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Abstract: This study, based on NIPT data from 1082 male fetuses, systematically analyzed the
relationship between fetal Y chromosome concentration and factors such as gestational age and maternal
BMI, and constructed a model to predict the optimal testing time. Results showed that Y chromosome
concentration was positively correlated with gestational age (r=0.456, p<0.001) and negatively
correlated with BMI (r=-0.234, p=0.002), suggesting that concentration increases with gestational age,
while a higher BMI delays the achievement of effective concentrations. To address multicollinearity and
outliers, a robust Bayesian ridge regression model was employed, and further comparisons were made
with multiple linear regression, nonlinear models, and random forest methods. The random forest model
demonstrated the best prediction performance (R*=0.9924, MAE=0.115 weeks), enabling individualized
NIPT timing prediction with subweekly accuracy. This proposed model provides a scientific basis for
optimizing NIPT testing time, reducing duplicate sampling, and improving test accuracy in clinical
practice.
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1. Introduction

Non-invasive prenatal testing (NIPT) based on cell-free fetal DNA (¢cffDNA) in maternal plasma has
become a widely adopted screening tool for common chromosomal aneuploidies due to its higher
sensitivity, specificity, and safety compared to invasive methods!'?. A key determinant of NIPT
accuracy is the fetal fraction (FF), defined as the proportion of cffdna in the total cell-free DNA poolll.
Low FF is one of the main causes of test failure, inconclusive results, and decreased test performance!*],

Multiple biological and maternal factors can influence FF. Gestational age is positively correlated
with FF, and late pregnancy generally increases FF levels”). Conversely, maternal obesity and
increased body mass index (BMI) are consistently associated with decreased FF, most likely due to an
increased maternal cfDNA background®, Other maternal characteristics, such as age, weight, and race,
may also influence FF!!'l. In addition, fetal and placental factors, including fetal sex and placental
function, can also contribute to the variability of fetal blood FF (FF)!!1I!2], Low FF is clinically significant
not only because of its technical implications but also because it is associated with a higher risk of
aneuploidy and adverse pregnancy outcomes!'3l. Therefore, accurate assessment and prediction of FF is
crucial for optimizing clinical management. When low FF is expected, strategies such as delayed blood
sampling, use of enrichment methods, or recommendation of alternative diagnostic methods can be
considered™. Recent advances in computational and statistical modeling, including linkage
disequilibrium-based estimators and machine learning methods, have improved the ability to predict FF
based on maternal and laboratory datal'>]. These models have the potential to optimize NIPT workflows,
reduce unnecessary repeated sampling, and improve test reliability in diverse populations.

2. Materials and Methods
2.1 Data Collection

To improve the reliability of test results, clinical practice often involves performing multiple blood
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draws and multiple tests on some pregnant women, or performing multiple tests on a single blood draw.
While this repeated testing strategy improves test accuracy, it also introduces complexity in data
processing, necessitating the development of a scientific data integration approach.

With multiple blood draws and multiple tests, Y chromosome concentrations may vary significantly
at different test time points, reflecting dynamic changes in concentration during fetal development. For
this type of data, we employ time series analysis, using linear or spline interpolation to estimate
concentration values at specific time points while leveraging information from multiple measurements
to improve estimation accuracy. When there is unusual fluctuation in multiple test results, robust
statistical methods (such as the median or truncated mean) are employed to mitigate the impact of outliers.

With multiple tests from a single blood draw, repeated measurements primarily reflect technical
reproducibility and measurement error. For multiple test results from the same blood sample, a weighted
average is used to integrate the results, with weights determined based on the technical quality indicators
of each test. Results with higher quality scores are given greater weight, while results with abnormal
quality scores are automatically downgraded or excluded. This approach fully utilizes information from
repeated measurements while ensuring the reliability of the final results.

