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Abstract: With the rapid advancement of artificial intelligence (AI), generative AI technologies are 

increasingly applied in education. This study focuses on middle school mathematics, proposing a 

systematic methodology integrating cognitive quantitative analysis and multi-phase quality assurance. 

Leveraging the DeepSeek-7B model, we construct a dynamic cognitive load quantification framework to 

achieve dynamic alignment between question difficulty and student cognitive profiles. An evaluation 

system spanning three dimensions—question quality, cognitive adaptability, and instructional 

practicality—is established to systematically analyze the efficacy of generative AI in automatic exercise 

generation. The methodology effectively validates output quality and offers novel insights for educational 

technology by optimizing cognitive load alignment. Future research could explore multimodal input 

optimization and real-time compensatory mechanisms to further enhance generative performance. 
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1. Introduction 

Artificial intelligence (AI), as a pivotal driver and strategic technology in the new wave of scientific 

and industrial transformation, is accelerating its deep integration with education, driving the transition 

toward a digitized and intelligent educational paradigm[1]. In the educational domain, particularly in 

automatic exercise generation, generative AI demonstrates immense potential. From a learning theory 

perspective, generative AI's optimization of learning processes aligns with the information-processing 

logic of Gagné's Nine Events of Instruction. According to this theory, AI-generated content can 

effectively support students' cognitive construction through a three-phase approach: presenting stimuli, 

providing guidance, and facilitating transfer[2]. Concurrently, information processing theory indicates that 

personalized AI-generated exercises reduce extraneous cognitive load, enabling students to allocate 

working memory resources to core knowledge acquisition[3]. These theories provide a foundational 

rationale for the educational application of generative AI. Traditional exercise generation methods rely 

on manual teacher compilation, often resulting in outdated content, inconsistent difficulty levels, and 

insufficient personalization[4]. In contrast, generative AI can dynamically generate novel exercises based 

on input knowledge points and difficulty parameters, offering an efficient and flexible solution for 

educational practice. Comparison between traditional writing and AI-generated content (Table 1) 

Table 1: Brief Comparison Between Traditional and AI-Based Exercise Generation Methods 

Limitations of Traditional Methods Content 

Stagnation 

Advantages of AI-Based Solutions      

Manual Authoring Time by Teachers: >2 hours per 

set 

Real-time Generation: <5 minutes   

Exercise Repetition Rate: ~40% Repetition Rate After LoRA Fine-tuning: 

≤15% 

Static Difficulty Adaptation Dynamic Cognitive Load Regulation 

This study innovatively employs the DeepSeek-7B model (DeepSeek-R1) as the generative engine, 

integrating a cognitive load assessment framework to construct an automatic generation framework that 

balances technical feasibility and educational appropriateness. Concurrently, we propose a 
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comprehensive evaluation methodology to analyze whether the system-generated exercises meet the 

acceptance level required by frontline educators. 

2. Literature Review 

2.1 Evolution of Generative AI Technologies 

Generative AI can quickly learn from vast amounts of data to acquire human societal knowledge. 

With its powerful reasoning capabilities, it extracts knowledge and intent from human instructions, 

ultimately generating content and knowledge[5]. Unlike traditional AI, which focuses on recognizing and 

predicting data patterns, generative AI centers on learning data distributions to create new content. By 

leveraging deep neural architectures to comprehend latent features of input data, it synthesizes new 

images, text, audio, or video with emergent properties[6]. Pioneering generative AI models include the 

GPT series, which have achieved breakthroughs in natural language processing and multimodal 

generation. Among these, DeepSeek-7B, released in 2024 as an efficient open-source model, delivers 

128K long-context support with merely 7 billion parameters, exhibiting superior mathematical reasoning 

and code generation capabilities relative to models of comparable scale. Its optimized inference 

efficiency makes it a critical solution for resource-constrained deployment scenarios, driving the trend 

toward specialized and cost-effective generative AI—making it particularly suitable for automatic 

exercise generation in mathematics. 

2.2 Applications of Generative AI in Education 

When confronted with waves of technological revolution, humanity consistently responds by 

leveraging technology to optimize education and, in turn, using education to advance societal progress[7]. 

