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Abstract: As the Internet grows in popularity, more and more classification jobs, such as IoT, finance 
industry and healthcare field, rely on mobile edge computing to advance machine learning. In the 
medical industry, however, good diagnostic accuracy necessitates the combination of large amounts of 
labeled data to train the model, which is difficult and expensive to collect and risks jeopardizing patients' 
privacy. In this paper, we offer a novel medical diagnostic framework that employs a federated learning 
platform to ensure patient data privacy by transferring classification algorithms acquired in a labeled 
domain to a domain with sparse or missing labeled data. Rather than using a generative adversarial 
network, our framework uses a discriminative model to build multiple classification loss functions with 
the goal of improving diagnostic accuracy. It also avoids the difficulty of collecting large amounts of 
labeled data or the high cost of generating large amount of sample data. Experiments on real-world 
image datasets demonstrates that the suggested adversarial federated transfer learning method is 
promising for real-world medical diagnosis applications that use image classification. 

Keywords: Federated transfer learning, Medical diagnosis, Adaptation approaches, Data privacy, 
Domain shift 

1. Introduction  

Machine learning technology has been widely applied in real life in recent years, for example, in the 
Internet of Medical Things (IoMT). Health-related data, on the other hand, are existing in the form of 
several small datasets that are distributed around the globe due to major data privacy concerns in IoMT 
scenarios. 

In this context, federated learning (FL) is gaining popularity because of its capacity to provide 
collaborative training while maintaining data privacy, as well as a solution to the problem of isolated data 
islands [33]. The end-to-end diagnostic framework with automatic feature extraction may be simply 
established when the training and testing data are from the same distribution [12][31]. However, the 
distributions of datasets in the real-world medical diagnosis industry vary by domain. One of the most 
typical issues is that labels are present in some datasets but are sparse or absent in others. This disparity 
in data categories is likely to impair the model's generalization capacity, resulting in differences between 
projected and actual results. The federated transfer learning (FTL) technique is presented as a solution to 
the problem [14]. When the datasets contribute differently, federated transfer learning can train a good 
model in the domain with labeled data and then apply it to the domain with sparse data labels based on 
the relationship between the domains. 

To minimize the impacts of domain shift in general transfer learning, numerous techniques have 
applied the Maximum Mean Discrepancy (MMD) loss [9]. The deep Correlation Alignment (CORAL) 
approach advocated matching the mean and covariance of the two distributions with the same 
consideration [24]. 

Adversial-based domain adaptation approaches are what these two examples are referred to as. Peng 
et al. proposed to use the adversarial domain adaptation technique to address the domain shift effects in 
federated learning [18]. The core notion of adversarial training is to continuously generate and learn 
adversarial samples in the process of network training [8]. The Generative Adversarial Network (GAN) 
method is a generative deep model that pits two networks against one another: a generative model 
$G$ that captures the data distribution and a discriminative model $D$ that distinguishes between 
samples drawn from $G$ and images drawn from the training data by predicting a binary label. The 
networks are trained jointly using backpropagation on the label prediction loss in a mini-max fashion: 
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simultaneously update $G$ to minimize the loss while also updating $D$ to maximize the loss. Therefore, 
the robustness of the training network will be improved. 

However, the generative model's interpretability is poor, and its distribution cannot be articulated 
clearly. Gradient disappearance or non-convergence occurs during training, and there is no practical, 
direct, or noticeable technique for evaluating the effect of the generated model. Moreover, such 
generative models often face the problem of high cost of generating data in the practical application of 
FTL. 

 
Figure 1: System architecture in healthcare diagnosis. 

Since the FTL framework with adversarial ideas is ideally well suited for solving the problem of 
domain shifts due to sparsely labeled data in real smart medical scenarios, Therefore, we present an 
adversarial federated transfer learning (AFTL) classifier architecture for IoMT that employs current 
samples directly for training and allows the model trained on labeled datasets to migrate to sparsely 
labeled datasets for prediction. Unlike previous methods, this adversarial model we propose does not 
require the generation of new samples, but only the adversarial operation on the original data, which 
allows the interpretation of the model results and the effective evaluation of the effects based on the 
resolution of the domain bias phenomenon, while avoiding the higher costs required to produce the data. 