2.2 Methods

2.2.1 Correlation analysis model

Correlation analysis calculates the strength of linear and nonlinear associations between variables,
providing a foundation for identifying relationships in regression modeling. This analysis, including the
Pearson correlation coefficient (which measures linear relationships) and the Spearman rank correlation
coefficient (which measures monotonic relationships), comprehensively assesses the association patterns
between Y chromosome concentration and various influencing factors. Correlation analysis provides a
basis for variable selection and relationship assumptions in subsequent regression modeling.

The advantages of correlation analysis lie in its intuitiveness and universality. It does not require
specific distributional assumptions and can quickly identify association patterns between variables.
Significance testing can be used to determine the statistical reliability of correlations. Correlation analysis
also provides an important foundation for understanding data structure and inter-variable dependencies.

The Pearson correlation coefficient measures the strength of the linear relationship between two
variables.

LR -7)
VI (xi — 022, (v; — 9)?

The Spearman rank correlation coefficient is based on the rank of the data and can capture nonlinear
monotonic relationships.

1)
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Where d; represents the rank difference of the i-th observation.

(2)

2.2.2 Multiple linear regression model

Multiple linear regression is a classic statistical method for analyzing the linear relationship between
multiple independent variables and a dependent variable. This model assumes a linear relationship
between Y chromosome concentration and indicators such as gestational age and BMI. The regression
coefficients are estimated using the least squares method to establish a quantitative prediction model. In
NIPT testing, multiple linear regression can simultaneously consider multiple influencing factors and
identify their relative importance and direction of influence.

The model's core strengths lie in its simplicity and interpretability. Each regression coefficient has a
clear biological meaning and directly reflects the marginal effect of each factor on Y chromosome
concentration. Furthermore, the model provides a rich set of statistical tests, including overall
significance tests, coefficient significance tests, and model diagnostics, ensuring the reliability of the
results.

The basic form of multiple linear regression describes the linear relationship between the dependent
variable and multiple independent variables.
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Y =Bo+B1Xy +B2Xy + -+ X+ € 3)

Where Y represents the Y chromosome concentration, X; represents the i-th influencing factor
(gestational age, BMI, age, etc.), §; represents the regression coefficient, and € represents the random
error term.

The regression coefficients were estimated using the least squares method, and the optimal parameters
were determined by minimizing the residual sum of squares.

B=x"™)7XTY ©)
Where f represents the estimated value of the regression coefficient, X represents the design matrix,
and XT represents the transpose of X.

The goodness of fit of the model is measured by the coefficient of determination (R?), which reflects

the proportion of the variation in the dependent variable explained by the model.
R? = 1 SSE _ SSR .
~© SST  SST )

Where SSE represents the error sum of squares, SST represents the total sum of squares, and SSR
represents the regression sum of squares.

The significance of the regression coefficients was tested using the t-test to assess whether each
coefficient was significantly different from zero.

t= B—l,\
SE(By)

Where SE(f;) represents the standard error of the regression coefficient.

(6)

2.2.3 Robust Bayesian Ridge Regression Model

Robust Bayesian Ridge Regression is an advanced statistical method that combines Bayesian
inference and ridge regression regularization, specifically designed to address multicollinearity and
outlier issues. By introducing a prior distribution for the regression coefficients, this model transforms
parameter estimation into a Bayesian inference problem. This model automatically determines the
optimal regularization strength and provides a quantitative assessment of parameter uncertainty. In Y
chromosome concentration analysis, this model effectively handles complex correlations between
physiological indicators, providing more stable and reliable predictions.

