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Abstract: In response to the issues of excessive smoothing and detail loss in existing image denoising 
algorithms, a dual-channel image denoising algorithm based on deformable convolution is proposed. 
Firstly, a noise estimation network is used to obtain a noise level map, enhancing the detail 
preservation capability of the edge feature extraction block enhancement network. Then, efficient 
channel attention is combined to focus on key channel features, effectively capturing noise 
characteristics. Finally, the deformable convolution with deformable learning kernels is integrated into 
the dual-channel denoising network to extract offset pixels of feature mappings, avoiding excessive 
image smoothing. Experimental results show that on the Set12 dataset with a noise level of 25, 
compared with commonly used algorithms, the proposed algorithm improves the average peak 
signal-to-noise ratio and structural similarity by 0.08dB to 0.62dB and 0.001 to 0.02, respectively, 
while removing Gaussian noise and preserving image details as much as possible. 
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1. Introduction 

Image denoising is a fundamental computer vision task that indirectly influences higher-level visual 
tasks. The application of image denoising techniques to remove noise is crucial for recovering potential 
observations from a given degraded image[1]. The goal of image denoising is to eliminate or reduce 
noise interference in images, making them clearer, with more apparent details, thereby enhancing the 
visual effects and information representation capabilities of the images. 

With the development of deep learning, methods based on Convolutional Neural Networks (CNNs) 
have gradually become mainstream in the field of denoising. CNNs can automatically learn effective 
feature representations and relationship mappings from large-scale data, leading to significant 
breakthroughs in image denoising tasks[2]. The Deep Convolutional Residual Denoising Neural 
Network (DnCNN) proposed in literature [3] improves denoising performance while accelerating 
model training. However, increasing depth limits its feature extraction capability, making it difficult to 
capture context information for larger image structures. The Fast and Flexible Denoising Network 
(FFDNet) proposed in literature [4] decomposes the input image into 4 sub-images and a horizontally 
noisy image generated from user input parameters, outputting 4 denoised sub-images. Using 
Depth-to-Space reduces parameters and enhances network efficiency and flexibility. The Convolutional 
Blind Denoising Network (CBDNet) from literature [5] considers signal interference from both image 
signals and device acquisition, generating numerous noisy images for training. It designs a noise 
estimation network on top of FFDNet to estimate the σ parameter originally inputted by the user, 
improving the network's generalization ability. The Attention-guided Denoising Convolutional Neural 
Network (ADNet) from literature [6] uses attention mechanisms to guide denoising, integrating dilated 
convolutions with conventional convolutions and long-pathways to extract precise noise information in 
complex backgrounds, enhancing denoising performance and image representation. The 
Batch-renormalization Denoising Network (BRDNet) proposed in literature [7] uses skip connections 
to speed up network training, effectively addressing training saturation issues. However, BRDNet trains 
for a specific noise level, limiting its flexibility and practicality. The Dual Denoising Network 
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(DudeNet) from literature [8] proposes global and local features separately using two sub-networks 
through a sparse mechanism, compressing and reconstructing the extracted features finely. 

This paper proposes a dual-channel image denoising algorithm based on deformable convolution 
(DCDN). It designs a noise estimation network to estimate the noise level map, enhances network 
feature extraction capability through the edge feature extraction module and efficient channel attention; 
proposes a dual-channel denoising network to expand network width, enhance learning ability, 
integrate deformable convolution to restore noise distribution based on surrounding pixels, and 
effectively improve denoising performance. Experiments show that DCDN achieves more robust and 
efficient denoising performance while reducing the model's parameter count, ensuring image quality. 

2. Denoising Network 

2.1. Network Architecture 

The network architecture of the dual-channel image denoising algorithm based on deformable 
convolution is shown in Figure 1. 

 
Figure 1: Dual-channel image denoising network structure based on deformable convolution 

DCDN consists of a noise estimation network and a dual-channel denoising network. Firstly, the 
noise estimation network is used to estimate the noise level map in the noisy image. It combines an 
edge feature extraction block to enhance the network's ability to preserve image details and introduces 
efficient channel attention to focus on key channel features, effectively capturing noise characteristics. 
Next, the noise level map and the noisy image are inputted into the dual-channel denoising network. 
The upper branch of this network introduces deformable convolution with deformable learning kernels, 
extracting more representative noise features, thus avoiding excessive image smoothing. 

