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Abstract: With the rapid development of convolutional neural networks, object detection technology has 
been revitalized, finding broader applications in robots, cars, cameras, and more. Many object detection 
algorithms can efficiently annotate anchor boxes for objects within the field of view, determining the 
specific location of the detection target. However, as the performance of detection algorithms improves, 
the issue of energy consumption arises, as high performance requires the sacrifice of high energy. Yet, 
most mobile devices have limited resources and cannot bear such a high load. The goal of this paper is 
to construct a low-energy consumption object detection algorithm, providing insights for the continuous 
efficient operation of mobile devices. YOLOv5s is selected as the base model, and its structure is 
improved. In neural networks, convolution operations are the main part of energy consumption. To 
reduce convolution operations, the backbone network is changed to the ShuffleNetv2 module, and 
DWConv is used to replace the C3 structure in the detection head. To improve model accuracy, a channel 
attention mechanism is introduced, and the loss function is modified. Ultimately, the new model 
significantly reduces the model’s parameter quantity and size, thereby reducing its energy consumption, 
while maintaining essentially unchanged accuracy. 
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1. Introduction  

Object detection is an indispensable task in visual systems, capable of identifying specific targets in 
images or videos, and accurately marking their location and bounding boxes. The development of object 
detection technology benefits from the advancement of deep learning and neural networks. By training 
large-scale datasets and utilizing algorithms such as convolutional neural networks, object detection 
models can learn the features and contextual relationships of different targets in images, thereby 
achieving high accuracy and robust detection results. In outdoor environments, the types of targets may 
be diverse, and the quantity is large. Neural network-based object detection algorithms can quickly and 
accurately identify targets under environmental disturbances such as complex backgrounds and changes 
in illumination, and extract key information such as the target’s location, bounding box, and category to 
assist the motion system in coordinate determination, thereby planning the most effective action path.  

However, with the increasing performance requirements of visual systems, object detection 
algorithms need to process a large amount of input data and carry out complex calculations and inference 
processes. The neural network models involved are becoming more and more complex, leading to 
increasingly prominent energy consumption problems. In mobile devices, energy consumption has 
always been a significant challenge. Mobile devices usually operate under the support of a battery with 
limited power, and reasonable power allocation can make it stand by for a long time. By optimizing the 
structure of the neural network, the calculation and storage requirements can be reduced, thereby 
reducing energy consumption. For example, lightweight network structures can be used, or network 
pruning techniques can be adopted to reduce network parameters and computations. An important issue 
is how to reduce energy consumption while maintaining algorithm accuracy. Usually, there is a certain 
trade-off between accuracy and energy consumption, that is, excessive pursuit of low energy 
consumption may lead to a decrease in accuracy. Therefore, we need to find a balance between accuracy 
and energy consumption to meet the needs of practical applications. This paper constructs a low-energy 
lightweight neural network. Based on YOLOv5s, improvements are made to reduce its convolution 
operations, the backbone network is changed to ShuffleNetv2, and DWConv is used to replace the C3 
structure in the detection head, channel attention mechanism is introduced, the loss function is changed, 
and under the premise of basically unchanged accuracy, the model’s parameter quantity and size are 
greatly reduced, thereby reducing its energy consumption. 
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The rest of this paper is arranged as follows. The second section reviews related research, the third 
section proposes a low-energy object detection model, and the fourth section concludes. 

2. Related Research 

Currently, there are various lightweight object detection methods, among which YOLO is widely 
used. Although YOLO has a relatively fast detection speed, occupies less computational resources during 
inference, and consumes relatively low energy, it still needs to be lightweighted for long-term tasks on 
resource-limited mobile devices. This can be achieved by improving the algorithm architecture to reduce 
its energy consumption. Hu[1] proposed a new object detection model based on lightweight convolutional 
neural networks, Micro-YOLO, which significantly reduces the number of model parameters and 
computational costs while maintaining detection speed and accuracy. The author improved YOLOv3-
tiny by replacing the original convolutional layer with Depthwise Separable Convolution (DSConv) and 
Mobile Inverted Bottleneck Convolution (MBConv), and designed a progressive channel-level pruning 
algorithm to minimize the number of parameters and maximize detection performance. 