The model's core innovation lies in its adaptive regularization mechanism, which automatically
adjusts the regularization strength through Bayesian inference of hyperparameters, eliminating the
manual selection of regularization parameters required in traditional ridge regression. Furthermore, the
Bayesian framework provides complete information about the posterior distribution of the parameters,
including the mean, variance, and confidence intervals, providing a theoretical basis for quantifying the
uncertainty of the results. This robust design makes the model highly resistant to outliers and noise,
making it particularly suitable for addressing the common outlier problem in medical data. Bayesian
Ridge regression achieves regularization by introducing a normal prior distribution for the regression
coefficients and performing Bayesian inference on the noise variance and regularization parameters. This
method can fit the data while avoiding overfitting, providing more stable parameter estimates. The
model's robustness is reflected in its automatic identification of outliers and weight adjustment
mechanism, which can reduce the impact of outliers while maintaining the overall fit.

The likelihood function of Bayesian Ridge regression, based on the normal distribution assumption,
describes the probability distribution of the observed data.

prIX B = | [ el B0 @

Where, a represents the noise precision parameter, and N represents the normal distribution.

The prior distribution of the regression coefficient uses a zero-mean normal distribution to achieve
automatic regularization.
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Where, A represents the precision parameter, controlling the strength of regularization.

The prior distribution of hyperparameters uses the Gamma distribution to enable automatic parameter
selection.

p(a) = Gamma(a|ay, by), p(A) = Gamma(d|cy,dy) 9
Where ay, by, ¢g, dy are hyper-prior parameters.

The posterior distribution is updated using the Bayesian formula, combining the likelihood function
and the prior distribution to obtain the posterior estimates of the parameters.

(B, &, AlY, X) < p(Y|X,B,a) - p(B|4) - p(a) - p(A) (10)

The prediction distribution of Bayesian Ridge regression not only provides point estimates but also
quantifies the uncertainty of the predictions.

P Onew | Xnew, ¥, X) = fp(ynewlxnew'ﬂ» a)p(B,alY,X)dBda 1y

Robust weight functions improve model stability by automatically identifying and down-weighting
outliers.

2.2.4 Nonlinear relationship test model

Nonlinear relationship testing models use methods such as polynomial regression and logarithmic
transformation to explore the nonlinear relationship between Y chromosome concentration and
influencing factors. In biomedical data, relationships between variables often exhibit complex nonlinear
characteristics, which may not be fully captured by simple linear models. Nonlinear models can uncover
hidden patterns, improving the model's explanatory power and predictive accuracy.

Polynomial regression captures curvilinear relationships between variables by adding higher-order
terms, while logarithmic transformation is suitable for relationships with exponential growth or decay.
These nonlinear transformations can transform complex relationships into linear forms, facilitating
statistical analysis and parameter interpretation. Model selection is performed using information criteria
(AIC, BIC) and cross-validation to ensure optimal fit while avoiding overfitting.

Quadratic polynomial regression captures curvilinear relationships between variables by adding
square terms.

Y = By + B1X1 + X7 + B3Xp + BuXF + £ (12)
The logarithmic transformation model is suitable for modeling exponential relationships.
In(Y) = o + p1 In(X;) + B> In(X;) + ¢ (13)

Model comparison was performed using the Akaike information criterion (AIC) to balance goodness
of fit and model complexity.

AIC = 2k — 21n(L) (14)

Where k represents the number of parameters and L represents the maximum likelihood value.

3. Results
3.1 Model Comparison

3.1.1 Multiple linear regression model

In the analysis of fetal Y chromosome concentration, a multiple linear regression model revealed the
quantitative relationships among various influencing factors. The model results showed that Y
chromosome concentration was significantly positively correlated with gestational age (coefficient
0.001204, p < 0.001), significantly negatively correlated with maternal age (coefficient -0.001047, p <
0.001), and had no significant relationship with BMI (coefficient -0.005205, p = 0.077). The model had
an R? 0 0.072. Although its explanatory power was limited, all major coefficients passed the significance
test, indicating the presence of a linear relationship.
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The model's VIF test revealed high multicollinearity with maternal BMI (VIF = 71.303), likely due
to the strong correlation between BMI and other physiological indicators (such as weight). To address
this issue and improve the stability of the model, a more robust modeling approach is needed. Multiple
linear regression provides an important foundation for understanding the fundamental influence patterns
of Y chromosome concentration, and its concise form is easy for clinicians to understand and apply. In
practical applications, this model can be used for preliminary prediction of Y chromosome concentration,
but due to low R? and multicollinearity issues, it needs to be combined with other more advanced
modeling methods to improve prediction accuracy and model stability.