Considering that the base of the world population is very large, the growth rate of doctors is far from 
that of patients. Therefore, such an AFTL framework is set up to allow patients to use their own wearable 
devices to learn the ability to diagnose medical images over the cloud server, so that they can use these 
devices to monitor their health status anytime and anywhere, breaking the limitation of distance and 
resources, while ensuring that their private data are not leaked.  In this system, labeled datasets from 
the source domain, such as medical data from hospital patients, are used to jointly train a nearly perfect 
model under the central server. Target domain, for example, the healthcare data stored in wearable 
devices or mobile devices, will obtain the trained model for classification prediction. In this method, 
instead of coming to the hospital, people can use personal devices to get a high-accuracy medical 
diagnosis classifier that ignores time and distance constraints and saves both human and material 
resources. It safeguards the privacy of medical data while also avoiding the significant costs associated 
with model generation. Figure 1 depicts the entire AFTL framework. 

2. Manuscript Preparation 

2.1. Related Works 

Machine learning has been successfully applied in medical diagnosis [36]. For instance, the wearable 
devices can constantly monitor people's health problems at all times. It is mainly due to the extensive use 
of deep learning in image processing [37]. In the field of medical diagnosis, the commonly used deep 
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learning method is image recognition technology, which allows AI algorithms to learn more patient 
images than a human doctor can see in a lifetime to train a deep neural network [38] that can determine 
whether a patient site is diseased or not. Wearable devices are developed to allow people who do not 
have regular health checkups to monitor their health status using medical image diagnostic models trained 
by deep learning. 

In the medical field, many fundamental tasks can be done with deep learning technology as a way to 
reduce the workload of doctors, improve the efficiency of consultations, and increase the accuracy of 
medical diagnosis. Waston, an artificial intelligence system developed by the DeepQA initiative team led 
by IBM Principal Investigator David Ferrucci, has been used in clinical settings to provide doctors with 
advice on cancer diagnosis and treatment after studying a large number of textbooks and medical journals 
in the field of oncology over a four-year period . Watson will also simplify and standardize patient records, 
provide assistance in the collection and integration of laboratory and research data, and integrate the 
collected data into the Anderson Cancer Center's patient database so that these data can be analyzed in 
depth by advanced analytics . A team of researchers led by visiting professor Enda Wu from Stanford 
University demonstrated that a deep learning model can identify cardiac arrhythmias from 
electrocardiograms (ECGs), a method that can make a more reliable diagnosis of potentially lethal 
arrhythmias than cardiologists. For some areas with lower levels of medical care, this automated 
approach could improve cardiac diagnosis. 

Although deep learning technology can help solve the problems of low efficiency and inaccurate 
results in medical diagnosis, it is difficult to collect and integrate data for training, as a large amount of 
treatment data of different cases of similar diseases and different conditions of the same patient are often 
stored in different medical institutions, and the willingness of each institution to share its own medical 
data is always limited. Also, personal medical data is very sensitive and involves important privacy 
information of users, many medical institutions do not have reasonable ways to apply and control 
complex medical data in the face of personal privacy protection and data security requirements. 

Based on such considerations, federated learning is gradually gaining attention. The approach utilizes 
encryption algorithms to bypass the information barriers among medical institutions, and does not extract 
the original data of each participant, but transmits encrypted information through cryptographic protocols. 
This enables each medical institution to use the shared medical data for model training without exposing 
their original data. Tencent's Tianyin Lab and Microlife Bank jointly developed the "Stroke Onset Risk 
Prediction Model" based on the medical federal learning framework, which successfully cracked the 
problem of privacy protection in the medical industry and achieved accurate disease prediction with an 
accuracy rate of 80% while protecting the privacy of data from different hospitals. In addition, through 
federal learning technology, the data resources of large hospitals can help small hospitals to improve the 
predictional accuracy of the model by 10-20%. 

