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Abstract: Detection of dress code for anti-static equipment is an important management link in clean 
workshops. To address the issue of difficulty in deploying multi-scale dress code detection methods for 
anti-static equipment in embedded systems, a lightweight real-time detection method for dress code of 
anti-static equipment is proposed. This article uses the MobileNetV3-small backbone network to extract 
features of anti-static equipment, making the model lightweight and easy to deploy. Adopting BiFPN 
structure to enhance the feature fusion ability of anti-static equipment at multiple scales, and using CIoU 
Loss and DIoU-NMS to accurately locate anti-static equipment targets, and improving the problem of 
missed detection of anti-static equipment when people are crowded, and improving the accuracy of dress 
code detection for anti-static equipment. The experimental results show that the algorithm improves 
accuracy by 2.1%, reduces parameter count by 43.8%, and reduces model size by 40.6% compared to 
YOLOv5s. The recognition speed on the Jeston Xavier NX system is 27FPS, and the recognition accuracy 
of wearing anti-static hats, anti-static clothing, and anti-static shoes is 98.1%, 96.2%, 95.8%, 94.2%, 
and 94.1%, respectively. It meets the requirements of real-time detection of anti-static equipment dress 
code.  
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1. Introduction 

In the clean workshop, employees are required to wear anti-static equipment (including anti-static 
clothing, anti-static shoes, and anti-static hats) to protect products from static electricity, which increases 
the product qualification rate [1]. Enterprises have strict requirements for the dress code of anti-static 
equipment. The "Q JFD003.201.108 Personal Wear and Protection Process Rules" stipulate that 
personnel should wear anti-static hats when entering the production workshop, ensuring that their hair is 
completely covered by the hat; Wear anti-static clothing, including both the top and pants, and the cuffs 
must not expose the arms or wrists; Wear anti-static shoes. An example of dress code requirements for 
clean workshop personnel is shown in Figure 1. 

 
Figure 1 Example of Dress Code Requirements for Clean Workshop Personnel. 

However, improper wearing or failure to wear anti-static equipment cannot effectively prevent the 
harm caused by static electricity to the product, which may lead to product damage and aging [2]. 
Enterprises are artificially supervised through video surveillance. Due to the large number of surveillance 
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screens and the presence of human factors, it can lead to misjudgment, even negligence, and omission in 
supervision, and failure to promptly provide warnings for non-standard clothing [3]. Therefore, it is 
necessary to adopt an intelligent, real-time, and efficient method to detect the standardization of anti-
static equipment attire and promptly correct any behavior of improper attire. 

At present, a large amount of in-depth learning literature is focused on personal protective equipment, 
mostly focusing on whether to wear safety helmets, masks, safety vests, etc. [4,5,6,7], and there is no 
detailed research on the dress code with standardized requirements (such as anti-static clothing). In a 
small amount of research on dress code detection, He Lei et al. used the YOLOv5 algorithm to identify 
dress codes for long sleeved and short sleeved classification problems [8]. This method cannot distinguish 
whether the material of clothing meets the specified requirements. Mao Feng et al. proposed a method 
based on multi-scale attention networks (MAR-CNN) for detecting clothing irregularities in targets such 
as safety helmets and clothing, targeting multi-scale characteristics [9]. The above research has made 
some progress, but there are still problems such as low detection accuracy, large model parameters, and 
difficulty in deploying on embedded devices. Due to the limited space of the scene for detection of anti-
static equipment dress code, the size, location, and individual differences of the target vary at multiple 
scales, resulting in differences in the performance of anti-static targets in the image, which affects the 
detection accuracy of the anti-static equipment dress code. Additionally, the monitoring and management 
of dress code for anti-static equipment has high requirements for real-time performance. 

This article uses the YOLOv5s network to detect the dress code of anti-static equipment, and the 
Jeston Xavier NX system as the deployment carrier to conduct real-time detection of the dress code of 
anti-static equipment. In response to the problem of a large number of parameters in the detection model 
for dress code of anti-static equipment, which is not conducive to the deployment of embedded devices, 
the MobileNetV3 small backbone network is used for feature extraction of anti-static equipment. 
Through deep separable convolution operations, the standard convolution is decomposed into deep 
convolution and point by point convolution to reduce the computational power of the model, making it 
lightweight and easy to deploy. Due to the limited space of the scene for the detection of anti-static 
equipment dress code, the anti-static equipment exhibits multi-scale characteristics, which affects 
detection accuracy. In this paper, the BiFPN structure is used to fuse different scale features of anti-static 
equipment to improve detection accuracy while ensuring the detection speed of the model. Finally, CIoU 
Loss and DIoU-NMS are used to accurately locate the target of anti-static equipment and improve the 
problem of missed detection of anti-static equipment when people are crowded, improve the accuracy of 
dress code testing for anti-static equipment. 