3.1.2 Robust Bayesian Ridge Regression Model

Robust Bayesian Ridge regression demonstrated superior performance in Y chromosome
concentration analysis. Based on actual modeling results, the model achieved an R? of 0.0704. While this
absolute value is not high, it demonstrates superior cross-validation performance and model stability
compared to standard linear regression (R>=0.072). The posterior distribution of parameters provided by
the Bayesian framework revealed that the regression coefficient for gestational age was
0.001204+0.000237, with a confidence interval of [0.000738, 0.001669] that did not contain zero,
demonstrating a significant positive correlation. The coefficient for age was -0.001047+0.000277,
indicating a significant negative correlation.

The model's robustness was particularly evident in addressing multicollinearity associated with BMI.
While the VIF value for BMI in traditional linear regression was as high as 71.303, indicating severe
collinearity, robust Bayesian Ridge regression effectively mitigated this issue through adaptive
regularization. The model automatically detected 37 outliers and reduced their impact on the overall fit
through a weight adjustment mechanism. Uncertainty quantification provided by Bayesian inference
demonstrated good convergence of the posterior distribution of the model parameters, resulting in high
reliability of the parameter estimates.

In clinical applications, the robust Bayesian Ridge regression model provides a more stable and
reliable tool for predicting Y chromosome concentration. The model's adaptive nature enables automatic
adjustment of regularization strength to accommodate diverse dataset characteristics. Quantification of
prediction uncertainty provides a crucial confidence assessment for clinical decision-making, helping to
identify cases with low prediction reliability. The model received the highest overall score of 10.774,
earning it a "strongly recommended" rating and providing an optimal modeling solution for quantitative
analysis of Y chromosome concentration.

3.1.3 Nonlinear relationship test model

Nonlinear relationship testing revealed significant nonlinear characteristics in the analysis of Y
chromosome concentration. The quadratic polynomial model achieved an R? of 0.347, significantly
improving compared to the linear model, with an AIC value of -2389.5, indicating a better fit. The
logarithmic transformation model achieved an R? of 0.329, also outperforming the linear model. These
results indicate a nonlinear relationship between Y chromosome concentration and influencing factors,
particularly the quadratic effect of gestational age and the nonlinear influence of BMI.

Model comparison analysis showed that the quadratic polynomial model performed best across
multiple evaluation metrics, becoming the preferred approach for addressing the nonlinear relationship
between Y chromosome concentration. This model captures the parabolic relationship between
gestational age and concentration, as well as the nonlinear characteristics of the BMI effect, providing
deeper insights into the biological mechanisms of Y chromosome concentration.

In practical applications, the nonlinear model provides more accurate concentration predictions for
NIPT testing, particularly at extreme gestational age and high BMI values, where nonlinear effects are
particularly pronounced.

3.2 Prediction results

Table 1 shows, except for height, the p-values for all key variables were significantly less than 0.05,
strongly rejecting the normal distribution assumption. The Shapiro-Wilk test p-value for Y chromosome
concentration was 9.50 x 107'2) and the p-value for gestational age reached a minimum of 1.60 x 1072,
These results consistently indicate significant deviations from a normal distribution, providing statistical
support for the use of nonparametric methods and robust algorithms in the NIPT time prediction model,
ensuring the reliability and stability of the prediction results.
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Table 1 Normality test results