However, in the post-promotion medical application scenario, the distribution of patients' health data 
collected by wearable devices is likely to be inconsistent with those stored in hospitals because of the 
different ways of storing data. The federal transfer learning technique gives a way to use data in a cross-
medical institution scenario by using a model previously pre-trained in deep learning as the starting point 
for a new model to be applied to another new task. Specifically, a model firstly trained of fundus lesions 
using ImageNet, which can be used as a source domain, and then the model trained in that source domain 
is migrated to pneumonia diagnosis, enabling some of the parameters of the fundus lesion model to be 
shared by the pneumonia diagnosis model. W. Zhang proposes a prior distribution to indirectly bridge 
the domain gap when data from different clients cannot communicate and extracts client-invariant 
features while preserving data privacy. Generative Adversarial Networks (GAN), which have received 
much attention in recent years, can learn the distribution of data well and solve the shortage of annotated 
medical images [8]. w. Zhang and X. Li propose a framework for fault diagnosis, which uses GAN to 
generate a large number of labeled training samples to solve the domain shift problem encountered in 
federated learning [32]. 

However, the large labeled datasets needed to train generative adversarial models are not always 
available in clinical practice because medical images require experts to acquire and label, and the number 
of patients with specific medical conditions may not be sufficient to create large datasets. This paper 
proposes a new adversarial learning method that does not require generating large training datasets to 
solve the problem of domain shift and sparse labels that exist in federated transfer learning, greatly 
reducing the cost of training and improving the accuracy of the FTL model in medical diagnosis, 
providing an implementable solution for wearable devices to monitor people's healthcare. 
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2.2. Proposed Method 
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the number of the samples. The goal is to learn a classifier C that can correctly classify target data into 
specified categories by utilizing the high-level features extracted by the feature extractor F , and a 
discriminator D that cannot exactly distinguish whether the input data comes from the source or the 
target domain.  

For more intuitive expression, let Fθ , Cθ and Dθ denote the parameters of F , C and D , 
respectively. The optimization problem can be formulated as 
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where cL denotes medical diagnosis error, and dL represents the domain prediction error. F̂θ , Ĉθ

and D̂θ denote the optimal values of Fθ , Cθ and Dθ , respectively. 

2.2.1. Initialization Process 

Algorithm 1 Initialization 

Input: feature extractor, init 
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4: end for  

5: initialize the models at the other clients with lθ  

The initialization process is shown in Figure 2. The representative i -th client is used to perform 
supervised learning on the labeled local data, and its classification loss based on cross-entropy can be 
expressed as 
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where K denotes the number of possible diagnosis results, ,
,

i c
j kx represents the k -th output value at 

the classifier C of the i -th client which takes the j -th labeled sample as input. 
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Therefore, the optimized function of local initialization is defined as 
, ,min .s i s i

init cL L=       (3) 

As the initialization of i -th client is finished, the initialized parameters will be broadcast to all other 
client models. 

2.2.2. Federated Communication 

 
Figure 2: The initialization process. 

 
Figure 3: The phase of federated transfer learning. 

At the federated communication process shown in Figure 3, the central server receives features 
uploaded from different clients, and the client (domain) discrimination error dL based on cross-entropy 
is formulated as 
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Where ,s i
dL and t

dL denote the client (domain) prediction loss at the i -th source and the target clients, 

respectively, ,s i
jd denotes the client label of the j -th sample at the i -th source client, and t

jd is that of 

the j -th sample at the target client, ,d 
,

i
j kx and ,d 

,
t
j kx denote the k -th output at the client discriminator that 

take the j -th sample data at the i -th source and target clients respectively.  