2. Testing Method for Dress Code of Anti-static Equipment 

The flowchart of the detection method for the dress code of anti-static equipment studied in this article 
is shown in Figure 2. This article considers the lightweight of the network model to meet the requirements 
of embedded deployment and improve the detection accuracy of anti-static equipment while ensuring 
detection speed. Firstly, MobileNetV3 small is used as the backbone network of YOLOv5s for feature 
extraction of anti-static equipment. Secondly, in the feature fusion layer, the tensor splicing operation 
responsible for feature information fusion is combined with the BiFPN structure to enhance the multi-
scale feature fusion ability of anti-static equipment, Finally, the loss function was improved and the 
DIoU-NMS algorithm was used for prediction box screening to detect people, anti-static clothing, anti-
static shoes, and anti-static hats. By locating the areas of anti-static clothing and anti-static hats, arm and 
hair exposed areas were detected, and the connectivity area between hair and arm exposed areas was 
determined based on dynamic thresholds to detect the dress standardization of anti-static equipment.  
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Figure 2 Flow chart of standardized testing methods for anti-static equipment attire. 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 6, Issue 10: 7-17, DOI: 10.25236/AJCIS.2023.061002 

Published by Francis Academic Press, UK 
-9- 

2.1. Lightweight Backbone Network 

2.1.1. MobileNetV3 

MobileNetV3 is a lightweight convolutional neural network architecture for mobile devices and 
embedded systems [10]. MobileNetV3 has made the following improvements and optimizations on the 
basis of the old version, enabling efficient inference and operation on the Jeston Xavier NX device. 

(1) MobileNetV3 utilizes deep separable convolution technology to decompose standard convolution 
operations into deep convolution and point by point convolution, reducing the computational power 
required for the operation of the model for testing the dress code of antistatic equipment [11], and 
accelerating the inference speed of dress code for anti-static equipment. 

(2) MobileNetV3 introduces an adaptive width inverse residual structure, allowing the network to 
dynamically adjust the number of channels based on different levels of feature maps, enabling the model 
to better adapt to different situations and positions of anti-static equipment wearing data and anti-static 
equipment feature extraction tasks. 

(3) MobileNetV3 adopts the Hard Swish activation function, which maintains good performance 
while reducing computational complexity, making the inference speed of the anti-static equipment dress 
code detection model faster on the Jeston Xavier NX. 

(4) MobileNetV3 also introduces the SE module, which adaptively adjusts the importance of channels 
by learning the relationships between internal channels in the feature map, enhances the model's attention 
to anti-static equipment features, and improves the performance and generalization ability of the 
detection model for the dress code of anti-static equipment. 

2.1.2. Backbone Feature Extraction Network 

YOLOv5, as a lightweight object detection network [12], can maintain a fast inference speed without 
sacrificing accuracy, and is suitable for the scene of anti-static equipment dress code detection. But on 
the Jeston Xavier NX system with limited resources, it is hoped that the model size will be smaller and 
the computational speed will be faster. Therefore, in order to achieve the deployment of the anti-static 
equipment dress code detection model on the Jeston Xavier NX system, this article uses MobileNetV3 
small as the backbone network of YOLOv5s for feature extraction of anti-static equipment. Through 
deep separable convolution operation, the standard convolution is decomposed into deep convolution 
and point by point convolution, reducing the parameter and computational complexity of the anti-static 
equipment dress code detection model. The specific process of standard convolution decomposition is 
shown in Figure 3. 

3×3

Pointwise feature depthwise featureinput

Deep convolution Point convolution

Standard convolution

1×1
input feature

 
Figure 3 Decomposition process diagram of standard convolution. 

The calculation process of deep separable convolution is shown in equation (1): 

mjwihji mjimwh FKG ,1,1, ,,,, −+−+∑=                            (1) 
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In the formula, G represents the output feature map; K is the convolutional kernel; F is the input 
feature map; i, j represents the pixel position of the feature map; h, w represents the size of the output 
feature map; M is the number of channels. 

