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Abstract: A grey model reformulated through initial-condition optimization is presented to advance the 

predictive performance of satellite clock bias. First, a grey forecasting model is established. 

Subsequently, initial conditions are determined using the latest components of the raw sequence. The 

study concludes with an experimental campaign in which the refined grey model, tuned at the initial 

condition, forecasts BeiDou satellite clock bias, leveraging Wuhan University’s precision clock 

products as ground truth. Comparative experiments confirm that optimizing the initial condition 

enables the grey model to outperform the classical grey and polynomial approaches in satellite clock 

bias forecasting. Its 6 h average forecast accuracy and stability reached 0.47ns, representing 

improvements of 37.56% and 47.50% compared to the grey model's average accuracy and stability, 

respectively. 
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1. Introduction 

The performance envelope of the Global Navigation Satellite System (GNSS) Positioning, 

Navigation and Timing (PNT) services is intrinsically linked to the quality of satellite clock bias (SCB) 

information, because the system is essentially time-referenced [1-2]. Consequently, the precise 

modelling and forecasting of SCB have become critical factors in enhancing system performance [3]. 

During the application of GNSS for precise point positioning, establishing SCB forecast models with 

higher accuracy and stability is essential to enhance positioning precision. Therefore, to secure 

centimeter-level positioning accuracy in PPP solutions, high-precision forecasting of SCB is a 

prerequisite. 

Recent advances in BeiDou’s space and ground segments have correspondingly heightened the 

demand for higher-accuracy SCB forecasting. To address this, researchers have proposed a series of 

SCB forecast models. Among these, grey model (GM (1,1)) has gained widespread application in clock 

bias forecasting for the GNSS due to their straightforward expressions and minimal data requirements 

for forecasting [4-5]. However, GM (1,1) exhibits certain limitations and conditions for applicability 

across different scenarios. Over time, outdated information can introduce perturbations into the system, 

diminishing forecast accuracy [6]. Furthermore, their adaptability across different satellite clocks is 

limited, and they rely heavily on data accuracy, potentially yielding significant errors [7-8]. 

To enhance the forecasting accuracy of SCB and address the limitations of traditional GM (1,1), this 

paper proposes a SCB forecasting method based on an initial condition-optimized GM (1,1). In the first 

step, the method resorts to a standard technique for fixing the initial condition, thereby ascertaining the 

newest element of the first-order cumulative series. Subsequently, based on the form of this latest 

component, the corresponding expression for the grey forecast model is derived. Finally, the estimated 

initial conditions are calculated and substituted into the GM (1,1) expression to obtain the grey forecast 

model equation. Forecasting tests were performed on a randomized cohort of six multi-type BeiDou 

satellites, employing the precise SCB solutions released by Wuhan University’s GNSS Analysis Centre 

as the reference. Comprehensive experiments confirm that the developed technique achieves 

demonstrable effectiveness and marked superiority. Establishment of optimized grey model based on 

initial conditions. 
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2. Establishment of optimized grey model based on initial conditions 

2.1 Grey model 

Grey-system literature consistently identifies GM (1,1) as the flagship one-variable, first-order 

model for practical applications. It constitutes a forecasting model based solely on a single-variable 

first-order differential equation, suitable for forecasting its own data while requiring minimal data for 

modelling. Its algorithmic principle is as follows [9-15]: 

Consider a sequence of SCB data: 

              0 0 0 0
1 , 2 , ,x x x x n                     (1) 

The sequence generated by single accumulation is: 

                  1 1 1 1 1
1 , 2 , 3 , ,x x x x x n                     (2) 

where: 

       1 0

1

, 1,2,3, ,
k

i

x k x i k n


                       (3) 

As the GM (1,1) employs exponential growth forecasting, the mathematical expression 

corresponding to the exponential model is: 

 
by a ce                                     (4) 

Establishing a first-order differential equation with constant coefficients for the sequence
 1

x : 

 
 

1
1dx t

ax t b
dt

                                (5) 

where the parameters a  represent the development coefficient, and the parameters u  denote the 

grey action quantity. 