Algorithm 2 Federated Communication 

Input: initialized{ } 1

N
i i
θ

=
, tθ , round N , fed 

epoch N  

Output: trained parameters{ } 1

N
i i
θ

=
, tθ  

1: Local client: 

2: for each training round round 1,2, ,j N= … do 

3:  for each training round 1,2, ,j N= … do 
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6:    

upload features of source client data to central server 

7: end for 

8: receive target client prediction loss from central server 

9: update target client model with
t

t t d
F F t

F

Lθ θ η
θ

 ∂
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10: upload features of target client data to central server 

11: end for 

12: Central server: 

13: for round 1,2, ,j N= … do 

14: receive data features from all clients 

15: update client discriminator with d
D D

D

Lθ θ η
θ
∂

← −
∂

 

16: send discrimination loss to all clients 

17: end for 

Note that the source classifiers are different. To enhance the generalization ability of the model and 
reduce the risk of overfitting, the diagnostic loss of different source classifiers pL should be minimized 
as  
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where ,s iC is the classifier at the i -th source client. The mean vector of the predictions ( )( )t t
jC F x

is defined as 
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Through the steps of integrated supervised learning, feature mapping and adversarial learning, etc., 
the optimization problem in AFTL can be expressed as 
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where ,s i
Fθ and ,s i

Cθ denote the parameters of the feature extractor and classifier at the i -th source client 

respectively. t
Fθ is the parameter of the feature extractor at the target client.  

The input of the image classifier and client discriminator are all from the feature extractor, however, 
the discriminator aims to maximize the domain classification loss that confuses source and target clients 
while the classifier is leading to minimize the image classification loss so that classification accuracy of 
images can be improved 
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θ =                       (8) 

This leads to the fact that the direction of the discrimination loss gradient is opposite to that of the 
classification loss gradient when parameters update at the feature extractor. To avoid staged optimization, 
a gradient reversal layer is embedded between the feature extractor and the discriminator. The gradient 
of discrimination loss will be automatically opposite before backpropagating to the feature extractor.  

With this idea of adversarial learning, the parameters at above process can be updated as 
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In summary, the update of parameters in AFTL can be expressed as 
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Whereη is the learning rate. The detailed training implementations of the proposed method are 
presented in Algorithms 1 and 2. 

2.2.3. Testing Process 

After training, each source client has trained its unique image classifier. To improve the consistency 
of prediction under the different classifiers, the test image of the target client is used for testing, and then 
select the classification result with the most votes as the prediction of the image at the target client. 

2.3. Experiment 

We evaluate the AFTL method for unsupervised classification tasks across 2 different data settings. 
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10 source clients and 1 target client are utilized. On the MNIST dataset whose data samples have a similar 
distribution, we test the suggested method for a relatively straightforward knowledge transfer, whereas 
the Office dataset has data samples from three different distributions aimed at sophisticated learning. 
Example images from all experimental datasets are provided in Figure 4. For comparison, we employed 
transfer learning (TL), adversarial transfer learning (ATL) and federated transfer learning (FTL) which 
are all sophisticated classification approaches. The performance of the AFTL method is also verified in 
the following experiment. 

 
Figure 4: Example images from two datasets mentioned above. 

2.3.1. MNIST Dataset 

The MNIST dataset contains 60,000 training images and 10,000 testing images that were anti-aliased 
and normalized to fit into a 28x28 pixel bounding box. We give 10 source clients 15000 samples for 
model training and 1000 samples to the target client for testing. The image features are extracted using 
the Conv2d algorithm. The experimental results are shown in Table 1. Easier MNIST datasets made the 
performance better than the current state-of-the-art methods. 

2.3.2. Office Dataset 

The benchmark Office visual dataset contains 4,110 photos from 31 different classes in three different 
domains: amazon, webcam, and DSLR. We used 2817 amazon photos for source clients and 795 webcam 
images for target clients in the data settings. The goal is to compare AFTL to other algorithms based on 
every labeled example from Amazon and every unlabeled example from the webcam. 

Table 1: Test accuracy on several transfer learning among MNIST and Office31. 