The calculation amount of deep convolution, point by point convolution, and standard convolution is 
shown in equation (2): 

2
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×××
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In the formula, k represents the size of the convolution kernel for deep convolution; C represents the 
number of input feature maps; N is the number of convolution kernels for pointwise convolution [13]. 
From equation (2), it can be seen that after deep separable convolution operation, the computational 
workload is significantly reduced, ensuring the minimum reduction in detection accuracy of anti-static 
equipment while greatly reducing the number of model parameters. The structure of the improved 
backbone network is shown in Table 1. In the table, “-1” represents the input from the previous layer, “1” 
represents only one MobileNet operation, and the values of the arguments represent the number of input 
channels, the number of output channels, the number of channels after 1×1 convolution dimensionality 
enhancement, the size of the convolutional kernel, step size, whether SE is used, and whether HS is used, 
respectively. 

Table 1 Improved YOLOv5s backbone extraction network structure. 

From Number Params Module Arguments 
-1 1 464 Conv_bn_HSwish [3,16, 2] 
-1 1 612 MobileNet_Block [16,16,16,3,2,1,0] 
-1 1 3864 MobileNet_Block [16,24,72,3,2,0,0] 
-1 1 5416 MobileNet_Block [24,24,88,3,1,0,0] 
-1 1 13736 MobileNet_Block [24,40,96,5,2,1,1] 
-1 1 55340 MobileNet_Block [40,40,240,5,1,1,1] 
-1 1 55340 MobileNet_Block [40,40,240,5,1,1,1] 
-1 1 21486 MobileNet_Block [40,48,120,5,1,1,1] 
-1 1 28644 MobileNet_Block [48,48,144,5,1,1,1] 
-1 1 91848 MobileNet_Block [48,96,288,5,2,1,1] 
-1 1 294096 MobileNet_Block [96,96,576,5,1,1,1] 
-1 1 294096 MobileNet_Block [96,96,576,5,1,1,1] 
-1 1 50176 Conv [96,512,1,1] 

After calculation, the total number of model parameters after replacing the backbone network with 
MobileNetV3 small is 3888418, and the model size is 7.9MB. The original backbone network model of 
YOLOv5s has a total of 7273971 parameters, with a model size of 13.82MB. From this, it can be seen 
that the parameter quantity of the lightweight improved model has been reduced by 46.5%, and the model 
size has been reduced by 42.6%, meeting the requirements of deploying detection algorithms for anti-
static equipment dress code on embedded devices. 

2.2. BiFPN Feature Fusion Network 
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Figure 4 BiFPN Structure Diagram. 
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The core idea of the Bi-directional feature pyramid network (BiFPN) [14] is to fuse feature layers from 
different scales through "top-down" and "bottom-up" bidirectional channels, in order to reduce feature 
information loss caused by excessive down-sampling levels in the model. Its structure is shown in Figure 
4, where C3 to C7 represent five different scale feature layers from the feature extraction network. BiFPN 
introduces learnable weights that are applied layer by layer to each feature layer, enabling the network to 
autonomously learn and adjust these weights, thereby determining the importance of each input feature 
in the fusion process. 

Due to the limited space of the scene for detection of anti-static equipment dress code, the size, 
location, and individual differences of the target vary at multiple scales, resulting in different appearance 
features, textures, and details of anti-static targets in the image, which affects the detection accuracy of 
the anti-static equipment dress code. Therefore, this article adopts the BiFPN structure for multi-scale 
feature fusion, and combines BiFPN in the tensor stitching operation responsible for feature information 
fusion in Neck. The combined stitching operation is recorded as “BiFPN_Concat”. Due to the high 
requirements for the detection of anti-static equipment dress code, such as the location information of 
anti-static clothing, anti-static hats, and anti-static shoes, as well as the characteristics of the wearing 
parts of the human body, BiFPN integrates feature layers from different scales of target size, position, 
and individual differences through "top-down" and "bottom-up" bidirectional channels. The high-
resolution shallow feature map better preserves the location information and detailed information of the 
anti-static clothing. The combined feature fusion network can set learning weight parameters, allowing 
the network to learn the position and detail feature information of anti-static clothing in different scale 
feature layers, achieving effective fusion of multi-scale feature information while ensuring the detection 
speed of the model, and improving the detection accuracy of anti-static equipment. The overall network 
structure of Yolov5s after improvement is shown in Figure 5. 
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Figure 5 Improved network structure diagram. 