Solving differential equation (5) yields the exponential primitive function, establishing the 

corresponding grey differential equation. Integrating both sides of the differential equation yields: 

       
1

1

1 1 1

k k k

k k k

dx t
dt ax t dt bdt

dt  
                         (6) 

Analyzing the two definite integrals on the left-hand side of equation (6) yields:  

               
1

1 1 0

1
1

k

k

dx t
dt x k x k x k

dt
                      (7) 

Analysis of the first definite integral reveals that it represents the sum of the k th and 1k  th 

terms of a linear cumulative sequence. Subtracting these yields the k th term of the original data:  

           1 1 0
1x k x k x k                       (8) 

Subsequently, analyzing the second definite integral in equation (6) yields:  

   
           
1 1

1 1

1

1

2

k

k

x k x k
ax t dt a az k



 
                 (9) 

The differential equation in this case (5) may be transformed into:  

       0 1
x k az k b                         (10) 
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Yielding the matrix equation:  

Y GA                               (11) 
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The least-squares estimator applied to equation (11) furnishes the following optimal solution:  

   
1ˆ ˆ ˆ T TA a u G G G Y


                       (13) 

Selecting
       1 0

1 1x x  as initial conditions yields the solution:  
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ˆ ˆ
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
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      (14) 

where k  denotes the number of original data sequences participating in the forecast. Using the 

above forecast model, data sequences for any future time point can be forecasted. 

2.2 Grey model with optimized initial conditions 

The selection of initial conditions plays a crucial role in the predictive accuracy of grey model. 

Different establishment methods reflect varying considerations regarding the weighting of new and old 

information, directly altering the model's predictive trajectory. 

Traditional GM (1,1) employ three methods for initial condition determination: oldest component 

solution:  

   1 ˆ
ˆ

ˆ
ˆ

akb
c x k e

a

 
   
 

                          (15) 

Newest component solution:  
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ˆ

ˆ
ˆ

aNb
c x N e
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                        (16) 

Weighted component solution using both newest and oldest components:  
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where N  denotes the order of the latest component, corresponding to the following three forms of 

grey forecasting models:  
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The initial components of the GM (1,1) with optimized initial conditions are determined using the 

latest component solution method. From expression (16), we obtain:  

     0 ˆ ˆ
1 a amx n e ce                        (19) 

When n N ,
       0 0ˆ ˆx n x k , then the estimated initial condition can be obtained as:  
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When k N , the estimated initial condition is obtained as:  

   0 ˆ

ˆ
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x N e
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Substituting equation (20) into equation (13) yields the grey forecast model with optimized initial 

conditions:  

       ˆ0 (0)ˆ

1,2, , 1

a n N
x n x N e

N N

 


 
                     (22) 

When n N , the forecast values of the grey model after optimizing the initial conditions can be 

obtained using Equation (21). The flowchart of this model is shown in Figure 1: 

 

Figure 1: Flowchart of the GM (1,1) model with optimized initial conditions. 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 9, Issue 1: 94-102, DOI: 10.25236/AJCIS.2026.090112 

Published by Francis Academic Press, UK 

-98- 

3. Experiments and analysis 

3.1 Experimental data sources 

The experimental validation relies on the precise post-processed clock products of BDS satellites 

provided by the GNSS Analysis Centre, Wuhan University. Data collected on 15 August 2024, sampled 

every 30 s, were analyzed. On this day the constellation encompassed more than 30 satellites equipped 

with five clock classes: rubidium standards on GEO and IGSO platforms, rubidium and hydrogen 

masers on MEO spacecraft, and hydrogen masers on IGSO vehicles [16]. Eight satellites were 

purposely chosen to reflect diversity in orbit type, clock physics, system series and launch date: BDS-2 

PRN 02, 04 (GEO-Rb), PRN 07 (IGSO-Rb); BDS-3 PRN 40 (IGSO-H), PRN 32, 37 (MEO-Rb), PRN 

25, 43 (MEO-H) (Table 1). 

Table 1: Selected satellite related information. 

Satellite ID Clock type Launch date Clock bias trend 

PRN 02 GEO-Rb 25 October 2012 Positive values monotonically increasing 

PRN 04 GEO-Rb 31 October 2010 Negative values monotonically decreasing 

PRN 07 IGSO-Rb 17 December 2010 Negative values monotonically increasing 

PRN 25 MEO-H 24 August 2018 Positive values monotonically increasing 

PRN 32 MEO-Rb 19 September 2018 Negative values monotonically decreasing 

PRN 37 MEO-Rb 18 November 2018 Negative values monotonically increasing 

PRN 40 IGSO-H 5 November 2019 Negative values monotonically decreasing 

PRN 43 MEO-H 23 November 2019 Positive values monotonically increasing 

The high-resolution clock-offset profiles of these eight spacecrafts, plotted in Figure 2 for 15 

August 2024, reveal a monotonic decrease for PRN04, PRN32 and PRN40.While the clock bias time 

series for satellites PRN02, PRN07, PRN25, PRN37 and PRN43 exhibit a monotonically increasing 

trend, demonstrating sufficient representativeness. 

