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Abstract: To alleviate the phenomenon of increased electric grid load and expanded fluctuations caused 
by the surge in electric vehicles (EVs), the author of this thesis proposes a bi-directional optimal 
scheduling strategy based on Vehicle to Grid (V2G) technology. The plan consists of a model and a 
reverse model. The goal of the model is to reduce the fluctuation, in electricity grid load with a unique 
focus on the percentage of decentralized energy, within the entire energy framework.In contrast, the 
reverse model aims to maximize user benefits, intending to enhance user participation and thereby 
promote the sustainable development of the strategy. This study utilizes a population genetic algorithm 
to address the issue and compares it with a multi objective particle swarm optimization algorithm. The 
findings indicate that the suggested approach not successfully mitigates fluctuations, in electric grid load 
and minimizes peak to valley variances but also optimizes the gains, for individuals engaging in V2G 
services. 
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1. Introduction 

The number of electric vehicles (EVs) is rapidly increasing. Due to the temporal and spatial 
uncertainty of their charging load, the simultaneous connection of a large number of electric vehicles to 
the electric grid for charging could cause load shocks to the grid, exacerbating load fluctuations and 
randomness. Therefore, controlling the charging load of electric vehicles efficiently and suppressing the 
peak-to-valley load difference have become one of the important challenges facing the electric grid. 

At present, in response to the sudden changes in electric grid load caused by the large-scale access of 
electric vehicles and real-time scheduling issues, scholars worldwide have conducted extensive research 
on electric vehicle optimization scheduling strategies. In view of the uncertainty of electricity demand 
on the user side, Wu et al. established the reserve optimization and real-time scheduling model of EV 
participation, which effectively improved the robustness and economy of aggregators' participation in 
auxiliary services. Liu et al. established a multi-objective dual-layer charging and discharging real-time 
scheduling model coordinated between the battery swap station and the electric grid, reducing the peak-
to-valley difference through coordinated scheduling. Li et al. adopted a distributed management 
architecture, formulating scheduling strategies by coordinating the benefits of scheduling centers, agents, 
and users. Peng et al. considered the optimization strategy of orderly charging and discharging of electric 
vehicles based on V2G technology. He et al. conducted random simulations of unorganized electric 
vehicle charging using the Monte Carlo algorithm.  

This thesis proposes a bi-directional optimization scheduling model that integrates distributed energy, 
electric grid supply, and user benefits. The forward model aims to set the charging load and discharging 
power for each time period, taking into account the proportion of distributed energy supply within the 
region, with the goal of minimizing the total load variance of the electric grid system. The reverse model, 
under the conditions of active user participation and adjustability, mainly considers maximizing user 
benefits. The author uses a multi-population genetic optimization algorithm for an in-depth analysis of 
the orderly charging model, supplemented by a comparative analysis with the multi-objective particle 
swarm optimization algorithm, to ultimately determine the optimal power distribution[1-2]. 
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2. Electric Vehicle Charging and Discharging Strategy Based on Bi-directional Optimization 
Scheduling Model 

2.1 Bi-directional Optimization Model 

The bi-directional optimization model considers the benefits of regional users on the basis of using 
time-of-use electricity pricing strategies to smooth the peak-to-valley load difference. The thesis 
combines the travel characteristics of residential areas, where the forward regional dispatcher formulates 
specific electricity usage strategies within the region under the overall electricity strategy. The reverse 
model, on the other hand, aims to maximize user benefits. The specific model architecture is shown in 
Figure 1 below. 

 
Figure 1: Architecture of the Bi-directional Optimization Model 

2.2 Forward Objective Function 

The forward objective function is aimed at minimizing the fluctuations of the electric grid. 
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In the equation, 1F  represents the daily load variance; telseP ,  represents the non-electric vehicle 

load at time t; tevP ,  represents the electric vehicle load at time t; tresP , represents the distributed energy 

processing at time t; argP  represents the daily average electricity load, 
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For the forward objective function, the following constraints are considered: 

(1) Charging and discharging power constraints  

max,max itevo PPP <<                                (2)  

In the equation, maxoP  and maxiP respectively represent the maximum values for charging and 
discharging power.  

(2) Distributed energy supply constraints 

Central Dispatcher 
 

Regional Dispatcher 

Regional Users  

Considers regional distributed 
energy supply 应 

Considers the number of electric 
vehicles in the region 

Considers the benefits from 
participating in dispatching 

Consider the engagement level 
in dispatching 
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In the equation, mresP  and MresP  respectively represent the minimum and maximum values for 

distributed energy power. 25.0=mresP , ,3.0=MresP . 

2.3 Reverse Objective Function 

The reverse objective function aims at maximizing user benefits. 
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In the equation, 2F  represents the user's income; tiP , represents the electric vehicle's charging 

power at time t; toP ,  represents the electric vehicle's discharging power at time t; tir ,  represents the 

electricity price for charging at time t; tor ,  represents the electricity price for discharging at time t; s  

is the charging factor; s′  is the discharging factor; 0T  is the start time for electric vehicle charging and 

discharging; 1T  is the end time for electric vehicle charging and discharging[3-4].  

For the reverse objective function, the following constraints are considered: 

(1) Charging and discharging constraints 
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The meaning of this equation is that the electric vehicle cannot be in both charging and discharging 
states at the same time. 