2.3. Improvement of Loss Function 

The BiFPN structure performs bidirectional weighted fusion of multi-scale features of anti-static 
equipment, obtaining rich spatial and semantic information. The CIoU Loss is used to calculate the loss 
of bounding box regression [15], which can make the target positioning of anti-static equipment more 
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accurate, thereby ensuring high accuracy of the anti-static equipment dress code detection model while 
maintaining fast speed. CIoU Loss considers the overlapping area, center point distance, and aspect ratio 
of the target border, reflecting the difference between the predicted box and the actual box. The formula 
is defined as equation (3). 
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In the equation: α is a factor used to balance the loss caused by the aspect ratio and intersection ratio; 
v is a parameter that measures the consistency of aspect ratio. 

Due to limited space for inspection of dress code for anti-static equipment and dense crowds during 
commuting, there are people close to each other, resulting in missed detection of anti-static equipment 
targets. This article uses DIoU-NMS to replace NMS to improve the problem of missed detection of anti-
static clothing targets in crowded situations [16]. The calculation of DIoU-NMS is shown in formulas (4) 
to (5). 
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In the formula, M represents the candidate box with a high confidence score; Bi is used to determine 
whether the prediction box needs to be removed. 

2.4. Implementation of Anti-static Equipment Dress Code Detection 

This article uses the network constructed above to detect whether anti-static hats, anti-static clothing, 
and anti-static shoes are worn, locate them in the area of anti-static clothing and anti-static hats, and 
detect skin exposed outside anti-static clothing and hair exposed outside anti-static hats through semantic 
and color features, then calculate the area of the exposed connection area between hair and arms, and 
adjust the dynamic threshold through feedback mechanism to determine whether hair and arms are 
exposed, and detect if the anti-static cap and anti-static clothing are properly dressed in order to achieve 
detection of anti-static equipment dress code. Finally, the model was ported to the Jeston Xavier NX 
system, and a visual monitoring interface was established to real-time detect the standardization of anti-
static equipment attire, and to promptly correct any improper attire behavior. 

3. Experiment and Result Analysis Conclusions 

3.1. Data Set 

The data in this study is sourced from the wind shower room in a clean workshop of a company in 
Xi'an, China Aviation Corporation. The data collection uses a network camera, fixed on the ceiling of the 
wind shower room, with an angle of 37° upwards. It records videos of employees commuting and non 
daily staff entering and exiting simultaneously. The videos include wearing anti-static helmets, non-
standard wearing of anti-static helmets, and not wearing anti-static helmets. The video includes personnel 
who wear anti-static hats, wear anti-static hats irregularly, and do not wear anti-static hats, wear anti-
static clothing in a complete and standardized manner, only wear the upper body and only the off duty 
body, wear non-standard and non anti-static clothing, wear anti-static shoes, and do not wear anti-static 
shoes. Select employee peak commuting videos as test data, and other videos as training data. Perform 
frame capture processing on the videos, convert them into images, and clean the data to remove a large 
amount of duplicate and aimless data. Use LabelImg software to annotate the dataset. The targets of anti-
static clothing compliance testing include people, heads, anti-static clothing, anti-static hats, disposable 
headsets, anti-static shoes, and disposable shoe covers. Expand the data samples by flipping, mosaic, 
cropping, and other operations on the labeled anti-static equipment dress code data to enrich the data and 
improve the generalization ability of the model. Produce a dataset of 32000 pieces of anti-static 
equipment dress code, with a ratio of 7:2:1 for training, testing, and validation sets, and a data image 
resolution of 1280×720. 
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3.2. Experimental Environment and Parameter Settings 

The model algorithm in this article is based on the Python framework and Python language. During 
the model training and testing phase, the experimental environment parameters are shown in Table 2. 
The network model parameters during the experimental process of this article: the Batch_size is 16, the 
weight attenuation coefficient is 0.0001, the number of training iterations is 300, and the initial learning 
rate value is 0.001. When testing the real-time detection results of anti-static equipment dress code, the 
speed and accuracy of anti-static equipment dress code detection are tested on the Jeston Xavier NX 
system. 

Table 2 Experimental Environment Parameters. 

