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Abstract: How to accurately metric the oriented bounding box loss in remote sensing image object 

detection has been a hot research topic in this field. The main reason for not being able to accurately 

calculate the loss of rotating bounding boxes is the complexity of calculating IoU between rotating 

bounding boxes. This paper is inspired by KFIoU and explores on this basis, and finds that KFIoU needs 

to be more to metric the merging volume of rotating bounding boxes, and the variation in the value is 

much different from the actual one. In this paper, we propose a faster and more accurate loss function 

GMIoU, which calculates the bounding box concatenation volume by Gaussian mixture model and the 

intersection volume by Kalman filer, and GMIoU solves the problem of inaccuracy of KFIoU in the case 

of no intersection of rotating bounding boxes and improves the numerator and denominator of KFIoU. 

The large differences between numerator and denominator of KFIoU in orders of magnitude. Meanwhile, 

to prevent the angle periodicity problem from affecting the model training effect, a classification-based 

DCL angle classification module is introduced in the head of the model to improve the model 

generalization ability and angle prediction accuracy. The experimental results show that GMIoU is 

closer to SkewIoU regarding variation trend, and the convergence speed is faster compared with, for 

example, KFIoU. The training effect improves the model's accuracy for large aspect ratio objects and 

shows good results on square-like objects. 
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1. Introduction 

Remote sensing images, as the main information carrier for object detection, contain much useful 

information. How to accurately detect objects in remote sensing images has important applications in 

object surveillance, intelligence reconnaissance, intelligent agriculture, environmental monitoring, and 

other fields [1]. Meanwhile, object detection technology is also the basis for scenario segmentation, object 

tracking, video object recognition, etc. The study of remote sensing image object detection is significant 

for social and economic development. In recent years, with the rapid development of deep learning 

technology, deep learning-based object detection methods have been proposed one after another in the 

process of researchers' exploration. At the same time, with the release of large remote sensing datasets 

has made the deep learning based remote sensing image object detection technology gradually become a 

research hotspot in computer vision, produced some excellent research results. Next, an overview of the 

research progress in recent years is given. 

There are two main categories in conventional object detection methods: two-stage object detection 

algorithms and single-stage object detection algorithms based on two-stage object detection algorithms. 

In the development of Two-stage universal object detection models, R-CNN object detection networks, 

i.e., region traversal convolutional neural networks, were initially pioneered by Girshick et al [2]. 

Subsequently, domestic scholars Keming He et al [3] proposed the SPP Net object detection network, 

which used feature pyramids to achieve multi-scale feature fusion, greatly improved the network’s 

effectiveness and speed. After that, Girshick et al. successively proposed classical two-stage object 

detection algorithms such as Fast R-CNN [4] and Faster R-CNN [5]. Faster R-CNN ensures a high 

detection accuracy and, at the same time, has a significant improvement in speed compared with previous 

detection models, reaching 30 FPS per second. Redmon et al [6], from the perspective of regression, 

abandoned the previous object detection using region search method and replaced it with YOLO, a one-

stage object detection model that directly classifies objects and performs bounding box regression 

operations using regression methods. This model did not need to generate candidate regions, which 
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greatly saves detection time but loses some detection accuracy. This method significantly improves the 

accuracy of small object detection while keeping the computational effort unchanged. The above research 

results explore the deep learning-based object detection methods from different directions, all of which 

have been improved to different degrees, making the base-general object detection model has reached 

the industrial-level application level, However it is difficult to achieve ideal results when applied in 

remote sensing image rotation object detection. 

2. Related work 

Because of the large difference between their photography circumstances and ordinary direction, 

remote sensing images have arbitrary orientation, high aspect ratio, dense distribution, and numerous 

scales, which causes general detection models to fail to recognize rotating objects in remote sensing 

images[7]. These difficulties have attracted the attention of researchers. As a new hot direction of remote 

sensing image rotating object detection, some researchers initially tried to extend from the horizontal 

object detection model. Li et al[8]., proposed R3Det algorithm using rotated candidate region generation 

network R-RPN to get rotated R-RoI and then feature extraction based on R-RoI to predict the rotated 

object angle[9]. Yang Xue et al[10]., proposed SCRDet algorithm that achieves feature enhancement for 

small and dense objects by adding a feature fusion structure and using a supervised attention 

mechanismto highlight the object and suppress the background [11]. Yang Xue et al., further proposed the 