(2) Battery capacity constraints 
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The meaning of this equation is that during the charging and discharging process of the battery, the 
charge level should be maintained between 0 and full charge. 

3. Model Solution Algorithm 

The bi-directional optimization model involves complex multi-objective and multi-constraint 
optimization problems, where different objectives can easily affect each other when reaching the 
optimum locally. A Pareto frontier is generated, and the optimal solution is obtained using a fuzzy 
algorithm. By employing the multi-population genetic algorithm (NSGA-II), we use different parameter 
settings for each population, allowing different populations to evolve in parallel and ultimately selecting 
the elite populations to obtain the model's optimal solution. 

4. Case Analysis 

This thesis takes a city's agent as an example. In coordination with the overall scheduling plan of the 
scheduling center, the agent is responsible for the charging and discharging scheduling within their area. 
The Monte Carlo algorithm is used to randomly simulate the unorganized load of 500 electric vehicles. 
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The response rate of regional electric vehicles to V2G is 80%. A base power of 180 kVA is selected, and 
the scheduling period is set from 0 to 24 hours, with each hour being a time segment unit, totaling 24 
segments. During this period it is expected that the vehicles charging and discharging loads along, with 
essential loads will stay consistent. This assumption is based on the charging frequency of 10 times, per 
car owner.The Pareto frontier scatter plot is shown in Figure 2, with the middle point selected as the 
model's optimal solution, where the load on the electric grid side is 9313.29kW, and the user benefit is 
2981.16 yuan. Figure 3 shows the original load and the unorganized charging load curve, and Figure 4 
shows the electric vehicle charging and discharging power[5]. 

 
Figure 2: Pareto Frontier of the Objective Function 

 
Figure 3: Basic Load and Unorganized Charging Electric Grid Load Curve 
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Figure 4: Average Charging and Discharging Power of Electric Vehicles Before Optimization 
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To simplify the calculation process, it is assumed that the battery is fully charged after each charging 
session, and the related parameters of electric vehicles are set as shown in Table 1 below. 

Table 1: Electric Vehicle Related Parameters 

Parameter Value 
Electric Vehicle Charging Power (kW) 

Electric Vehicle Discharging Power (kW) 
Battery Storage Capacity (kWh) 

Consumption per 100 Km (kWh/100Km) 

11 
6 

60 
15 

Based on the fluctuation of the unorganized charging load shown in Figure 3, the time-of-use 
electricity pricing for the V2G strategy is set for different periods as shown in Table 2 below. 

Table 2: Time-of-Use Electricity Pricing Settings 

Type Time Period Charging Price 
(¥/kWh) 

Discharging Price 
(¥/kWh) 

Peak Hours 10:00-14:00 1.2 0.6 
19:00-22:00 1.2 0.6 

Normal Hours 
08:00-10:00 0.8 0.3 
14:00-19:00 0.8 0.3 
22:00-01:00 0.8 0.3 

Off-Peak Hours 01:00-8:00 0.4 0.15 
The optimization results are shown in Figures 5 and 6.  
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Figure 5: Electric Grid Load Curve Before and After Optimization 

The peak base load occurs between 10:00-14:00 and 19:00-22:00, with a peak-to-valley load 
difference of 420.5 kW. The peak load under unorganized electric vehicle charging further exacerbates 
load fluctuations, with a peak-to-valley difference reaching 703.8 kW. This thesis utilizes a bi-directional 
optimization scheduling strategy, calculated using both multi-population genetic algorithms and multi-
objective particle swarm optimization algorithms, successfully achieving peak shaving and valley filling. 
In the genetic algorithm, the peak load occurs between 9:00-13:00 and 19:00-21:00, with a peak-to-valley 
difference of 317.6 kW, effectively reducing electric grid load fluctuations. 

After optimization, user-side benefits reached 3219.48 yuan, with user average monthly benefits 
increasing by 8% compared to before optimization. This ensures user engagement and indicates that the 
optimization effect of the model will become more pronounced as the proportion of user response to 
scheduling increases. 
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Figure 6: Average Charging and Discharging Power of Electric Vehicles After Optimization 

5. Conclusion  

This thesis proposes a bi-directional optimization scheduling strategy based on Vehicle-to-Grid (V2G) 
interaction technology for the region. The forward model aims to minimize the total load variance of the 
electric grid, considering the proportion of distributed energy in the overall energy structure. Conversely, 
the reverse model aims to maximize user benefits, intending to enhance user participation and thereby 
promote the sustainable development of the strategy. The model was analyzed using a multi-population 
genetic algorithm and compared with a multi-objective particle swarm optimization algorithm. The 
results show that this model not only effectively smooth electric grid load fluctuations and reduce the 
peak-to-valley difference but also maximize the economic benefits of regional users based on their V2G 
response capability. The validity and rationality of the constructed model are proved. 

However, the responsiveness of EVs under the V2G strategy proposed in this paper may vary 
significantly due to differences in economic development levels across regions, leading to discrepancies 
between the calculated user costs in the model and actual costs. Additionally, the experimental scenarios 
only consider the usage under normal environmental and social conditions, without taking into account 
the impact of special climate, environmental, and other factors. Future research will further investigate 
the specific implementation of scheduling strategies under different regional conditions.  
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