The personalized content generation capability of generative AI enables effective cognitive load 

management. According to Cognitive Load Theory, AI dynamically adjusts question difficulty and 

presentation formats to reduce extraneous cognitive load, thereby facilitating schema construction[8]. This 

is particularly critical in mathematical problem-solving, where optimal allocation of cognitive resources 

directly impacts students' problem-solving efficiency. As a specialized application of generative AI in 

mathematics education, mathematical generative AI systems leverage advanced algorithms and extensive 

educational resource repositories to deliver highly personalized and efficient learning experiences[9]. In 

recent years, the educational applications of generative AI have expanded significantly: on one hand, it 

assists teachers in rapidly developing tailored instructional materials and exercises; on the other, it 

provides students with adaptive learning resources and real-time feedback. However, due to inherent 

limitations of AI models, several studies have identified potential logical errors or biases in generated 

content[10]. When processing mathematical problems containing distracting conditions, model accuracy 

may significantly decline. This suggests that generative AI struggles to identify and filter non-essential 

information—a critical challenge in geometry problems, which frequently incorporate redundant 

graphical elements or implicit theorem application conditions. Models tend to fall into local feature 

matching traps, lacking the capacity for holistic reasoning. The specific error patterns are shown in Table 

2. 

Table 2: Preliminary Classification of Geometric Exercise Error Patterns 

Error Pattern Classification  Cause Analysis 

Insufficient Conditions  e.g., omitting the core condition "diagonals bisect each other" 

Logical Deduction Inconsistency e.g., circular proof or concept equivocation 

Misuse of Auxiliary Lines  e.g., adding ineffective auxiliary lines leading to increased 

complexity 

Contextual Symbol Ambiguity e.g., misuse of "⊥" across proof contexts 

2.3 Ethical Considerations in Education 

The deployment of generative AI in middle school mathematics exercise generation introduces both 

innovation and challenges. Algorithmic limitations may result in logical inconsistencies or knowledge 

misalignment, potentially undermining learning efficacy. Regional biases embedded in training data 

could compromise objectivity and universality, affecting educational equity. When processing extensive 

student behavioral data, privacy preservation requires rigorous safeguards. Overreliance on AI-generated 

exercises risks fostering cognitive passivity, impeding independent thinking development[11]. 
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Furthermore, excessive educator dependence on AI tools may erode their pedagogical agency. 

Consequently, a balanced approach must weigh technological benefits against potential risks to ensure 

ethically sound implementation.  

3. Research Methodology and Framework Design 

3.1 Data Collection and Preprocessing 

(1) We collected junior high school mathematics textbooks from a specific province, examination 

questions from five middle schools, and user exercise records from online platforms, with particular 

emphasis on regional data balance. The collected data serves as the foundation for subsequent hybrid 

generation strategies in automatic exercise generation. 

(2) After data collection, data cleaning becomes crucial. This process exhibits multi-layered and 

systematic characteristics, encompassing standardized integration and quality enhancement of multi-

source heterogeneous data[12]. 

First, a composite parsing framework is constructed by integrating Optical Character Recognition, 

mathematical symbol parsing, and image processing technologies. This framework performs structured 

transformation of raw data from textbooks, examination papers, and user logs, with parameterized 

processing of mathematical formulas and geometric figures to ensure machine-readability of pedagogical 

elements. Second, semantic analysis combined with dynamic threshold algorithms is employed for 

exercise deduplication and validation, eliminating redundant, invalid, or out-of-scope content[13].Through 

systematic data cleansing, we enhance data quality to establish a reliable foundation for subsequent 

DeepSeek-7B-based automatic exercise generation in middle school mathematics. 

3.2 Quality Control Strategies for Exercise Generation 

3.2.1 Quantification of Cognitive Load 

Based on Sweller's three-dimensional cognitive load theory framework, this study introduces a 

dynamic weight allocation mechanism. The theory categorizes cognitive load into three types[14]: 

Intrinsic Cognitive Load : Determined by the inherent complexity of learning materials and learners' 

prior knowledge levels. Specific indicators include the number of variables involved in problems and 

problem types. For example, geometric proof problems require integrating graphical elements and 

theorem applications, exhibiting significantly higher inherent complexity than algebraic problems. 