2.2. Noise estimation network 

The noise estimation network replaces traditional convolution with an edge feature extraction block 
in a manner similar to residual structures, refining image details. Combined with Effective Channel 
Attention (ECA)[9], the network focuses more on channels with key information in the image, 
enhancing efficiency and accuracy in estimating noise levels. The overall structure is illustrated in 
Figure 2. 

 
Figure 2: Noise estimation network 

2.2.1. Edge feature extraction block 

To more fully extract and utilize image feature information, an edge feature extraction module is 
proposed. It combines channel attention mechanism and residual block (residual block with ECA, 
RB-ECA) to refine image details. The structure is illustrated in Figure 3. 
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Figure 3: Edge feature extraction block structur 

Since noise estimation requires extracting and integrating image features to accurately estimate 
noise levels in images, introducing attention mechanisms can help the model focus on key channel 
features, enhancing the model's ability to capture noise characteristics. 

ECA achieves non-dimensional reduction local cross-channel interaction through 1D global average 
pooling, obtaining the global average value for each channel. Then, it calculates channel weights using 
linear transformation and activation functions, reflecting the importance of each channel in the entire 
feature map. Finally, using these weights, it weights the original feature tensor to generate an 
attention-controlled feature representation. ECA effectively captures important channel information in 
the feature map, enhances the model's perception of key features, and improves the accuracy and 
robustness of noise estimation. The structure is illustrated in Figure 4. 

 
Figure 4: Efficient channel attention structure 

2.3. Dual-channel denoising network 

The dual-channel denoising network consists of an upper U-shaped subnet and a lower subnet 
containing dilated convolutions, with each subnet having 12 convolutional layers. The upper U-shaped 
subnet is designed to learn high-level semantic information and extract image features to better capture 
the overall structure of the image. On the other hand, the lower subnet is responsible for learning local 
details and texture information to enhance the capture of fine image features.To promote information 
flow and gradient propagation, two skip connections are introduced in the upper subnet for feature 
aggregation. In the lower subnet, symmetric skip connections are used to accelerate network training 
and improve detail preservation, enabling effective integration and interaction of features from different 
hierarchical levels, thereby enhancing feature learning and detail capture capabilities and further 
improving image denoising performance. Additionally, after cascading the subnets, an additional 
convolutional layer with a kernel size of 1 is added to make the network suitable for both grayscale and 
color images. 

2.3.1. Deformable blocks 

The deformable block utilizes deformable convolution to obtain more representative noise 
features.That is the first layer is deformable Conv + ReLU, which denote a deformable convolution and 
an activation function of ReLU.A deformable convolution uses relations of surrounding pixels to 
restore the position of the original pixel to enhance clarity of predicted image. Also,ReLU is used to 
convert obtained linear features into non- linear features. Input and output channels of this layer are 3 
and 64. Specifically, if given images is grey, its input channel is 1. Also, its kernel size is 3×3. The 2nd 
layer-10th layer are composed of Conv+BN+ReLU, which denotes the com-bination of a convolutional 
layer, BN and ReLU. Their input and output channels are 64. Also, their kernel sizes are 3×3.BN is 
used to normalise data to accelerate network speed. To visually express the mentioned process, we 
define some symbols as follows. DC and R are used to represent a deformable convolution and ReLU, 
respectively. C and B express functions of a convolution and BN, respectively. Also, RBC denotes a 
Conv + BN + ReLU. 10 RBC is used to stand for eleven stacked conv + BN + ReLU. 
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According to analysis of mentioned formulae, we can see that deformable convolution has good 
performance to obtain more contextual information. Thus, we put a deformable convolutional layer in 
the front of the whole denoising as Figure 1, where its parameters are input channel of 3, output 
channel of 64, kernel size of 3×3. Subsequently, a ReLU can convert obtained linear features into non‐
linear features. To further learn accurate features, a 12‐layer the combination of convolutional layer, 
BN and ReLU (i.e., Conv + BN + ReLU) are embedded in the DB, where their parameters are input 
channel and output channel of 64, kernel size of 3×3. BN is used to normalise obtained features and 
ReLU is exploited to convert obtained linear features into non‐linearity. 