Zhang[2] designed a new lightweight object detection system, CSL-YOLO, to address edge computing 
tasks. The author proposed a lightweight convolution module called Cross-Stage Lightweight (CSL), and 
the backbone of the network is composed of multiple convolution modules. The Feature Pyramid 
Network (FPN) was improved by replacing the 3x3 convolution in FPN with the CSL-Module. In the 
intermediate unfolding stage, depth convolution is used instead of pointwise convolution to generate 
candidate features. With only 43% of the FLOPs and 52% of the parameters of TinyYOLOv4, it achieved 
superior detection performance. 

Luo[3] improved YOLOv4 using the original network structure as the basic skeleton, and used the 
lightweight neural network MobileNet as the main network for feature extraction. He proposed an 
Adaptive Spatial Feature Fusion (ASFF) method to solve the poor effect of PANet in multi-scale feature 
fusion. The author also redefined the position loss function to improve the model’s accuracy and 
compensate for the lack of accuracy after the reduction of parameters. Compared with the original 
algorithm and other mainstream detection algorithms, the improved model is more suitable for 
deployment on mobile and embedded devices for real-time detection. Similar to Luo’s method, Chen et 
al. (2021, UAV Lightweight Object Detection Based on the Improved YOLO Algorithm) proposed an 
improvement to the YOLOv5 network structure based on MobileNetv3. It introduced the lightweight 
neural network MobileNetv3 as the backbone network structure of the model. Through experiments, it 
was found that the memory usage of the optimized YOLOv5 network model can be reduced by 72.4% 
compared to the original model. Similar to the method of Luo and others, Chen[4] proposed an 
improvement to the YOLOv5 network structure based on MobileNetv3. It introduced the lightweight 
neural network MobileNetv3 as the backbone network structure of the model. Through experiments, it 
was found that the memory usage of the optimized YOLOv5 network model can be reduced by 72.4% 
compared to the original model. 

Gao[5] also proposed YOLO-TLA based on YOLOv5, which effectively improved its performance in 
small object detection. YOLO-TLA introduces additional small object detection layers to generate larger 
scale feature maps for better recognition of small objects. In addition, it uses the C3CrossCovn module 
to reduce the amount of parameters and computational requirements without losing accuracy, thereby 
reducing the resources consumed by the device when performing tasks. 

Gong[6] made improvements to YOLOv7, using the network structure of YOLOv7 as a foundation. 
To reduce computational resources, ShuffleNetv2 was used to replace the original backbone structure. 
Due to the reduction in the number of parameters, its accuracy would inevitably decrease, so the Vision 
Transformer self-attention mechanism was introduced to achieve efficient feature representation. After 
integrating the three, the efficiency of the resulting model was improved, and the computational resources 
were significantly reduced. 

The Google team[7] proposed a new method for object detection model search on mobile devices, 
called MobileDets. This method combines Neural Architecture Search (NAS) and regular convolution, 
seeking a balance between real-time performance and accuracy. The authors proposed an expanded 
search space: a fully convolutional sequence that includes Instance Batch Normalization (IBN) and 
Tensor Decomposition, referred to as Tensor Decomposition Based Search Space (TBD). On the COCO 
object detection task, the inference time of MobileDets is not much different from that of 
MobileNetV3+SSDLite, but its overall performance is superior to MobileNetV3+SSDLite. 
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Baidu[8] open-sourced a lightweight real-time object detection model, PP-PicoDet, in 2021, which 
outperforms YOLOv5. This model uses ShuffleNetV2 as the backbone network and enhances it by 
proposing a new backbone network, ESNet (Enhanced ShuffleNet). In terms of the detection head, the 
authors use depthwise separable convolution with a kernel size of 5*5 to enhance the receptive field. 
Both its Neck and Head have four scale branches, maintaining consistent channel numbers. Compared 
to YOLOX-Nano, PP-PicoDet only requires 0.99M parameters to achieve a mAP of 30.6%, while 
reducing inference latency by 55%. As a domestic giant, Tencent[9] is not to be outdone, proposing a 
lightweight model method based on self-supervised distillation learning called Distilled Contrastive 
Learning (DisCo). This method abandons the shared queue, making the entire framework independent 
of MoCo-V2, allowing the model to combine with other self-supervised/unsupervised learning methods 
that are more effective than MoCo-V2. During the self-supervised learning and distillation stages, the 
dimension of the MLP hidden layer is increased to further enhance the effect after the lightweight model 
is distilled. 

