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Abstract: The quality of higher education has attracted global attention, and foundational courses
shoulder the critical mission of core knowledge imparting. Therefore, improving the quality of higher
education must start with enhancing the teaching quality of foundational courses. Currently, the teaching
of foundational disciplines faces dilemmas including a single teaching method, excessively large class
sizes, and a lack of hierarchical educational objectives. These issues hinder students’ learning initiative
and effective interaction between teachers and students, resulting in insufficient momentum for
improving teaching quality. To address the aforementioned problems, this paper introduces Al
knowledge graph technology and proposes a hierarchical teaching model, taking Advanced Mathematics
as an example, to achieve precise learning situation diagnosis, dynamic stratification, and intelligent
resource matching. A controlled experiment was carried out with 100 undergraduates from two parallel
engineering classes as research subjects. The experimental group adopted the Al knowledge graph-
driven hierarchical teaching model, while the control group used the traditional teaching model. Results
indicate that the experimental group achieved a final average score of 81.96 (compared to 76.72 in the
control group, p=0.018*%*), a pass rate as high as over 94%, and was significantly superior to the control
group in self-directed learning time (8 hours/week vs. 7 hours/week in the control group).The research
confirms that this model can effectively enhance teaching precision and learning effectiveness, offering
practical references for the intelligent reform of foundational discipline teaching in universities.
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1. Introduction

Foundational discipline courses are public compulsory courses offered by all undergraduate
universities. They serve as a key bridge connecting secondary education and undergraduate professional
learning, and play a vital role in the construction of college students’ knowledge systems, the cultivation
of their thinking abilities, and even their future career development.

However, the current teaching of foundational disciplines in universities still faces numerous practical
dilemmas. On one hand, public foundational courses have long been in the "peripheral position" of
undergraduate talent cultivation. Some universities tend to prioritize majors over foundational disciplines,
and insufficient attention is paid to the teaching quality of foundational disciplines. On the other hand,
the traditional teaching model for foundational disciplines has obvious shortcomings. Taking Advanced
Mathematics as an example, most universities still adopt a "one-size-fits-all" uniform teaching model:
there is high homogeneity in teaching content, progress, and assessment criteria. This model can neither
meet the in-depth exploration needs of students with a solid foundation and extra learning capacity, nor
adapt to the personalized needs for strengthening weak areas of students with a weak foundation and
slow learning pace. Eventually, it leads to the phenomenon of polarization where "high-achieving
students cannot meet their learning needs (lit. ‘cannot get enough to eat’ ) and low-achieving students
struggle to keep up," which seriously undermines students’ learning enthusiasm and the effectiveness of
course teaching.

With the advent of the "Internet + Education” era, the in-depth integration of technologies such as Al
with education has provided new possibilities for teaching reform, and the demand of contemporary
college students for personalized and precise teaching has also become increasingly prominent. However,
the problems of the disconnection between traditional teaching models and technology empowerment,
and the mismatch between teaching supply and student needs remain unsolved, and there is an urgent
need for new teaching models to break the deadlock.
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Against this backdrop, Al Knowledge Graph, with its core advantages of being structured, visualized,
and intelligent, provides a new approach to addressing the challenges in foundational discipline teaching.
Al Knowledge Graph can systematically organize and visually present knowledge points, logical
connections, and key and difficult points of foundational disciplines such as Advanced Mathematics,
accurately mapping the knowledge network and students’ cognitive paths; while Hierarchical Teaching
takes students’ individual differences as its starting point. By accurately identifying students’ knowledge
foundations and learning abilities, it formulates differentiated teaching objectives, content, and
evaluation systems to achieve the goal of “teaching students in accordance with their aptitude”. This
paper organically integrates the two, constructing a hierarchical teaching model for foundational
disciplines based on Al Knowledge Graph. This model not only leverages technological means to break
through the bottlenecks of “inaccurate learning situation diagnosis, unscientific hierarchical standards,
and untimely teaching adjustments” in traditional hierarchical teaching but also fully meets students’
personalized learning needs through hierarchical design. Based on this, this paper takes the Advanced
Mathematics course as the empirical research object, systematically conducting research on the
construction and application of the hierarchical teaching model for foundational disciplines based on Al
Knowledge Graph. It aims to provide replicable and promotable practical pathways for improving the
teaching quality of foundational disciplines and advancing undergraduate foundational teaching reform,
thereby laying a solid foundation for the cultivation of first-class undergraduate talents.