2.4. Loss function 

To better preserve high-frequency texture information and reduce blurry and overly smooth visual 
effects, this paper adopts the Charbonnier loss[10] as the reconstruction loss to optimize DCDN. 
Additionally, referencing literature [11], edge loss is used to constrain the high-frequency components 
between the ground truth image and the denoised image. Since DCDN uses a noise estimation network 
to estimate the noise level map in noisy images, the total variation regularizer from literature [12] is 
applied to constrain the smoothness of the estimated noise level. Therefore, the loss function of DCDN 
can be defined as: 

ℒ = ℒ𝑐𝑐ℎ𝑎𝑎𝑎𝑎(𝑥𝑥�, 𝑥𝑥) + 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℒ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥�, 𝑥𝑥) + 𝜆𝜆𝑇𝑇𝑇𝑇ℒ𝑇𝑇𝑇𝑇�σ(𝑦𝑦)�                  (2) 

Thereinto:ℒcℎar, λedge, λTV, denote Charbonnier loss, edge loss, and total variational regularizer, 
respectively, and setλedge and λTV the sum to 0.1 and 0.05, respectively, as shown in Eq. (3), (4), and 
(5). 

ℒ𝑐𝑐ℎ𝑎𝑎𝑎𝑎 = �‖𝑥𝑥� − 𝑥𝑥‖2 + 𝜖𝜖2                          (3) 

where the constant is ϵ set to10−3. 

ℒ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �‖∆(𝑥𝑥�) − ∆(𝑥𝑥)‖2 + 𝜖𝜖2                       (4) 

where ∆denotes the Laplace operator. 

ℒ𝑇𝑇𝑇𝑇 = ‖∇ℎσ(𝑦𝑦)‖22 + ‖∇𝑣𝑣σ(𝑦𝑦)‖22                       (5) 

where∇ℎ(∇v)denotes the gradient operator in the horizontal (vertical) direction. 

2.5. Experimental evaluation indexes 

The peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) are used as 
quantitative indicators to evaluate the denoising effect. A noiseless image of a certain size and a noisy 
image are defined to obtain MSE, with the calculation formula as follows: 

MSE = 1
𝑚𝑚𝑚𝑚

∑ ∑ [𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝐾𝐾(𝑖𝑖, 𝑗𝑗)]2𝑚𝑚−1
𝑗𝑗=0

𝑚𝑚−1
𝑖𝑖=0                      (6) 

PSNR is a metric used to measure the error between two images, typically the original image and a 
compressed or restored image, in terms of the errors introduced by compression or restoration[13]. The 
formula for PSNR is as follows: 

PSNR = 10lg �(2𝑛𝑛−1)2

𝑀𝑀𝑀𝑀𝑀𝑀
�                                              (7) 

The Structural Similarity Index (SSIM) is a measure that compares two images based on three 
components: luminance, contrast, and structure. It provides a similarity score ranging from 0 to 1, 
where a value closer to 1 indicates greater similarity between the two images. The calculation formula 
is as follows: 

SSIM(𝑥𝑥,𝑦𝑦) = �2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝑐𝑐1��2𝜎𝜎𝑥𝑥𝑦𝑦+𝑐𝑐2�
�𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝑐𝑐1��𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝑐𝑐2�

                       (8) 

In the formula, μx  and μy represent the means of images x and y respectively, σx  and σy 
represent their respective standard deviations, and σxy represents the covariance of images x and y. 
The constants c1 and c2 are regularization parameters. 
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3. Experimental Results and Analysis 

3.1. Experimental datasets 

The DIV2K dataset is used for network model training and contains high-quality images from fields 
such as movies, nature, and animations[14]. The Set12 and BSD68 datasets are used for grayscale image 
denoising evaluation, where Set12 includes 12 grayscale images involving different scenes, while the 
BSD68 dataset contains 68 grayscale images; the CBSD68 dataset is used for color image denoising 
evaluation. 

When training the denoising model, to ensure consistency in input data, the size of the training 
images is rescaled to 512 × 512pixels and converted to grayscale; subsequently, random cropping 
technique is employed to crop the images into 180 × 180 pixel patches, increasing data diversity; 
finally, additive white Gaussian noise with noise levels ranging from 0 to 75 is added to each clean 
patch to produce noisy image patches. 