CSL and DSL models based on angle classification to convert angle regression into an angle classification 

problem[12-13]. The angle coding branch is added to the detection header, and the angles are divided into 

finite ordered classes according to the equal division principle to achieve angle classification. Then the 

angle values are predicted by the classification method. The method effectively solves the periodicity 

problem in the angle regression process and improves the model generalization ability and accuracy. The 

above methods have achieved some results in angle prediction, but their loss functions mainly adopt L1 

loss for the bounding box regression problem. However, the index that accurately reflects the bounding 

box loss is IoU. The loss functions of such inter-parameter independent regressions ignore the correlation 

between the parameters of the rotated box and especially cannot link the angle loss with the bounding 

box loss. There are a large number of metrics based on IoU loss during horizontal frame detection, such 

as GIoU, DIoU, CIoU, and EIoU [14-17]. Because of the inclusion of angles, it makes it challenging to 

metric the IoU between rotating boxes. Therefore, some researchers have tried to start from the bounding 

box loss and propose some loss functions that approximately fit SkewIoU, while introducing the angle 

values into the rotated box regression loss function together so as to achieve a more accurate model for 

training. Zhiming et al., proposed PIoU loss (Pixels-IoU) using pixel point counting to calculate the IoU 

loss between the bounding boxes, and the experimental results showed an improvement in both boxes 

and angle prediction[18]. However, the method is difficult to deploy, and the regression speed is slow. 

Yang Xue et al., proposed loss functions GWD, KLD and KFIOU based on 2D-Gaussian distribution[19-

21]. Among them, KFIoU defines the function expression according to the principle of IoU calculation, 

which trend level alignment with the SkewIoU loss in numerical trend and FKIoU is convenient to deploy. 

However, KFIoU cannot reflect the loss when two rotating boxes do not intersect. The main reason is 

that KFIoU is not accurate enough to calculation of the merged set. Based on the above problems, Our 

proposes a novel loss function GMIoU based on Gaussian mixture model and Kalman filter, which 

converges faster, has better training effect and is easy to deploy. Meanwhile, in terms of angle prediction, 

for further improves the angle prediction accuracy, model generalization ability, and prediction effect on 

square-like objects by introducing DCL branch. 

3. Proposed method 

In this section, we give a detailed overview of our proposed method. Firstly, we introduce the 

definition of rotating boxes and, simultaneously, expose the angle regression and edge exchange 

problems of this angle definition method. Next we introduce the converting method of rotating boxes to 

Gaussian and analyze the shortcomings of KFIoU, and finally we propose our solution. 

3.1 Rotated Bounding Box Definition 

In rotated object detection, the 5-parameter method and the 8-parameter methods are usually used. In 

the 5-parameter method, the model output parameters are (x,y,w,h,θ), representing the center point 

coordinates, object aspect, and angle values, respectively. In the 5-parameter method, OpenCV gives two 

kinds of angle definition ranges. One is the long-edge representation with the angle range [-90, 90) ,and 
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the other is the short-edge representation with the angle range [-90,0), as shown in Figure 1. 

 
a. acute angle representation,𝜃 ∈ (0, −90] 

 
b. long side representation,𝜃 ∈ [−90,90) 

Figure 1: Rotated bounding box definition 

3.2 Rotated object detection to 2-D Gaussian distribution 

In horizontal object detection models, the loss of bounding box regression is often measured by IoU. 

With the efforts of researchers, a series of IoU-based loss functions have been proposed. The common 

ones are GIoU, DIoU, CIoU, and EIoU. However, in rotating object detection, the arbitrary angle makes 

it difficult to design an IoU-based and derivable loss function. The GWD loss function is calculated by 

converting the rotation frame (x,y,w,h,θ) into a 2D Gaussian distribution N(μ, Σ), and then using the 

theory in the field of probability statistics for the loss calculation. The method achieves a combination of 

bounding box regression and angle regression, improves the learning efficiency of the rotating box loss 

function, and solves the problem of indifferentiability of the IoU loss based on the rotating box. The 

specific conversion principle is as follows: the bounding box's centroid is converted into a Gaussian 

distributed fractional mean vector, the length and width are converted into a covariance matrix, the angle 

is converted into a direction matrix, and the specific expressions are as follows. 

