 675 (o + %) (b—m)® + 219706506 Bh’hL?
o 225(b —m)*?h?

_ 75a°hg s (b—m)" —34%hcl s (b—m)™® +75h] (a” + %) (b —m)'® +3994663750°h?
2 75(b—m)*h¢

518787H'h 75460n°h? 73507h¢
a0,4=_—10’ 0,6:—9' a0,8= 8!
3(b—m) 3(b—m) (b—m)

_ 98h,h¢ _ h¢
10 (b _ m)7 1 12 (b _ m)s '

_ —75a’bo(b—m)" +35°h,c)  (b—m)*® —h! (o + 5°)(b—m)" — 7522418750\ h;?
20 75(b—m)™°h :

565950h,'h? 220500h?h? 1862002h?
a2,2=_—9' a2,4=_—8' a2,6=_—7’
(b—m) (o—m) (b—m)

690hh? 6he 1639172%'h!

2,8 — (b—m)ﬁ 1 8y50 =" (b— m)5 v 4 3(b— m)8
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14700n3h; 37450n2h? 1540hh?
Qo= 7 Q= 5 Q=
’ (b—m) 47 (b—-m) * (b—m)

15h¢ 798980h°h? 35420n7hS
88 = 7 o= 5 0 =T 5
(b—m) 3(b—m) (b—m) 4.9)
o MO a0 a3
U -myt T (b-m)®T Y (b-m)*
_570hhi _ 15h 0, —_ N,
2 o-m®t M (b-m)*T 0 (b-m)*’
2 b—m’ % 3b-m)?® " " (b-m)?’
b _ 13b0,6hl b __w b _ 23(1)06h1
0,4 ™ 20T y Mo = )
b-—m h,(b—m) h,
_Oby,(b-m) - _4shby(b-m) - Sbyeh(b-m)®
b24— ’ b4o— 2 ’ b42—_ 2 ’
' h5 ' h5 ' h5
5, (b —m)° 377, .h? 133, h?
e, :_T’ Coo :ﬁv Copo =75
5 (b—m) (b—m)
_ 2]h1Co,e _ 49(:o,eh12 _ 38Co,eh1
C0,4 - ’ Cz,o — T L A\ Czyz - ’
b—m h,(b—m) h,

:co.e(b_m) c _ Tcoehy(b—m) c __9co,e(b_m)2

2,4 h5 4,0 — 5h52 ’ 4,2 — 5h52
Co(D—m)°*
Coo=————5——1 Dys=bye, Cos=Cyps
6,0 5h53 0,6 0,6 0,6 0,6

Where b, sand Cogare arbitrary constants. Then we get the third order generalised rogue wave
solution of the gKP equation (1.1) as
u39r = Z(In f39r)XX ! (410)

Where fy,, is derived from equation (4.7) with parameters in equation (4.9).

Fig.5 shows the third order generalised rogue wave solution lJ3gr of the gKP equation (1.1) with
different values of the parameters @ and B. And Fig.6 is the density figures of Fig.5 respectively.
Fig.5 (a) shows that the third order generalised rogue wave solution Uy is the third order rogue wave

solution Uy in Fig.1 (c) when a=p=0. With the increase of parametersaand 8, the third order

generalised rogue wave solution is decomposed into six first order rogue wave solutions, one of which
is in the center, and the other five form a pentagon around it.
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(b) «=300,5=300 (€) @ =1000,8=1000

(d) «=30008=3000 (8) «=10000 4=10000 () «=10000Q 8=100000

Figure 5: The third order generalised rogue wave solution Us, of the gKP equation (1.1) with
a=1b=7,h =Lh =2,h, =Lh =3 h =1b,, =1c,, =1 for different values of the parameters , and B

5. Conclusions

In this paper, we have investigated the rogue wave solutions of the gKP equation (1.1) based on
symbolic computation approach. By choosing proper polynomial function, the first, the second and the
third order rogue wave solutions are systematically obtained. We show that the maximum and the

minimum values of the rogue wave solutions lie on the same lineZ=0. Further more, we add two

parameters & and? to the polynomial function, then we get the first three order generalised rogue wave
solutions of the gKP equation (1.1). With the increase of parameters@ and/”, the second order
generalised rogue wave solution is decomposed into three first order rogue wave solutions and form
into a triangle. When the parameters @ and” are large enough, the third order generalised rogue wave
solution becomes six first order rogue wave solutions, one of which is in the center, and the other five
form a pentagon.

-10 -5 0 5 10 15 i -10 -5 0 5 10 15

(b) «=300,5=300 (€) & =1000,8=1000
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15

10

(d) «=30004=3000 (e) «=10000 8 =10000 () «=100000 4 =100000

Figure 6: The density figures of Fig.5 respectively.
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