Extraneous Cognitive Load : Unnecessary load caused by information presentation methods. This 

study focuses on the interference effects of redundant problem statement expressions on middle school 

students. 

Germane Cognitive Load : Effective load promoting schema construction, including solution step 

guidance and prior knowledge activation intensity. 

This study divides the cognitive load model into two components: base loads and modulating factors, 

with weight sums of 1 and additional adjustment terms respectively. The dynamic weight allocation 

mechanism quantifies the Cognitive Load Index (CLI) through the following formula: 

Cognitive Load Index (CLI) = (50% × Step Count + 30% × Variable Quantity + 20% × Problem 

Description Length) × (1 – 0.15 × Prior Knowledge Level + 0.1 × Exercise Typology) 

Variable Definition and Standardization: 

Step Count (S, weighted 50%): Number of procedural steps required for problem-solving. Step 

decomposition facilitates incremental schema construction by reducing per-step cognitive load. Range: 

1–10 steps; standardized as S′ = S/10. 

Variable Quantity (V, weight 30%): Number of unknowns involved in the problem. Interactions 

between variables significantly increase working memory load, particularly for students with low prior 

knowledge. Value range: 1–5 variables. Standardized as V′ = V/5 (validated through cognitive load 

experiments with middle school learners). 

Problem Description Length (L, weight 20%): Character count of the problem statement after 

tokenization. Redundant information induces attentional dispersion. Length graded on a 1–5 scale, 
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standardized as L′ = L/5. 

Prior Knowledge Level (K, weight %): Learner proficiency quantified via Item Response Theory 

(IRT) modeling, ranging 0–1 (0=no foundation, 1=proficient). Higher K-values enable procedural 

automation to reduce intrinsic load. 

Exercise Typology (T, weight %): Binary classification variable (Algebraic problems: T=0; 

Geometric problems: T=1). 

Formula Representation: CLI = (0.5S′ + 0.3V′ + 0.2L′) × (1 − 0.15K + 0.1T) 

When K=0 and T=0 (novice learners solving algebraic problems):CLI directly reflects the intrinsic 

cognitive load of the exercise. 

When K=1 and T=1 (proficient learners solving geometric problems):Load reduction: 15% (due to 

high prior knowledge) 

Load increase: 10% (due to geometric complexity)Net effect: 5% reduction in overall cognitive load 

(CLI × 0.95) 

3.2.2 Geometric Rule Validation Mechanism 

In geometry exercise generation, this study constructs a multi-phase verification mechanism 

addressing error pattern classification:1. Conditional Completeness Verification: Built on the axiomatic 

system of Euclidean geometry, a rule repository for core middle school theorems is established. Explicit 

and implicit conditions are parsed semantically and matched against theorem prerequisites.2. Logical 

Coherence Validation: Adirected graph model constructs condition-conclusion dependencies. Depth-first 

search verifies path connectivity from initial conditions to target conclusions.3. Auxiliary Line Efficacy 

Assessment: Based on the logical consistency principle, added lines altering graphical logic structures or 

introducing irrelevant geometric relations are invalidated[15].4. Dynamic Correction Mechanism: For 

missing explicit conditions, matched theorems are retrieved to inject necessary premises. Implicit logical 

discontinuities trigger question restructuring. 

3.3 AI Model Generation Workflow Framework Design 

A hybrid generation strategy leveraging DeepSeek, LoRA fine-tuning, and SymPy automates exercise 

generation through four sequential steps, figure 1 shows the prompt template for DeepSeek. 

 

Figure 1: DeepSeek Prompt Engineering Template. 

(1) LoRA Fine-tuning and Rule Constraints for Reducing Repetition Rates: We implement 

lightweight fine-tuning on the DeepSeek-7B model using LoRA (Low-Rank Adaptation) technology. By 

freezing the model's core parameters and training low-rank matrices for parameter adaptation, we avoid 

the high computational costs associated with full-model fine-tuning[16]. Simultaneously, we integrate 

rule-based constraints to further optimize output quality and diversity. 