2. Related Works

In recent years, the application of digital technologies and intelligent means in foundational discipline
education has continued to expand. Many scholars have explored the impact of Al, gamification,
curriculum reform, and teacher professional development on teaching effectiveness, and summarized
some representative research results.

Xu Li et al. discussed the pain points in Python programming teaching, such as teacher "monologues"
and over-reliance on quantitative evaluation. Taking undergraduate students from the School of
Computer Science as the research objects, they leveraged mathematical models to mine the
characteristics of learning process data, constructed a multi-dimensional learning effectiveness
evaluation system, conducted an empirical study, and proposed curriculum optimization suggestions.
Their core idea of data-driven and precision-oriented teaching optimization provides a direction for this
paper to construct a precision teaching model for foundational disciplines based on Al Knowledge
Graph[1]. Pingshan Wang pointed out that Al technology has driven education to urgently need
transformation. He analyzed the inevitability of reform from multiple dimensions, explored Al
applications such as intelligent tutoring and classroom management as well as the multi-dimensional
reconstruction of teaching models, mentioned challenges including ethics and data privacy and proposed
corresponding response strategies, and emphasized human-machine collaboration and the cultivation of
core competencies[2]. Aiming at problems such as inefficient utilization of teaching resources in
traditional Advanced Mathematics instruction, Suxiang Zhang introduced Al and big data technologies
to construct an online-offline hybrid teaching model. Through an empirical study on undergraduate
engineering students, the scores and pass rate of the experimental group were significantly higher than
those of the control group, validating the effectiveness of Al-empowered Advanced Mathematics
teaching[3]. Taking university interactive classrooms as cases, Hao J et al. explored the correlation
between teachers’ questioning strategies, students’ Al usage tendencies, and academic performance. They
found that higher-order thinking questions are correlated with Al usage, but Al usage has limited impact
on academic performance[4]. Taking undergraduate students as the research subjects, Shomotova, A. et
al. explored the relationships between digital competence, generative Al usage, personal backgrounds,
and Al literacy. Through multiple statistical methods, they found that all of these factors show a strong
positive correlation with Al literacy, and proposed curriculum optimization suggestions that integrate Al
ethics and practical operation experience[5]. Biehler, R. et al. point out the current state of research on
university mathematics education, focus on the learning challenges of skills such as formal reasoning
and proofs in higher-order mathematics courses, and synthesize the trends in three core areas: innovation
in the teaching and learning of higher-order mathematics, transition between educational stages, and the
role of proofs[6]. Focusing on the disconnection between content courses and pedagogy courses in pre-
service secondary mathematics teacher education, Marshman, M. interviewed hybrid mathematics
teacher educators from Australia and the Czech Republic to explore their identity formation across cross-
disciplinary boundaries, and advocates for strengthening collaboration between mathematicians and
mathematics educators[7]. Taking 748 undergraduate mathematics students as research subjects,
Gonzalez-DeHass et al. explored and found that fixed mindset and parents’ attitudes towards helping
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with mathematics influence students’ math anxiety through paths such as avoidance goals, and female
students had higher anxiety scores[8]. Taking 90 freshmen taking College English as research subjects,
Hu L et al. explored the impact of diversified evaluation on students’ sense of learning achievement
through multiple methods. They found that learning behaviors, teachers’ teaching behaviors, and learning
environment all show a significant positive correlation with the sense of learning achievement, and
proposed to conduct multi-dimensional and multi-level evaluations by leveraging learning situation data
from knowledge graphs[9]. Taking master’s students as research subjects, Wiitavaara B. et al. explored
through methods such as interviews and phenomenological analysis and found that online learning
requires higher levels of students’ self-leadership, digital competence, and other capabilities[10]. They
emphasized the need to strengthen support for students’ self-regulation and the construction of teachers’
sense of community. Current studies tend to concentrate on a single aspect of teaching models or
instructor professional growth, and they are generally deficient in thorough empirical examination of the
targeted intervention mechanisms of intelligent technology and the individualized learning achievements
of students.