Σ = RΛR𝑇 

= (
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

) (
𝑤2 4⁄ 0

0 ℎ2 4⁄
) (

cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃

) 

= (

𝑤2𝑐𝑜𝑠2𝜃+ℎ2𝑠𝑖𝑛2𝜃

4

𝑤2−ℎ2

4
sin 𝜃 cos 𝜃

𝑤2−ℎ2

4
sin 𝜃 cos 𝜃

𝑤2𝑐𝑜𝑠2𝜃+ℎ2𝑠𝑖𝑛2𝜃

4

)                            (1) 

μ = (𝑥, 𝑦)                                   (2) 

Here Σ signifies the covariance matrix of a Gaussian distribution. R symbolizes the direction matrix, 

which is made up of trigonometric functions of angles, and Λ denotes the eigenvalue matrix. B is the 

mean vector. The covariance matrix may be simply utilized to compute the size of the area 𝑆𝑏(𝛴), after 

transforming the rotating bounding box into a 2D Gaussian distribution, as illustrated in Equation 3. 

𝑆𝑏(𝛴) = 2𝑛√∏ 𝑒𝑖𝑔(𝛴) = 2𝑛 ∙ |𝛴
1

2| = 2𝑛 ∙ |𝛴|
1

2                  (3) 

𝑆𝑏(𝛴) denotes the rotating box volume, 𝑒𝑖𝑔(𝛴) for the covariance matrix's eigenmatrix, where n = 

2, for the dimension. With this equation, we can easily calculate the overlapping and merging regions 

between rotating boxes in GMIoU. 
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3.3 GMIoU loss 

The details of the suggested approaches will be addressed in this section. To start, we examine the 

KFIoU Loss's deficiencies. KFIoU calculates the approximate intersection of bounding boxes using 

Kalman gain, and the union set is defined as the sum of two bounding boxes minus the intersection area, 

which is defined in the form of KFIoU =
𝐶

𝐴+𝐵−𝐶
. Here C denotes the intersection region of two boxes, 

where A and B denote the predicted and ground truth boxes, respectively. Generally, when the predicted 

box has no intersection with the ground-truth box at all, the IoU value is close to the minimum point 0; 

when the predicted box is nearly at the position of the ground true box, the IoU value should reach the 

maximum value 1. However, the value range of FKIoU is (0, 1 3⁄ ). Through the experiment,we found 

that it is observed that the value of KFIoU denominator far exceeds the numerator,and the amount of 

KFIoU change is nearly zero when there is no intersection between the predicted and ground truth 

box.The method of merging in Euclidean geometric space is adopted in dealing with the merging region 

by analyzing FKIoU, which can obtain an accurate merging volume in Euclidean spatial plane geometry, 

but in the field of probability statistics, it is obvious that using a geometric method to solve a probability 

distribution problem is not the best calculation method. In this paper, we propose a faster and more 

precise Gaussian-based loss function GMIoU.  When two Gaussian distributions are multiplied together 

to produce a Gaussian distribution, and the Gaussian distribution is exactly the intersection area 

𝛼𝑁𝑘(𝜇, 𝛴), as seen in Figure 2-a. Equation 4-7 illustrates the calculating technique. where 𝜇𝑘 denotes 

the mean vector and 𝛴𝑘 denotes the covariance matrix. 