(2) Constrained Decoding: Employ regular expression-based output formatting to enforce structural 

constraints, such as mandating the inclusion of \ boxed{} answer markers. This prevents regenerative 

loops caused by format-related validation failures. 

(3) Post-processing: Integrates the SymPy symbolic computaton library for mathematical validation 

of generated answers. Incorrect exercises are automatically routed to a regeneration queue. 
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4. Experimental Results and Analysis Design 

4.1 Generation Efficacy Analysis and Evaluation Framework 

This study constructs a three-dimensional evaluation framework encompassing exercise quality, 

cognitive alignment, and instructional practicality through data analysis techniques including natural 

language processing, knowledge graph technology, and manual validation. By integrating quantitative 

metrics with auxiliary verification, it systematically analyzes the efficacy of generative AI in automatic 

mathematics exercise generation for middle schools. Evaluation results preliminarily indicate the 

DeepSeek-7B model’s performance on key metrics, yet technical bottlenecks persist due to mathematical 

domain characteristics and model capability constraints. 

(1) Multi-Dimensional Analysis of Generation Quality 

Quality assessment of AI-generated exercises was conducted through questionnaires or interviews 

with multiple frontline teachers and mathematics majors. Based on their acceptance levels, the strengths 

and weaknesses were summarized, and the advantages of automatically generated exercises were 

analyzed in comparison with traditional question banks. The superiority of automatically generated 

exercises stems from the model's dynamic context window technology, which enables innovative 

question types through multimodal combinations of knowledge points[17].A knowledge graph constructed 

according to regional curricula and natural language processing techniques were employed to analyze 

the knowledge point coverage and textual grammar of DeepSeek-generated exercises[18]. The analysis 

confirmed that the questions essentially covered target knowledge points and their associated theorems, 

with correct grammar and clear semantics in applied problems. 

Questionnaires were designed to collect error rate statistics for geometric proof problems and 

algebraic problems. Geometric problems typically involve global reasoning dependencies, which may 

result in higher error rates. 

(2) Dynamic Adaptation of Cognitive Load 

Quantitative evaluation based on Sweller's cognitive load theory demonstrates that AI-generated 

exercises exhibit superior alignment with middle school students' cognitive levels compared to manually 

authored exercises. Specifically: Through manual evaluation by multiple mathematics majors and 

frontline teachers, it was assessed whether DeepSeek-generated exercises effectively reduced extraneous 

cognitive load during problem-solving. However, the model's capability for dynamic adjustment of 

cognitive load may be limited. When exercises involve cross-module knowledge points, although logical 

accuracy is maintained, the absence of automatic difficulty-tier prompts could impose additional burden 

on struggling students. 

(3) Feasibility Verification of Teaching Implementation 

Through regional curriculum adaptability testing, this study compares the alignment of exercises 

generated by hybrid generation strategies, pure model generation, and manual curation with the junior 

high school entrance examination syllabus, analyzing the feasibility of AI-generated exercises for 

classroom implementation. Based on a manual review mechanism with a 1-in-20 sampling density, 

DeepSeek-generated exercises were audited to calculate error rates and determine whether they meet 

high-standard question quality criteria. While generative AI demonstrates significant cost advantages for 

daily student practice, special attention must be paid to comparing generation efficacy between geometry 

and algebra problems, as geometric exercises exhibit multiple error patterns and typically require domain 

expert validation[19]. 

4.2 Cognitive Load Optimization Verification Pathway 

By adjusting scenario complexity in prompts, the proportion of high cognitive load exercises 

decreased. This outcome aligns with theoretical expectations from Cognitive Load Theory (CLT): Table 

3 and Table 4 show the cases of algebraic problems and geometric problems respectively. 