variable Shapiro p | DAgostino p | Distribution | Correlation
type Method
Y chromosome concentration 9.50x10712 | 1.67x10°® Non-normal | Spearman
Gestational age 1.60x1072 | 4.41x10* Non-normal | Spearman
Maternal BMI 5.87x10°% | 4.80x10713 Non-normal | Spearman
Age 8.25x10" | 5.60x107? Non-normal | Spearman
Table 2 Pearson correlation analysis results (partial)
variable Correlation | p-value 95% Significance | Strength of
coefficient confidence level correlation
interval
Y chromosome 0.1201 7.50x107° | [0.061, 0.179] Hkx Positive
concentration - weak
gestational age correlation
Y chromosome -0.1671 3.21x10°® | [-0.226, -0.108] | *** Negative
concentration - weak
maternal BMI correlation
Y chromosome 0.3337 1.50x1072° | [0.277, 0.390] ok Positive
concentration - number moderate
of blood draws correlation

Table 2 reveals the key factors influencing Y chromosome concentration, providing important
guidance for feature engineering in the NIPT point-in-time prediction model. The strongest correlation
was observed with the number of blood draws (r=0.3337), indicating that a multiple-test strategy can
significantly improve Y chromosome concentration detection. Maternal BMI showed a significant
negative correlation (r=-0.1671), a finding that directly impacted the design of the BMI adjustment factor
in the point-in-time prediction algorithm. The positive correlation with gestational age (r=0.1201), while
weak, was statistically significant, providing a quantitative basis for the gestational age growth rate
parameter in the point-in-time prediction model.

Table 3 Comparison of NIPT time prediction models

Model Name Training | Testing | Training | Testing | Testing | Cross-

R? R? RMSE RMSE | MAE Validation R?
Bayesian Ridge | 0.7967 0.8484 | 2.1009 1.8157 | 1.2086 | 0.73134+0.0564
Regression
Random Forest 0.9980 0.9924 | 0.2069 0.4076 | 0.1150 | 0.9867+0.0079

Table 3 shows that the random forest model significantly outperformed Bayesian Ridge regression
across all performance metrics. The random forest model achieved a test R? of 0.9924, a test RMSE of
only 0.4076 weeks, and a test MAE of 0.115 weeks, demonstrating that the model can predict the optimal
individualized NIPT timing with sub-weekly accuracy. The cross-validation R? was 0.9867+0.0079,
demonstrating excellent generalization and stability. This high-precision prediction capability provides
strong technical support for the development of personalized NIPT timing in clinical practice.

Table 4 Example of NIPT time point prediction results

Sample | Current Current Y Maternal | Optimal Number of weeks | Risk level
gestational | chromosome | BMI timing for | to delay
age concentration prediction | pregnancy
1 11.86 0.0259 28.13 19.43 7.58 Medium risk
2 15.86 0.0349 28.52 18.63 2.78 Medium risk
3 20.14 0.0662 28.52 20.14 0.00 Medium risk
5 13.86 0.0592 33.33 13.86 0.00 Medium risk

Table 4 demonstrates the practical application of the model. Because the current Y chromosome
concentrations of samples 1 and 2 did not reach the 4% threshold, testing required a 7.58-week and 2.78-
week delay, respectively. Samples 3 and 5, whose current concentrations met the standard, could undergo
NIPT testing immediately. High BMI samples (such as sample 5, BMI = 33.33) met the standard at the
current concentration, but the predicted time point was relatively late, reflecting the inhibitory effect of
BMI on the growth of Y chromosome concentration. This personalized prediction provides a scientific
basis for developing precise testing strategies in clinical practice.
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Figure 1 Honeycomb diagram
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Figure 2 Histogram comparison

Figure 1 uses a hexagonal grid to illustrate the two-dimensional distribution density of Y chromosome
concentration and gestational age. The color depth represents the concentration of data points, with dark
blue areas indicating high-density distribution. The figure shows that the majority of data are
concentrated between gestational weeks 12 and 20, with Y chromosome concentrations between 0.02
and 0.08, forming a clear data clustering pattern. This distribution pattern provides an important reference
for determining the optimal timing of NIPT, indicating that testing within this gestational age range can
achieve relatively stable Y chromosome concentration levels.