𝛼𝑁𝑘(𝜇𝑘 , 𝛴𝑘) = 𝑁1(𝜇1, 𝛴1)𝑁2(𝜇2, 𝛴2)                           (4) 

𝜇𝑝𝑡 = 𝜇𝑝 + 𝐾(𝜇𝑡 − 𝜇𝑝)                              (5) 

𝛴𝑝𝑡 = 𝛴𝑝 − 𝐾𝛴𝑝                                       

= 𝛴𝑝 − 𝛴𝑝(𝛴𝑝 + 𝛴𝑡)
−1

𝛴𝑝                         (6) 

 𝐾 = 𝛴𝑝(𝛴𝑝 + 𝛴𝑡)
−1

                                (7) 

Here α is the scale factor, α is less when the two distributions are further apart and greater when they 

are closing a. K is the Kalman gain, 𝛴𝑝  is the covariance matrix of predicted box, and  𝛴𝑡  is the 

covariance matrix of ground-truth box. Lastly, as shown in Equation 8, the size of the intersection region 

volume 𝑆𝑘(𝛴𝑘) may be computed from 𝛴𝑘. 

𝑆𝑘(𝛴𝑘) = 2𝑛√∏ 𝑒𝑖𝑔(𝛴𝑘) = 2𝑛 ∙ |𝛴𝑘

1

2| = 2𝑛 ∙ |𝛴𝑘|
1

2           (8) 

Here 𝑆𝑘(𝛴𝑘) denotes the size of the intersection area of the two rotating boxes, as shown by the area 

of the red region in Figure 2-b. 

 
a. 𝑁𝑘(𝜇, 𝛴)represents the overlap part's Gaussian distribution. 
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b. 𝑁𝑔(𝜇, 𝛴) is the combined part's Gaussian distribution. 

Figure 2: Conversion diagram of overlapping and merging parts 

The computation employs the Gaussian mixed distribution for the combined region. According to 

Gaussian distribution characteristics, scaling two Gaussian distributions together yields a mixed 

Gaussian model 𝑁𝑔(𝜇, 𝛴), as illustrated in Figure 2-b, and its equation is presented in Equation 9. The 

region contained by the Gaussian mixture model, may more correctly reflect the merging of the rotating 

boxes. Eventually, Eq. 10 shows the formula to calculate the merging region size 𝑆𝑔. 

𝑁𝑔(𝜇, 𝛴) = ∑ 𝛽𝑖𝑁(𝜇𝑖 , 𝛴𝑖),   ∑ 𝛽𝑖
𝐾
𝑖=1 = 1   𝐾

𝑘=1                       (9) 

𝑆𝑔 = 𝛽1𝑆(𝛴𝑝) + 𝛽2𝑆(𝛴𝑡),   𝛽1 + 𝛽2 = 1                    (10) 

The volume enclosed by the Gaussian mixture model is denoted by 𝑆𝑔.The weights in the Gaussian 

distribution are represented by 𝛽1, 𝛽2. In summary, equation 11 depicts the GMIoU expression. 

𝐺𝐾𝐼𝑜𝑈 =
𝑆𝑘(𝛴𝑘)

𝑆𝑔
                                       

=
𝑆𝑘(𝛴𝑘)

𝛽1𝑆𝑝(𝛴𝑝)+𝛽2𝑆𝑡(𝛴𝑡)
                          (11) 

𝑆𝑝, 𝑆𝑡 , 𝑆𝑘, are the predicted box, ground-truth box, and overlap volume between boxes, respectively. 

In a vast amount of experiments, we try various combinations of(𝛽1, 𝛽2), and the optimum model training 

performance is obtained when 𝛽1, 𝛽2 is selected as 1/2. We can conclude from the analysis that the upper 

bound of GMIoU in n-dimensional space is 
2𝑛

2
𝑛
2+1

, and thus the value domain of GMIoU in 2D-

dimensional space is (0,1). It is intuitively discovered that the function graph of GMIoU is closer to 

SkewIoU in trend, which can better reflect SkewIoU's actual change. 

The One-Stage network RetinaNet is utilized as the backbone network in this study, and the angle 

prediction component presents the DCL module based on angle classification to avoid the issue of angle 

regression periodicity while also improving angle prediction accuracy. For the regression parameters, the 

5-parameter method is employed, with an angle definition range of [-90, 90). In conclusion, Equation 12 

summarizes the multi-task loss function. 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1 ∑ 𝐿𝐺𝐾𝐼𝑂𝑈(𝑁(𝑝𝑛), 𝑁(𝑔𝑡𝑛))
𝑁𝑝𝑜𝑠