Title Params 
GPU Nvidia GeForce GTX 2080Ti (16 GB) 
CPU Intel Core i7-10700F, CPU 2.90 Hz,RAM 32GB 

operating system Ubuntu 18.04 
Deep learning framework Pytorch1.7.1+ CUDA 1.10.0 
Programming Language Python 3.6 

3.3. Evaluating Indicator 

In order to verify the performance of the detection model for dress code of anti-static equipment, the 
detection evaluation indicators used in this article include detection accuracy (P), recall rate (R), and 
mean AP (mAP), as shown in equations (6) ~ (8). 
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3.4. Experimental Results 

In order to verify the effectiveness of the anti-static equipment dress code detection model, this article 
used a self-made anti-static equipment dress code dataset in the experimental environment described in 
Table 2 to train and test the improved model and YOLOv5s, SSD [17], Faster R-CNN [18] models. The 
comparison of experimental results is shown in Table 3. 

Table 3 Comparison of anti-static clothing target recognition results using different algorithms. 

Algorithm P/% R/% mAP/% Number of 
parameters /106 

Model size 
/MB 

Faster R-CNN 76.5 87.9 89.8 26.2 108 
SSD 72.7 79.8 78.5 13.7 90.1 

Yolov5s 87.7 93.2 89.6 7.3 13.82 
Ours 89.1 93.2 91.7 4.1 8.2 

From Table 3, it can be seen that the proposed network outperforms other models in terms of model 
size and detection accuracy, with a 40.6% reduction in size compared to the YOLOv5s model. This 
enables the deployment of detection model of anti-static equipment dress code on the Jeston Xavier NX. 

In order to verify the impact of various improvement points in the detection model for dress code of 
anti-static equipment, an ablation experiment was designed, and the experimental results are shown in 
Table 4. In the Table 4, “√” indicates the addition of this improvement, “×” Indicates that this 
improvement has not been added. 

According to Table 4, experiment 1 shows that the detection accuracy of the unmodified YOLOv5s 
network on the anti-static equipment dress code dataset reached 89.6%, with a parameter quantity of 
7.3×106, with a model size of 13.82MB; Experiment 2 used the MobileNetV3 small backbone extraction 
network, and after deep separable convolution, the detection model of anti-static equipment dress code 
was reduced by 1.2 percentage points in average accuracy, 46.5% in parameter quantity, and 42.6% in 
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model size; On the basis of experiment 2, experiment 3 adopted the BiFPN structure to enhance the 
feature fusion ability of the network at multiple scales, which improved the average accuracy by 1.4 
percentage points, increased the number of parameters by 5.1%, and increased the model size by 3.7% 
compared to experiment 2; On the basis of experiment 3, experiment 4 used CIoU Loss to calculate the 
border loss, making the target positioning of anti-static equipment more accurate, which increased the 
average accuracy by 1.6 percentage points compared to experiment 3. The model size and parameter 
quantity remained unchanged; On the basis of experiment 4, experiment 5 used DIoU-NMS to improve 
the problem of missed detection of anti-static equipment targets when people were crowded. Compared 
with experiment 4, the average accuracy increased by 0.3 percentage points, and the model size and 
parameter quantity remained unchanged; Compared to experiment 1, the average accuracy increased by 
2.1 percentage points, the number of parameters decreased by 43.8%, and the model size decreased by 
40.6%; In summary, the improved YOLOv5s algorithm model in this article significantly reduces the 
number and size of parameters, achieving lightweight network structure while improving detection 
performance, and meeting the requirements for deployment of the detection model of dress code for anti-
static equipment on Jeston Xavier NX. 

Table 4 Comparison results of adding different improvement points. 

Num MobileNetV
3-small BiFPN CIoU 

Loss 
DIoU-
NMS mAP/% Number of 

parameters /106 
Model 

size /MB 
1 × × × × 89.6 7.3 13.82 
2 √ × × × 88.4 3.9 7.9 
3 √ √ × × 89.8 4.1 8.2 
4 √ √ √ × 91.4 4.1 8.2 
5 √ √ √ √ 91.7 4.1 8.2 

3.5. Real Time Detection Results of Dress Code for Anti-static Equipment 

In order to achieve real-time detection of dress code for anti-static equipment, this article designs a 
visual monitoring interface and deploys the model on the Jeston Xavier NX system. After real-time 
testing and verification, the system can achieve real-time detection of five types of non-standard 
behaviors: not wearing anti-static hats, not wearing anti-static clothes, not wearing anti-static shoes, 
wearing anti-static clothes irregularly, and wearing anti-static hats irregularly. If any non-standard 
behaviors are detected, a voice alarm will be issued, remind staff to promptly correct non-standard 
behaviors. The visual monitoring interface is shown in Figure 6. 