Alibaba[10] breaks the norm by proposing a new concept for improving models, namely designing a 
backbone with a small computational load and a neck with a large computational load, enabling the 
network to interact with spatial information in high-resolution feature maps and semantic information in 
low-resolution. The authors believe that compared to the backbone structure, the Feature Pyramid 
Network (FPN) contributes more to the model’s detection capabilities. As a result, they propose a new 
type of FPN structure, the Generalized-FPN (GFPN). The core idea is to introduce a global feature 
pyramid and extract richer semantic information through multi-scale feature fusion. This structure draws 
on DenseNet and designs a dense link to increase feature reuse. To maintain the effectiveness of the 
computational load, GFPN uses a log2n-link, allowing for a deeper network structure. To overcome large-
scale changes, GFPN introduces the Queen-Fusion structure to increase feature fusion. 

3. Low-Energy-Consumption Object Detection Algorithms 

3.1 Main Convolution Module Improvement 

As is well known, the number of parameters and FLOPs are key factors affecting the energy 
consumption of a model. Therefore, this paper adopts a model lightweighting method based on YOLOv5 
to reduce the number of model parameters and energy consumption for energy optimization. In this 
experiment, the backbone network in the original structure is replaced with ShuffleNet_v2. The Shuffle 
module does not introduce too many branches, there are only two paths, and it can ensure that the number 
of input and output channels of the feature map are equal. When performing feature fusion, the Concat 
operation is used instead of Add, thereby reducing the consumption of memory access. The 3x3 
depthwise separable convolution block in the ShuffleNet_v2 model greatly reduces the number of 
parameters compared to ordinary convolutions, with less accuracy loss. At the end of the original 
backbone network, there is an SPPF module. This experiment removes this module because it requires 
parallel operations, which affects the detection speed. 

3.2 Introduction of Attention Mechanism 

After modifying the backbone network, the model’s accuracy may decrease due to the reduction in 
the number of parameters. Therefore, it is considered to introduce an attention mechanism to improve its 
accuracy. 

In ordinary convolution operations, each channel is considered equally important, and no particular 
channel is treated specially. However, in reality, when we extract features, we do not need to pay attention 
to all the information in the feature map. Therefore, Monenta proposed SENet, which allows the network 
to autonomously obtain the weights of each channel through learning, to enhance the required channel 
features and reduce the unnecessary channel features. As can be seen from the figure 1, the SE module 
is composed of two parts, namely Squeeze and Excitation. The Squeeze operation compresses features 
in the spatial dimension through global average pooling, making the features on each channel one-
dimensional, enhancing the correlation between channels, and shielding the interference of spatial 
distribution correlation. To some extent, this can obtain a global receptive field. In the Excitation 
operation, there are two 1x1 convolution kernels. The first convolution performs dimension reduction, 
and the second performs dimension increase, keeping the input and output consistent. Then the sigmoid 
function is connected to restrict the weight between 0 and 1. Finally, the obtained weight is combined 
with the original feature quantity to complete the SE operation. 
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Figure 1: Channel Attention Mechanism 

CBAM (Convolutional Block Attention Module) is an attention mechanism that combines spatial and 
channel dimensions, which is shown in the figure 2. Compared to SENet, which only focuses on channel 
information, CBAM can obtain more image features. Channel attention mechanism usually focuses on 
what information is important. In order to calculate the channel attention mechanism, average pooling is 
commonly used to compress the spatial dimension of the input feature map. However, some people 
believe that max pooling can also obtain important information from the feature map. Spatial attention 
mechanism focuses on where the information is important, which is an improvement on channel attention. 
In order to calculate the spatial attention mechanism, it is necessary to perform average pooling and max 
pooling operations along the channel, and then connect them to generate more persuasive feature 
information. 