Method MNIST Office31 
TL 65.7% 75.3% 

ATL 75.2% 89.6% 
FTL 85.8% 79.2% 

AFTL 93.4% 90.1% 

2.3.3. Convergence Details 

In this study, the accuracy of the classification model and the value of the loss function are selected 
as the analysis indicators. The effect of the model is proportional to the accuracy rate, while inversely 
related to the value of the loss function. 

In our experiment, the batch size is selected as 100 and the number of iterations is set up at 100. 
Figure 5. (a)(b) indicate that in the early stage of training, the accuracy is very low because the model is 
still unfamiliar with the sample. The accuracy of the test grows as the number of iterations increases, 
reaching a fixed number at the 30-th iteration and stabilizing near this figure. If the model's expressive 
ability is too high, it will learn some non-common characteristics that can only satisfy the training sample, 
resulting in a reduction in test accuracy. Clearly, the findings of our tests did not lead to this circumstance. 



The Frontiers of Society, Science and Technology 
ISSN 2616-7433 Vol. 5, Issue 3: 64-75, DOI: 10.25236/FSST.2023.050312 

Published by Francis Academic Press, UK 
-72- 

 
(a)                                      (b) 

 
(c)                                      (d)   

Figure 5: Test accuracy on the target client and average loss value on the source clients. 

The cross-entropy loss is used to evaluate the model's performance in this article's multi-classification 
challenge. Figure 5. (c)(d) show how the model training improves as the number of iterations grows, and 
the loss function on the classifier in the test phase rapidly reduces. Near the 30-th time, it also hits the 
minimal value. The classification model has reached a good point at this point. As a consequence, we 
can say that our approach is convergent since it allows the prediction accuracy to stabilize at a high level 
while reducing the classification result loss. 

 
(a)                                           (b) 

Figure 6: Performance on the AFTL algorithm. 

We also set up a set of ablation experiments as a way to determine the impact of the new performance 
on the AFTL algorithm as shown in Table 2 and Table 3. 

 

 

 



The Frontiers of Society, Science and Technology 
ISSN 2616-7433 Vol. 5, Issue 3: 64-75, DOI: 10.25236/FSST.2023.050312 

Published by Francis Academic Press, UK 
-73- 

Table 2: The settings of learning on the MNIST dataset. 

Task name AFTL with a Client 
Discrininator Client number Sample number 

A1 no 5 200 
A2 no 10 100 
A3 no 5 800 
A4 no 10 400 
C1 yes 5 200 
C2 yes 10 100 
C3 yes 5 800 
C4 yes 10 400 

Table 3: The settings of learning on the Office31 dataset. 

Task name AFTL with a Client 
Discrininator Client number Sample number 

B1 no 5 200 
B2 no 10 100 
B3 no 5 800 
B4 no 10 400 
D1 yes 5 200 
D2 yes 10 100 
D3 yes 5 800 
D4 yes 10 400 

When we remove the client discriminator on the central server, the accuracy of the test results is 
generally lower than that with the discriminator, indicating that the effect of our proposed client 
discriminator is significant as shown in Figure 6. Meanwhile, in the method without the discriminator, 
the accuracy of the test results increases with the increase of the sample size, while with the discriminator 
included, the accuracy of the test results is not significantly affected by the sample size, indicating that 
the proposed method is robust to the sample size, further demonstrating that the method can guarantee 
the training effect without the need to generate new sample data. 

3. Conclusions 

This article aimed to overcome the problems of data shift and privacy leakage in federated transfer 
learning by merging a robust neural network framework based on adversarial idea. Experiments on two 
separate data sets later verified that our methodology outperforms the competition. 

In this paper, we propose an AFTL framework for the medical diagnosis that performs adversarial 
operations without generating new large amounts of data, which can solve the problems of data privacy 
and domain shift faced by medical diagnosis scenarios, while avoiding the high cost in previous 
generative adversarial methods and also improving the accuracy of training results. The method proves 
to be experimentally superior to other methods, while the performance of our proposed new component 
also proves to be significantly important. The method further advances the application of AI technology 
in the field of medical diagnosis. 
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