𝑛=1 +
𝜆2

𝑁
∑ 𝐿𝐷𝐶𝐿(𝜃𝑛

′ , 𝜃𝑛)𝑁
𝑛=1              

+
𝜆3

𝑁
∑ 𝐿𝑐𝑙𝑠(𝑝𝑛, 𝑔𝑡𝑛)𝑁

𝑛=1 +
𝜆3

𝑁
∑ 𝐿1(𝑣(𝑝𝑛), 𝑣(𝑔𝑡𝑛))𝑁

𝑛=1             (12) 

𝐿𝐺𝐾𝐼𝑂𝑈 = 1 − 𝐺𝐾𝐼𝑂𝑈                                (13) 

Where 𝜆𝑖 is the weight value, taking values in the range of (0, 1]. 𝑁𝑝𝑜𝑠 and 𝑁 are the numbers of 

anchors that contain the object and the total number of anchors, respectively. 𝑏𝑛 denotes the predicted 

boxes ,and 𝑔𝑡𝑛 denotes the ground truth boxes. The 2D-dimensional Gaussian distribution converted 

by the rotated boxes is denoted by 𝑁(·). 𝐿𝐺𝐾𝐼𝑂𝑈 is the bounding boxes regression loss, 𝐿1 is the center 

point loss, and the smooth L1 loss function is employed, where 𝑣(·)  indicates the center point 

coordinates. 𝐿𝐷𝐶𝐿, 𝐿𝑐𝑙𝑠 denote the angle classification loss and the category classification loss, which 

are both calculated using the focal loss function. The detector training procedure is divided as follows:1. 

The model output the offset(𝑡𝑥
,′, 𝑡𝑦

,′, 𝑡𝑤
,′ , 𝑡ℎ

,′, 𝑡𝜃
,′）; 2. decoding the bias quantity to yield the predicting boxes; 

3. converting the bounding boxes to 2-D Gaussian distributions; 4. Calculating 𝑆𝑖(𝛴𝑖) and GMIoU 
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values; 5. computing the total loss before performing backpropagation to update the model parameters. 

Equation 14 represents regression of (x, y, w, h). 

𝑡𝑥 = (𝑥 − 𝑥𝑎)/𝑤𝑎,   𝑡𝑦 = (𝑦 − 𝑦𝑎)/ℎ𝑎,                             

𝑡𝑤 = log(𝑤 𝑤𝑎⁄ ) , 𝑡ℎ = log(ℎ ℎ𝑎⁄ ),                               

𝑡𝜃 = (𝜃 − 𝜃𝑎) ∙ 𝜋 180⁄ ;                                (14) 

𝑡𝑥
∗ = (𝑥∗ − 𝑥𝑎)/𝑤𝑎, 𝑡𝑦

∗ = (𝑦∗ − 𝑦𝑎)/ℎ𝑎,                           

𝑡𝑤
∗ = log(𝑤∗ 𝑤𝑎⁄ ) , 𝑡ℎ

∗ = log(ℎ∗ ℎ𝑎⁄ ),                             

𝑡𝜃
∗ = (𝜃∗ − 𝜃𝑎) ∙ 𝜋 180⁄ .                                    

Here 𝑥, 𝑥𝑎, 𝑥∗ denote the ground-truth box, anchor box, and predicted box, others as above. The 

center coordinates, width, height, and angle of the bounding box are denoted as 

𝑥, 𝑦, 𝑤, ℎ, 𝜃 ,respectively. 

4. Experiments 

In this section, the exceptional performance of GMIoU in model training is demonstrated by 

comparative experiments. 

4.1 Implement details 

When building the network model, we implemented the Pytorch-based MMRotate architecture. The 

detector is deployed on a specialized deep learning server with 4 GeForce RTX 2080 Ti and 11G memory. 

The backbone network uses RetinaNet and inherits the official weight file for the network initialization; 

anchor settings remain the same as the original RetinaNet and FPN models. We used SGD optimization, 

in which the learning rate is set to 0.002, the weight decay set to 0.0001, and the momentum are set to 

0.9, batch size 8, 2 images per GPU, total 4 GPU. The entire training duration for the DOTA v1.0 dataset 

was 20 epochs, with the learning rate being reduced by a factor of 10 at the 11th and 16th epochs. 