 
Figure 2: Spatial Attention Mechanism 

3.3 Improved Network Structure  

 
Figure 3: Improved Network Structure 

This paper improves the model based on YOLOv5s. In order to reduce the parameter size and FLOPs 
of the backbone network, the backbone network is changed to a more lightweight ShuffleNet_v2. This 
module can maintain an effective receptive field with fewer parameters. Of course, as the number of 
parameters decreases, the features that the backbone network can learn are reduced. To compensate for 
the loss in accuracy, this experiment introduces the CBAM spatial attention mechanism at the end of the 
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main network, thereby improving the accuracy of the improved model. To reduce parallel operations, the 
SPPF module at the end of the original model is removed. The C3 module in the connection layer also 
contains a large number of parameters, so it is replaced with the depth-separable convolution DW module, 
further reducing the model parameter size. The structure of the improved network is shown in the figure 
3. 

3.4 Loss Function 

Intersection over Union (IoU) is a commonly used metric in object detection tasks, also known as the 
Jaccard index. It can reflect the degree of overlap between the true detection box and the predicted 
detection box. 

𝐼𝐼𝐼𝐼𝐼𝐼 = |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴∪𝐵𝐵|

                                     (1) 

In YOLOv5, the authors use CIoU. The formula is as follows. The authors suggest that an excellent 
regression localization loss should consider the following factors: overlap area, center point distance, and 
aspect ratio. The calculation formula for v is based on the aspect ratio of the prediction box and the target 
box, and then takes their arctangent (arctan), which can make the change of the aspect ratio smoother. 
After taking the arctangent, calculate the square of the difference between these two angles to get a non-
negative value. Finally, multiply by a scaling factor of 4/π^2, so that the maximum value of v is 1. 

α is a balance factor used to adjust the balance between the distance term and the aspect ratio error 
term v. The formula is designed so that when IoU is close to 1, that is, when the prediction box and the 
target box highly overlap, α is close to v. Therefore, when the overlap of the prediction box and the target 
box is high, more emphasis is placed on the aspect ratio error. When the overlap of the prediction box 
and the target box is relatively low, and α is close to 1, more emphasis is placed on the distance term. 

𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼 = 𝜌𝜌2�𝑏𝑏,𝑏𝑏𝑔𝑔𝑔𝑔�
𝐶𝐶2

+ 𝛼𝛼𝛼𝛼                              (2) 

𝛼𝛼 = 4
𝜋𝜋2

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑔𝑔𝑔𝑔

ℎ𝑔𝑔𝑔𝑔
− 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤

ℎ
)2                           (3) 

𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1 − 𝐼𝐼𝐼𝐼𝐼𝐼 + 𝜌𝜌2�𝑏𝑏,𝑏𝑏𝑔𝑔𝑔𝑔�
𝐶𝐶2

+ 𝛼𝛼𝛼𝛼                       (4) 

𝛼𝛼 = 𝑣𝑣
(1−𝐼𝐼𝐿𝐿𝐼𝐼)+𝑣𝑣

                                 (5) 

Although CIoU has improved compared to the traditional IoU, it still cannot effectively locate in 
some complex scenarios. CIoU mainly focuses on the center point distance and aspect ratio between the 
prediction box and the real box, but it cannot provide good feedback for the angle information of the 
rotating target. Moreover, its gradient may be discontinuous or change drastically in some cases, which 
may affect the convergence of the model. In contrast, WIoU introduces rotation-related geometric 
features, which can better handle rotating targets. At the same time, its gradient is smoother, and the 
positioning accuracy has also improved to a certain extent. 

WIoU has three versions: v1, v2, and v3. This article will use v3 for analysis. 

WIoUv3 introduces a concept called ‘outlier degree’ to describe the quality of the prediction box. The 
outlier degree reflects the degree of difference between the prediction box and the real box. Specifically, 
the first step is to find the prediction box that has the maximum IoU with the real box, which we call the 
‘optimal prediction box’. Then, the Euclidean distance between the geometric center of the optimal 
prediction box and the real box is calculated as part of the outlier degree, and the logarithm of the area 
ratio between the optimal prediction box and the real box is calculated as another part of the outlier 
degree. Finally, the two parts are added together with certain weights to get the final value of the outlier 
degree. The smaller the outlier degree value, the closer the geometric center position and size of the 
prediction box are to the real box, indicating higher quality of the prediction box. Conversely, the larger 
the outlier degree value, the greater the difference between the prediction box and the real box, indicating 
lower quality. 