3.2. Experimental setup 

The experiment is run on a Windows system with an Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz 
and an NVIDIA RTX 4090 Ti GPU with 24GB of memory. The network framework used is PyTorch. 
During the training process, the batch size is set to 16, and the Adam optimization algorithm is utilized 
with an initial learning rate of 10-4. 

3.3. Analysis of experimental results 

3.3.1. Quantitative comparisons 

Table 1 compares the average PSNR (dB) results of different image denoising methods on the Set12 
and BSD68 datasets. On the Set12 dataset, when σ= 15, 25, 50, the average PSNR values of DCDN 
increased by 0.11dB, 0.08dB, and 0.08dB compared to DCBDNet, and by 0.02dB, 0.16dB, and 0.36dB 
compared to DnCNN-S, respectively. Under the same conditions on the BSD68 dataset, the average 
PSNR values of DCDN increased by 0.10dB, 0.10dB, and 0.08dB compared to DCBDNet, and by 
0.03dB, 0.11dB, and 0.22dB compared to DnCNN-S, respectively. DCDN achieved superior PSNR 
metrics, indicating that it has better denoising performance when dealing with different levels of noise. 

Table 1: Comparison of average PSNR/dB for different denoising methods 

Datasets  Set12   BSD68  
σ σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 

BM3D 32.37 29.97 26.72 31.07 28.57 25.62 
WNNM 32.70 30.26 27.05 31.37 28.83 25.87 

DnCNN-S 32.84 30.43 27.18 31.72 29.23 26.23 
IRCNN 32.77 30.38 27.14 31.63 29.15 26.19 
FFDNet 32.77 30.44 27.32 31.63 29.19 26.29 
ADNet 32.98 30.58 27.37 31.74 29.25 26.29 

DCBDNet 32.75 30.51 27.46 31.65 29.24 26.37 
DCDN 32.86 30.59 27.54 31.75 29.34 26.45 

Table 2 shows the average SSIM comparison results of different image denoising methods on the 
Set12 and BSD68 datasets. It can be seen that DCDN achieved the highest SSIM values. 

From Table 2, it can be observed that on the Set12 dataset, when σ=15, 25, 50, the average SSIM 
values of DCDN increased by 0.002, 0.001, and 0.003 compared to DCBDNet, and by 0.002, 0.005, 
and 0.014 compared to DnCNN-S, respectively. Under the same conditions on the BSD68 dataset, the 
average SSIM values of DCDN increased by 0.004, 0.005, and 0.003 compared to DCBDNet, and by 
0.002, 0.006, and 0.011 compared to DnCNN-S, respectively. This indicates that DCDN is better at 
preserving the structural information and visual quality of images in the image denoising task. 

Table 3 shows the average PSNR (dB) comparison results of different image denoising methods on 
the CBSD68 dataset. From the table, it is evident that DCDN achieved the highest PSNR metrics. 
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Table 2: Comparison of average SSIM for different denoising methods 

Datasets  Set12   BSD68  
σ σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 

BM3D 0.896 0.851 0.766 0.872 0.802 0.687 
WNNM 0.894 0.846 0.756 0.878 0.810 0.698 

DnCNN-S 0.903 0.862 0.783 0.891 0.828 0.719 
IRCNN 0.901 0.860 0.780 0.888 0.825 0.717 
FFDNet 0.903 0.864 0.791 0.890 0.830 0.726 
ADNet 0.905 0.865 0.791 0.892 0.829 0.722 

DCBDNet 0.902 0.865 0.794 0.889 0.829 0.727 
DCDN 0.904 0.866 0.797 0.893 0.834 0.730 

Table 3: Comparison of average PSNR for different denoising methods on CBSD68 

Datasets  CBSD68  
σ σ=15 σ=25 σ=50 

CBM3D 33.52 30.71 28.89 
DSNetB 33.91 31.28 28.05 

CDnCNN-S 33.89 31.23 29.58 
IRCNN 33.86 31.16 27.86 
FFDNet 33.87 31.21 27.96 
BRDNet 34.10 31.43 28.16 
ADNet 33.99 31.31 28.04 