Table 3: Examples of Algebra Problems 

Exercise 

Characteristics 
re-optimization (𝐾=0) Post-optimization (𝐾=1) 

Problem 

Description 

A construction team plans to 

complete a project in 30 
Task Breakdown: ① Calculate original 

work efficiency ② Determine workload 
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days. After working for 5 

days, their efficiency 

increases by 20%. Calculate 

the actual completion time. 

for the first 5 days ③ Establish equation 

after efficiency improvement 

Number of Steps 5 3 

Variable Count 3 (Total Workload, Original 

Efficiency, Actual 

Completion Days) 

1 (Total Workload) 

Question Stem 

Length 

Level 4  Level 1 

CLI Calculation (0.25+9/50+4/25)×(1−0+0)=

0.49 

(3/20+3/50+1/25)×(1−0.15+0)=0.25×0.85

=17/80 

Table 4: Examples of Geometric Prove Problems (𝑇=1) 

Exercise 

Characteristics 
re-optimization (𝐾=0) Post-optimization (𝐾=1) 

Problem 

Description 

In quadrilateral ABCD, AB = CD 

and ∠A = ∠C, prove that AD = 

BC. 

AB = CD and ∠A = ∠C (label 

corresponding elements).Tasks:① Recall 

the SSS/SAS congruence criteria② 

Construct auxiliary line AE ⊥ BC③ 

Prove using triangle congruence 

Number of Steps 6 4 

Variable Count 5 (Points, Angles, Sides) 2 (Auxiliary Line, Key Side) 

Question Stem 

Length 

Level 3 Level 1 

CLI Calculation (0.3+0.3+3/25)×(1−0+0.1)=0.72×

1.1=0.792 

(0.2+0.12+0.04)×(1−0.15+0.1)=2.8×1.05

=0.378 

4.3 Exercise Innovation Expansion and Ethical Risk Considerations 

Generative AI has significantly improved exercise generation efficiency in junior high school 

mathematics, providing strong support for student learning. However, manual inspections reveal that AI 

typically relies on existing templates or rules, struggling to design completely novel problem-solving 

approaches or question types. AI creativity is constrained by the diversity and quality of training 

data[20]—if certain question types or knowledge points are absent from the dataset, AI-generated content 

will also be limited. While enjoying its convenience and efficiency, we must also address ethical 

considerations in educational applications. Educational ethics constitute both a focal point and challenge 

when generating exercises automatically, with key priorities including ensuring fairness, accuracy, 

privacy protection, and teacher-technology collaboration. Measures should be taken to avoid content 

misinformation and cultural biases, safeguard student data privacy, and prevent excessive teacher reliance, 

thereby preserving educational integrity and protecting all stakeholders' rights. 

5. Summary and Outlook 

This study focuses on the application of generative AI in automatic exercise generation for middle 

school mathematics. By designing a Cognitive Load Index (CLI) standard to regulate exercise difficulty, 

an automatic generation framework based on the DeepSeek model was constructed, achieving notable 

results. In terms of generation quality, a multidimensional analysis evaluated exercise novelty and logical 

accuracy, with LoRA fine-tuning and rule constraints effectively reducing content repetition. The AI-

generated exercises demonstrated good alignment with students' cognitive levels. While the performance 

of automatically generated geometric proofs fell short of expectations, the overall approach provided 

effective support for cognitive load reduction. Finally, through feasibility verification in teaching 

implementation, the study analyzed frontline teachers' acceptance rates and generation efficiency, noting 

its low cost and preliminary validation as a new pathway for instructional resource development. 

Future research may advance in the following directions. On one hand, continuous optimization of 
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generative models should focus on weak areas such as geometric problems, exploring multimodal input 

approaches to enhance generation quality. On the other hand, the dynamic cognitive load optimization 

mechanism should be refined through more granular evaluation systems, enabling precise adjustment of 

exercise difficulty and provision of scaffolding based on students' cognitive states. Regional adaptation 

strategies must be developed to meet diverse curriculum requirements across regions. Additionally, 

ethical considerations require attention, including the design of knowledge attribution mechanisms to 

clarify intellectual property rights for AI-generated content, and the establishment of quality traceability 

systems to ensure educational safety. 

This study provides valuable insights into the application of generative AI in education. Subsequent 

research should strengthen interdisciplinary collaboration to further unlock its educational potential, 

promoting deep integration of educational technology with teaching practices to contribute more 

significantly to the development of the education sector. 
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