𝛽𝛽 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼
∗

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼
∈ [0, +∞]                             (6) 

𝐿𝐿𝐼𝐼𝐿𝐿𝐿𝐿𝑊𝑊𝐼𝐼𝐿𝐿𝐼𝐼𝑣𝑣3 = 𝛾𝛾 𝐿𝐿𝐼𝐼𝐿𝐿𝐿𝐿𝑊𝑊𝐼𝐼𝐿𝐿𝐼𝐼𝑣𝑣1                            (7) 

𝛾𝛾 = 𝛽𝛽
𝛿𝛿𝛼𝛼𝛽𝛽−𝛿𝛿

                                    (8) 



International Journal of Frontiers in Engineering Technology 
ISSN 2706-655X Vol.6, Issue 2: 64-72, DOI: 10.25236/IJFET.2024.060209 

Published by Francis Academic Press, UK 
-69- 

3.5 Experimental Results and Analysis  

3.5.1 Data Preparation  

This study focuses on objects in outdoor environments. Nearly 10,000 images were collected from 
various sources, including objects such as people, cars, buses, bicycles, airplanes, motorcycles, etc. The 
size of the images is 640×640. 

To validate the detection performance of the improved target detection model, ablation experiments 
were conducted on a self-built dataset, keeping other factors constant. The backbone network was 
changed to ShuffleNet_v2, the SPPF module was removed, different attention modules such as channel 
attention SE and spatial attention CBAM were added, and the DW module was added based on the change 
of the backbone network to ShuffleNet_v2. The results of the ablation experiments are shown in the table 
1. 

Table 1: Ablation Experiment 

Network 
Structure 

SPPF Attention 
Module 

Number of 
Parameters 

GFLOPs Inference 
Time 
(ms) 

mAP0.5 Map0.5:0.95 

YOLOv5s √ × 7035811 16.0 23.8 65.73% 42.32% 
Shuffle × × 3344392 2.9 21.5 61.00% 32.25% 
Shuffle × SE 3381416 2.9 22.0 62.10% 37.70% 
Shuffle × CBAM 3381514 3.0 22.5 64.50% 39.60% 
Shuffle_DW × CBAM 1126730 2.0 19.3 61.85% 32.28% 

From the experiment, it is observed that when the backbone network is replaced from the original C3 
module to the ShuffleNet_v2 module, as introduced earlier, both the parameter size and GFLOPs 
significantly decrease. The parameter size is about 47.5% of the original, and GFLOPs is about 18% of 
the original. This undoubtedly reduces the computational overhead of the device and theoretically would 
reduce the energy consumption during training. However, with the significant reduction in parameter 
size, the features extracted from the input image by the convolutional neural network will also decrease. 
Although this was considered during the module design, the problem of accuracy decline is still inevitable. 
To address the issue of accuracy decline, this experiment introduces attention mechanisms in subsequent 
experiments with ShuffleNet as the backbone network, hoping to improve the accuracy problem. When 
the channel attention mechanism SE module and the spatial attention mechanism CBAM are introduced 
into the neural network structure, it can be clearly observed that, compared to the original YOLOv5s 
algorithm, the accuracy is still insufficient. But compared to the neural network after the improved 
backbone without the attention mechanism, its accuracy has improved. Moreover, although new modules 
have been introduced, the model’s parameter size and GFLOPs have not changed significantly, so the 
energy consumption should not change much. In addition to the backbone network, there are many C3 
modules in the subsequent connection layer, so on the basis of replacing the C3 module in the backbone 
network, the connection part uses the depth separable convolution DW module for replacement. As can 
be seen from the table above, the model becomes smaller again on the basis of the previous replacement, 
the parameter size is about 16% of the original, and GFLOPs is about 12.5% of the original. Although 
there is a decline in accuracy, it will be improved through subsequent adjustments. In summary, when 
the original model YOLOv5 is improved, the model parameter size and GFLOPs are significantly 
reduced, and the accuracy has declined. 