  
(a) PRN02 (b) PRN04 

  
(c) PRN07 (d) PRN25 
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(e) PRN32 (f) PRN37 

  
(g) PRN 40 (h) PRN 43 

Figure 2: Chart of clock bias variation for the PRN02, PRN04, PRN07, PRN25, PRN23, PRN37, 

PRN40 and PRN43 satellites. 

3.2 Forecast results and analysis 

To benchmark the developed predictor, 12 h of high-precision SCB estimates prior to 00:00–06:00 

on 15 August 2024 were ingested to build a QPM, an LPM and a GM(1,1) model, whose outputs were 

then compared against the recorded biases for the subsequent 6 h. Forecast results were compared 

against precise SCB data for the same period released by Wuhan University GNSS Analysis Centre, 

calculating the forecast error for each model. The precision of the Wuhan University GNSS Analysis 

Centre SCB estimates permits their designation as the effective true values in the validation exercise. 

The forecast accuracy of the optimized GM (1,1) model was compared and evaluated by calculating the 

Root Mean Square (RMS) error. The RMS formula is as follows: 

 
2

1

1
ˆ

n

i i

i

RMS y y
n 

                             (23) 

The variations in forecast errors and statistical results for each model are presented in Figure 3 and 

Table 2: 

  

(a) PRN02 (b) PRN04 
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(c) PRN07 (d) PRN25 

  

(e) PRN32 (f) PRN37 

  

(e) PRN40 (f) PRN43 

Figure 3: Forecast error variation chart of 6 h satellite clock bias 

Table 2: Statistical results of satellite clock bias forecast error (unit: ns) 

Model PRN02 PRN04 PRN07 PRN25 PRN32 PRN37 PRN40 PRN43 Average 

LPM 1.19 2.01 1.56 0.23 0.71 0.66 0.16 0.18 0.84 

QPM 7.42 3.88 0.53 1.01 0.72 0.63 0.98 0.23 1.93 

GM (1,1) 1.66 1.67 0.57 0.32 0.62 0.65 0.17 0.19 0.73 

Optimized 

GM (1,1) 
1.08 1.09 0.40 0.09 0.45 0.38 0.10 0.15 0.47 

Analysis of Figure 2-3 and Table 2 reveals: 

The forecast error of SCB data using the GM (1,1) model optimized with initial conditions shows a 

marked reduction compared to the other four models. The forecast error trajectory of the proposed GM 

(1,1) variant mirrors the standard version; however, the absolute errors are markedly compressed across 

the entire horizon. Furthermore, as the forecast lead time increases, the absolute values of forecast 

errors for the majority of satellites gradually rise. This indicates a substantial improvement in the 

forecasting accuracy of the initial condition-optimized GM (1,1) model. Furthermore, when employing 

the initial condition-optimized GM (1,1) model for SCB forecasting—using 12 h clock offset data to 

model future 6 h clock bias data—the forecast accuracies for the three BDS-2 satellites were 1.08 
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ns,1.09 ns and 0.40 ns, respectively, representing substantial improvements over the QPM, LPM and 

traditional GM (1,1) model. Comparative metrics reveal that the initial-condition refinement boosts 

predictive accuracy by 35.04 %, 34.75 % and 30.18 % in the evaluated instances. For the five satellites 

of BDS-3, the forecast accuracies were 0.09 ns, 0.45 ns, 0.38 ns,0.10 ns and 0.15 ns, respectively. 

Compared with the QPM, LPM and traditional GM (1,1) model, the forecast accuracy also showed a 

substantial improvement. Accuracy improvements attributable to the refined initial condition reached 

35.04 %, 34.75 % and 30.18 % for the respective scenarios. 

4. Conclusion 

This study proposes a method for generating initial conditions using components from known SCB 

sequences, thereby improving the traditional GM (1,1) model. This approach fully utilizes known SCB 

data while specifically considering the impact of temporal sequencing on forecast outcomes. The 

convergence of analytical insight and experimental metrics demonstrates that optimizing the initial 

condition empowers the GM (1,1) model to satisfactorily reproduce future SCB values. Compared with 

QPM, LPM and the traditional GM (1,1) model, it exhibits a marked improvement in forecasting 

accuracy. Furthermore, the trend in forecast error variation for the initial condition-optimized GM (1,1) 

model aligns closely with that of the conventional GM (1,1) model. This indicates that the stability of 

the clock bias forecast achieved by the GM (1,1) model developed in this study remains fundamentally 

consistent with that of the traditional GM (1,1) model. In future research, targeted pre-processing based 

on the specific characteristics of SCB data could be employed to further enhance the forecasting 

accuracy and stability of the optimized GM (1,1) model. 
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