DCBDNet 34.01 31.41 28.22 
DCDN 34.13 31.52 28.32 

3.3.2. Qualitative comparison 

To more intuitively verify the denoising capability of the network model presented in this paper, 
DCDN is compared with BM3D, DnCNN-S, ADNet, and DCBDNet. The comparison focuses on the 
restoration of details in the "Boat.png" image from the Set12 dataset, specifically the text on the boat, 
and the butterfly's neck details in "Monar.png," with the results being magnified for comparison.When 
the noise level is set to 25, the denoising results for the two images are shown in Figures 5 and 6. 

 

Figure 5: Image of text details on the boat at 𝜎𝜎 =25 

In the restoration of the text details on the boat, DCDN demonstrated significant advantages, 
producing high clarity in the restored text and achieving the highest PSNR values; whereas BM3D, 
FFDNet, and DnCNN-S exhibited smearing and loss of details. ADNet and DCBDNet resulted in more 
blurred text restorations. 

Regarding the restoration of the butterfly's neck details, although DCDN did not dominate in terms 
of PSNR values, it avoided excessive distortion and better preserved the neck feature information, 
enhancing the overall image quality; whereas BM3D and FFDNet showed noticeable blurring and 
twisting phenomena, affecting visual quality. DnCNN-S was inaccurate in restoring detail textures, 
exhibiting local distortions. 
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Figure 6: Detailed image of the butterfly’s neck at 𝜎𝜎 = 25 

3.4. Ablation experiments 

To validate the effectiveness of the network design, a on networks with and without the ablation 
experiments were conducted on networks with and without RB-ECA and with and without Deformable 
Conv. Training was carried out under the same training set conditions at a noise level of 25, and the 
results are shown in Table 4. 

Table 4: The disintegration experiment results on the Set12 dataset 

experiments RB-ECA Deformzble Conv PSNR 
1 √ × 30.43 
2 × √ 30.50 
3 × × 30.32 
4 √ √ 30.59 

From Table 4, it can be seen that without incorporating any modules, the model only achieved a 
PSNR value of 30.32dB; with the introduction of RB-ECA alone, the model's PSNR value increased by 
0.11dB, indicating that RB-ECA enhances the network's feature extraction capability for noisy images, 
thereby improving the denoising effect; with the introduction of Deformable Conv alone, the model's 
PSNR value increased by 0.18dB, indicating that the deformable convolution can extract offset pixels 
from feature maps, enhancing noise identification capabilities; when both RB-ECA and Deformable 
Conv were introduced, a PSNR value of 30.59dB was obtained, achieving the best denoising 
performance. 

3.5. Network performance analysis 

When the noise level is set to 25, the algorithms BM3D, DeamNet, DRUNet, and DCDN are used 
to process grayscale images of sizes 256x256, 512x512, and 1024x1024, respectively. The average 
processing time for each algorithm to handle one image is compared, as shown in Table 5. 

Table 5: Different algorithms comparison on denoising speed 

Methods Device 256×256 512×512 1024×1024 
BM3D CPU 0.458 2.354 9.782 

DeamNet GPU 0.054 0.121 0.392 
DRUNet GPU 0.068 0.106 0.276 
DCDN GPU 0.047 0.078 0.186 

From Table 5, it is evident that DCDN demonstrates a significant advantage in terms of processing 
speed when compared to the traditional denoising method BM3D. Compared to DeamNet and DRUNet, 
which also utilize GPU processing, DCDN shows a substantial improvement in processing speed, with 
only a slight compromise in performance while preserving image details as much as possible. 

4. Conclusion 

This paper proposes a dual-channel image denoising algorithm based on deformable convolutions. 
Initially, a noise estimation network is designed to enhance the model's flexibility, incorporating an 
edge feature extraction block and an efficient channel attention mechanism to extract image features. 
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Subsequently, a dual-channel denoising network captures image features to improve denoising 
performance. By integrating deformable convolutions, the algorithm restores the noise distribution 
based on surrounding pixels, further enhancing the imaging quality of the denoised image. 
Experimental results demonstrate that DCDN possesses strong robustness in image denoising. 
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