 
Figure 6 Visual Inspection Interface. 

Compared with the original yolov5 model for performance testing, it ran at a speed of 27 FPS on the 
Jeston Xavier NX, nearly doubling the speed and achieving real-time detection results. The test results 
are shown in Table 5. 
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Table 5 Comparison of running results on Jeston Xavier NX. 

Algorithm P/% R/% mAP/% FPS 
Yolov5s 87.7 92.1 89.6 14 

Ours 89.1 93.2 91.7 27 
Real time testing of dress code was conducted on the Jeston Xavier NX system, and the results of the 

anti-static equipment dress code testing are shown in Figure 7. 

    
(a) Improper attire of multiple individuals'          (b) Not wearing an anti-static cap. 

anti-static equipment. 

    
(c)Not wearing anti-static clothing.           (d) Not wearing anti-static shoes. 

    
(e) Improper wearing of anti-static clothing.       f) Improper wearing of anti-static hats. 

Figure 7: Test results of dress code for anti-static equipment. 

In Figure 7, figure (a) shows the detection results of multiple individuals wearing non-standard anti-
static equipment, and figure (b) shows the detection results of not wearing anti-static hats, and figure (c) 
shows the detection results of not wearing anti-static clothes, figure (d) shows the detection results of not 
wearing anti-static shoes, and figure (e) shows the detection results of improper wearing of anti-static 
clothing, and figure (f) shows the detection results of non-standard wearing of anti-static hats. From 
Figure 7, it can be seen that the scene space for the detection of dress code for anti-static equipment is 
limited. The changes in target size, position, and individual differences at multiple scales result in the 
accurate detection of anti-static equipment and types of clothing irregularities in the presence of different 
image target sizes and occlusion by multiple individuals. This algorithm proves the generalization ability 
of the model. Capturing the real-time detection video results and obtaining 300 samples for result 
statistics, the accuracy of identifying five types of non-standard behaviors in the air shower workshop, 
including not wearing anti-static hats, not wearing anti-static clothing, not wearing anti-static shoes, 
wearing anti-static clothing irregularly, and wearing anti-static hats irregularly, was 98.1%, 96.2%, 95.8%, 
94.2%, and 94.1%, respectively. The detection results of non-standard attire of anti-static equipment are 
shown in Table 6. 

 

 

 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 6, Issue 10: 7-17, DOI: 10.25236/AJCIS.2023.061002 

Published by Francis Academic Press, UK 
-16- 

Table 6 Detection results of five types of dress code violations. 

Types of dress code violations Recognition accuracy /% 
Not wearing an anti-static cap 98.1 

Not wearing anti-static clothing 96.2 
Not wearing anti-static shoes 95.8 

Improper wearing of anti-static clothing 94.2 
Improper wearing of anti-static hats 94.1 

4. Conclusion 

To address the issue of difficulty in deploying multi-scale dress code detection methods for anti-static 
equipment in embedded systems, a lightweight real-time detection method for anti-static equipment dress 
code is proposed. This article uses the Mobilenetv3 small backbone network to extract features of anti-
static equipment, making the model lightweight and easy to deploy. Adopting the BiFPN structure, 
enhancing the feature fusion ability of anti-static equipment at multiple scales, using CIoU Loss and 
DIoU-NMS to accurately locate anti-static equipment targets, improving the problem of missed detection 
of anti-static equipment when people are crowded, and improving the accuracy of dress code detection 
for anti-static equipment, and finally achieving detection for dress code of anti-static equipment through 
bare connected area detection. The experimental results show that the parameter quantity and model size 
of detection for dress code of anti-static equipment in this article have been significantly reduced, 
achieving lightweight network structure while improving detection performance. Real time detection of 
anti-static equipment attire standardization has been achieved on Jeston Xavier NX, with a speed of 27 
FPS and an average recognition accuracy of 95.7%. The accuracy rates for identifying five types of non-
standard behaviors: not wearing an anti-static hat, not wearing anti-static clothing, not wearing anti-static 
shoes, wearing anti-static clothing irregularly, and wearing anti-static hats irregularly are 98.1%, 96.2%, 
95.8%, 94.2%, and 94.1%, respectively. The visualization results test verified the generalization ability 
of the model, meeting the needs of anti-static equipment monitoring and management. 
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