4.2 Datasets 

As the experimental dataset in this work, we use the open-source remote sensing image dataset DOTA. 

The collection includes 2806 remote sensing images, each of which is over 4000×4000 in size. Most of 

the objects in the DOTA dataset are characterized by large aspect ratio, tiny pixels, and dense distribution, 

which demands a detection model of high performance. The provider of DOTA v1.0 annotated 15 types 

of objects: Plane, Baseball dia-mond, Bridge, Ground field track, Smallve-hicle, Large vehicle, Ship, 

Tennis court, Basketball court, Storage tank, Soccer ball field,Roundabout, Harbor, Swimming pool, and 

Helicopter, with a total of 188,282 rotating bounding boxes. We divided the data set 1/2 for training, 1/6 

for validation, and 1/3 for testing. In the data preprocessing stage, we utilize the cropping approach to 

divide each image into 1024*1024 subgraphs with a 150-pixel overlap to avoid losing too many objects. 

Finally, we have 15749 images in the training set, 5297 in the validation set, and 10594 in the test set. 

4.3 Comparison experiments 

First, research on GMM coefficients for better Gaussian mixture model coefficients, the difference 

between GMIOU values and SkewIoU in terms of numerical variation for different aspect ratios was 

examined by trying different 𝛽  combinations. The findings demonstrate that whether (𝛽1, 𝛽2)  is 

assumed to be biased towards the prediction boxes or the ground-truth boxes, the patterns of IoU changes 

are equivalent. The results indicate that the GMIoU trend plots are comparable when (𝛽1, 𝛽2) is taken 

as (1 3⁄ , 2 3⁄ ) or(2 3⁄ , 1 3⁄ ). However, it is certain that (𝛽1, 𝛽2) is chosen as (1 2⁄ , 1 2⁄ ) when the 

variation trend is near to SKewIoU. Hence, (𝛽1, 𝛽2) is treated as (1 2⁄ , 1 2⁄ )  in all subsequent 

experiments. 

1) Comparison of different loss functions 

To demonstrate the performance of GMIoU, we performed experiments to compare the training 

results of different models in the DOTA 1.0 dataset. The mAP 50 and the accuracy of 15 categories were 

employed as the experiment's evaluation indicators. The experimental results were displayed in Table 1, 
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and the results of other models were applied in the FKIoU paper. Images of test results for different 

detection models, as shown in Figure 3. The experimental results show that models trained using the 

GMIoU loss function are more accurate for detecting plane, baseball diamond, tennis court ,and 

basketball court objects. Compared to KFIoU, the model trained using GMIoU outperforms it on plane, 

bridge, small car, tennis court, basketball court, roundabout, and harbor objects. The study mentioned 

above showed that the models enhance the detection of small items and large aspect ratio objects. It can 

be concluded that GMIoU is more sensitive to small and large aspect ratio objects and can train models 

more effectively. It has also been observed that the prediction performance of square-like planes and 

roundabouts has improved due to the addition of the DCL angle classification approach, which effectively 

eliminates angle periodicity and improves angle prediction accuracy. Besides that, the experimental 

findings show that the model trained with GMIoU loss has higher slippage in identifying massive vehicle 

objects. Furthermore, the experimental findings show that the model trained with the GMIoU loss has 

higher slippage in detecting of large vehicle objects. When viewing the image of the test result, it is 

evident that the large vehicle is recognized as two objects, large vehicle and small vehicle, indicating that 

more work is needed to better the detection performance of the large vehicle. 

Table 1: Method denotes the various models, such as H-104 for ResNet and R-101 for ResNet-101. In 

DOTA v1.0, the table column shows 15 AP of various objects, and the model's mAP value. The color 

red denotes the best performance. 