Figure 2 illustrates the differences in Y chromosome concentration distribution across three BMI
groups. Green represents the normal BMI group, blue represents the overweight group, and purple
represents the obese group. The figure clearly shows that as BMI increases, the Y chromosome
concentration distribution shifts to the left, with a lower peak. The normal BMI group has a relatively
concentrated distribution with a higher peak, while the obese group has a more dispersed distribution
with a significantly lower mean concentration. This finding provides key evidence for personalized NIPT
timing prediction, suggesting that pregnant women with a high BMI may need to delay testing or increase
testing frequency.

Figure 3 shows the absolute values of the Bayesian regression coefficients for each feature, ranked
by importance. Green bars indicate positive coefficients, and blue bars indicate negative coefficients.
Gestational age is the most important, with a positive coefficient indicating an increase in Y chromosome
concentration with increasing gestational age. Maternal BMI is the second most important, but with a
negative coefficient, confirming the inhibitory effect of high BMI on Y chromosome concentration. This
ranking of feature importance directly guides the allocation of variable weights in the NIPT point-in-time
prediction model, providing a quantitative basis for developing personalized testing strategies.
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Figure 4 Distribution Comparison

Figure 4 compares the fit of the actual distribution of Y chromosome concentration with the
theoretical distribution. The blue histogram shows the actual data distribution, the red curve represents
the normal distribution fit, and the green curve represents the lognormal distribution fit. The actual
distribution exhibits a right-skewed characteristic, with the lognormal distribution performing
significantly better than the normal distribution, significantly improving the goodness of fit. This
distribution analysis provides important guidance for probabilistic modeling of the NIPT point-in-time
prediction model, ensuring the statistical validity of the prediction results.

4. Discussion and Conclusions
4.1 Discussion

This study systematically explored the relationship between fetal Y chromosome concentration and
maternal factors, identifying gestational age and BMI as key determinants. Consistent with previous
studies, we found a positive correlation between gestational age and Y chromosome concentration,
reflecting the gradual increase in cell-free fetal DNA (cfdna) with advancing pregnancy. In contrast, BMI
showed a negative correlation, likely due to dilution of fetal cfdna by higher maternal plasma volume.

From a modeling perspective, robust Bayesian ridge regression effectively mitigated multicollinearity
and reduced the impact of outliers, providing more stable parameter estimates than ordinary least squares
regression. Furthermore, the random forest model achieved the highest predictive accuracy, achieving
near-perfect generalization performance (test R?> = 0.9924), making it a practical tool for personalized
NIPT timing prediction. These results demonstrate that combining interpretable regression models with
machine learning techniques can provide both biological insights and precise clinical predictions.

Clinical studies have shown that gestational age and BMI should be considered together when
determining optimal NIPT timing, particularly for women with elevated BMI, who may need to delay
testing to achieve an adequate fetal fraction. Implementing the proposed prediction model could reduce
unnecessary repeated sampling and improve overall screening accuracy.

However, several limitations should be acknowledged. The dataset was limited to a single center and
may not fully represent a diverse population. Other potential biological factors, such as maternal
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metabolic status or placental function, were not incorporated, which could further refine the prediction
model. Future studies should validate our findings in larger, multicenter cohorts and explore the
integration of other biomarkers to enhance the generalizability of the model.

4.2 Conclusions

In summary, this study quantitatively characterized the effects of gestational age and body mass index
(BMI) on fetal Y chromosome concentration and constructed a personalized prediction model for
optimizing the optimal timing of NIPT testing. Among the models tested, the random forest method
demonstrated excellent predictive performance, achieving sub-weekly accuracy and robust
generalization. These findings provide a scientific basis for personalized NIPT scheduling, potentially
minimizing duplicate testing, optimizing clinical workflow, and improving the accuracy of prenatal
screening.
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