Next, we validate the improvement of the loss function. Based on the aforementioned Shuffle_DW 
experiment, the loss function CIoU of the original model is replaced with the new WIoU. The 
experimental results are shown in the Table 2. 

Table 2: Improved Loss Function 

Network Structure Loss Function Weight File Size(M) mAP0.5 mAP0.5:0.95 
YOLOv5s CIoU 14.4 65.73% 42.32% 

Shuffle_DW CIoU 2.4 61.85% 32.28% 
Shuffle_DW WIoU 2.4 63.50% 39.50% 

It is evident from the table that the accuracy of the improved model has increased based on the original, 
but the model size has not increased, indicating that the introduction of the loss function WIoU is 
successful. Although there is a slight gap in accuracy between the final model and the original model, 
the parameter volume and model size are significantly reduced. We cannot excel in all directions, as the 
saying goes, you can’t have your cake and eat it too, a moderate gap is acceptable. The accuracy 
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comparison of all models is shown in the following figure. From the trend of model accuracy, we can 
find that blindly pursuing model lightweight will inevitably pay a certain accuracy price. The mAP0.5 of 
this experiment is about 3% lower than the original model, and mAP0.5:0.95 is about 2% lower. If the 
performance of the model is improved in the future, then this loss is worth it. 

Of course, simply comparing the parameter volume and model size cannot explain the specific 
changes in energy consumption. We ultimately need to return to energy consumption analysis. Therefore, 
this experiment starts from reality, with the help of hardware detection software HWiNFO, to measure 
the time, power, and energy consumption of the model during training and inference, in order to verify 
whether the improved model meets our energy consumption requirements. 

Firstly, we compare the original YOLOv5s model with various variant models in terms of training 
time, power, and energy consumption during training. We observe the differences between different 
models during training. Based on the original YOLOv5s, we perform normalization. The results are 
shown in the figure 4. 

 
Figure 4: Comparison of Training Time, Power, and Energy Consumption for Different Models 

After normalization, the differences between different models can be clearly observed. When the 
backbone network of the model is improved, the training time, power, and energy consumption of all 
models are significantly reduced. In the last two models, the loss function IoU was modified. After the 
modification, the power and energy consumption slightly increased compared to before the modification. 
However, we are pursuing a balance between accuracy and energy consumption, so this slight change is 
acceptable. Therefore, after improving the original model, the energy consumption of the current model 
is 34% of the original, which meets the expectations of the improvement. 

Regarding energy consumption, it mainly occurs when the model performs visual tasks, so we also 
need to validate our model during the inference stage. Similar to the above process, we compare the time, 
power, and energy consumption required by different models to perform the same inference task. For 
ease of processing, we also normalize the results. The experimental results are shown in Figure 5. 
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Figure 5: Comparison of inference time, power, and energy consumption across different models 

From our experiments, it is evident that after improving the model, due to the reduction in the number 
of parameters, FLOPs, and overall model size, the inference time also decreases. When different models 
perform inference, due to the inclusion of various modules, there will be differences in resource 
utilization, hence the power consumption also varies. In terms of total energy consumption, after 
comparison, the energy consumption of the improved model when performing the same task is about 60% 
of the original model. This demonstrates that our model has achieved optimization in terms of energy 
consumption. While completing the same tasks and sacrificing a small amount of accuracy, the energy 
consumption of the model can be greatly reduced, achieving long-term endurance. The validation results 
of our experimental model are shown below. Compared with the original model at the beginning, there 
are differences in the detection results of a few targets, but overall, it meets our expectations.The training 
process data and results verification are shown in Figure 6 and 7. 

 
Figure 6: Training Process Data 
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Figure 7: Results Verification 

4. Conclusion 

This experiment is based on YOLOv5, with modifications made to the model. The backbone network 
was replaced, an attention mechanism module was added, and the loss function was adjusted to construct 
our own object detection model. Finally, an ablation study was conducted to compare the parameters of 
different models and observe the effects of the improved model. The experiment shows that this model 
reduces the energy consumption to 60% of the original without losing a significant amount of accuracy. 
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