Method 
PIoU 

(2020) 

O2-

DNet 

DAL 

(2021d) 

P-RSDet 

(2020) 

BBAVectors 

(2021) 
DRN 

(2020) 

DCL 

(2021a) 

GWD 

(2021c) 
KFIoU 

GMIoU 

(our) 

Backbone DLA-34 H-104 R-101 R-101 R-101 H-104 R-152 R-152 R-152 R-152 

PL 80.90 89.31 88.61 88.58 88.35 89.71 89.1 86.96 89.80 89.65 

BD 69.70 82.14 79.69 77.83 79.96 82.34 84.13 83.88 85.80 84.95 

BR 24.10 47.33 46.27 50.44 50.69 47.22 50.15 54.36 58.90 56.4 

GTF 60.20 61.21 70.37 69.29 62.18 64.10 73.57 77.53 81.30 79.10 

SV 38.30 71.32 65.89 71.10 78.43 76.22 71.48 74.41 26.70 76.53 

LV 64.40 74.03 76.10 75.79 78.98 74.43 58.13 68.48 67.40 66.80 

SH 64.80 78.62 78.53 78.66 87.94 85.84 78.00 80.34 77.90 79.92 

TC 90.90 90.76 90.84 90.88 90.85 90.57 90.89 86.62 90.80 91.23 

BC 77.20 82.23 79.98 80.10 83.58 86.18 86.64 83.41 86.70 89.60 

ST 70.40 81.36 78.41 81.71 84.35 84.89 86.78 85.55 68.50 85.47 

SBF 46.50 60.93 58.71 57.92 54.13 57.65 67.97 73.47 64.80 72.86 

RA 37.10 60.17 62.02 63.03 60.24 61.93 67.25 67.77 59.00 70.12 

HA 57.10 58.21 69.23 66.30 65.22 69.30 65.63 72.57 74.60 76.10 

SP 61.90 66.98 71.32 69.77 64.28 69.63 74.06 75.76 65.60 73.00 

HC 64.00 61.03 60.65 63.13 55.70 58.48 67.05 73.40 69.49 61.70 

mAP 60.50 71.04 71.78 72.3 72.32 73.23 74.06 76.30 70.00 74.50 

The detection performance of the model trained with different loss functions is represented in the 

image below. The Figure 3 categories are mostly focused on ship, harbor, and vehicle. The detection 

performance of the model trained with L1 loss and KFIoU is represented by groups a and b, respectively, 

while the model trained with GMIoU is represented by group c. 

   
(a) L1 loss 

   
(b) KFIoU 
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(c) Our (GMIoU) 

Figure 3: Shows a comparison of visualizations using the DOTA 1.0 dataset, with RetinaNet. 

2) Comparison of convergence speed 

In order to verify the stability and convergence speed of GMIoU, this experiment uses GMIoU and 

KFIoU methods to train the network in the same network model and compares the training process of 

both. The experimental environment is the same as above, with 12 epochs trained on the DOTA 1.0 

dataset. The experimental results are shown in Figure 4, from which we can see that GMIoU loss 

decreases smoothly and faster. FKIoU, on the other hand, has anomalies at the 3rd epoch and fails to 

converge until the end of training. It can be inferred that KFIoU requires more strict set of training 

parameters, and the convergence process is not stable. We also find that the KFIoU loss value is slightly 

higher than the GMIoU loss in the first three training epochs, which is because GMIoU can fit the actual 

SkewIoU variation more accurately. From this, it can be inferred that GMIoU has better generalization 

ability, faster convergence and more stable training process. 

 

Figure 4: Comparison of the training processes at KFIoU and GMIoU 

5. Conclusion 

In this article, we propose a combination of angle classification and Gaussian distribution 

transformation method to improve the detection performance of square-like and large aspect ratio objects, 

which is 0.44% better than DCL and 4.5% better than KFIoU in mAP. Moreover, we propose GMIoU, a 

more efficient Gaussian-based loss function for rotating object recognition that has been empirically 

proven to be more accurate in capturing the trend of IoU between rotating bounding boxes and has a 

greater improvement in training speed than KFIoU. The model already has good results at 12 epochs 

when training the DOTA dataset with the addition of GMIoU. Despite the good results of GMIoU, the 

loss function still has many things that could be improved, mainly in the following three aspects .Firstly, 

how to accurately calculate the area of the Gaussian mixture model; second, a more scientific method 

has not been explored in the setting of hyperparameter β; thirdly, how to effectively integrate the centroid 

loss into GMIoU. These urgent problems will become the next major point of research direction. 
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