3. Teaching Steps for a Tiered Instructional Model in Higher Mathematics Based on AI Knowledge
Graphs

Taking Advanced Mathematics as an example, this section implements teaching in accordance with
the "before class - during class - after class" process based on the hierarchical teaching model supported
by Al Knowledge Graph. Before class, the Advanced Mathematics knowledge graph is first constructed;
students are divided into three levels (basic level, improvement level, and advanced level) based on
learning situation data, and personalized preview resources are pushed to them. During class,
differentiated teaching objectives and content are set for the three levels; knowledge graph visualization
is used to support interaction, and real-time feedback is captured to adjust teaching. After class,
hierarchical assignments and resources are pushed, data is tracked to dynamically optimize hierarchical
strategies, and personalized reports including knowledge mastery status are generated. Finally, through
grouped experiments (the experimental group adopts this model while the control group uses the
traditional model), learning outcomes, behaviors, and subjective perception data are compared to verify
the effectiveness of the model.

3.1. Pre-class Preparation Stage

First, systematically sort out the core knowledge system of Advanced Mathematics. Through Al
technology, structurally present knowledge points, logical connections, key and difficult points, error-
prone points, adaptation relationships with question types, and other elements to form a visual knowledge
network, clarifying the hierarchical progressive relationships among various knowledge points. This
constructs the Advanced Mathematics Al Knowledge Graph.

Second, release a pre-test (including 30% basic questions, 50% intermediate questions, and 20%
difficult questions) through Xuexi Tong, collect students’ answer data to initially identify their knowledge
weaknesses, and divide students into three levels based on their test scores and error question types: basic
level (below 60 points, weak in core concepts), improvement level (60-80 points, solid foundation but
needs skill enhancement), and advanced level (above 80 points, requiring application expansion).
Synchronize the student list to the class groups in Rain Classroom.

Finally, based on the hierarchical results, dynamically match preview resources using the Al
Knowledge Graph: for students at the basic level, push visual explanation videos of the knowledge graph,
microlectures on basic knowledge points, and simple example explanations, focusing on filling
knowledge gaps; for students at the improvement level, push microlectures on the associated applications
of knowledge points and tutorials on the breakdown of typical question types to strengthen their
knowledge transfer ability; for students at the advanced level, push extended knowledge points and
interdisciplinary cases (such as introductory mathematical modeling) to guide them in independent

inquiry.
3.2. In-class Teaching Stage
First, classroom teaching sets different objectives for students at the three levels: students at the basic

level are required to master the definitions, formulas, and basic applications of core knowledge points
and complete drills on basic examples; students at the improvement level are required to proficiently
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apply knowledge points to solve problems, overcome error-prone points, and finish intermediate-level
comprehensive questions; students at the advanced level are required to deepen their understanding of
the logical essence of knowledge points, solve complex comprehensive questions and inquiry-based
problems, and attempt applications of mathematical modeling.

Second, teachers deliver in-depth lectures on core knowledge points using PPT (taking into account
all students), and use knowledge graph visualization to show the position of the current teaching
knowledge points in the overall knowledge network as well as associated examination points, helping
students establish systematic cognition. Then, teachers release practice questions for the three levels
through Rain Classroom: 5 basic questions (e.g., direct application of formulas) for the basic level, 3
intermediate questions (integration of multiple knowledge points) + 2 basic questions for the
improvement level, and 2 intermediate questions + 3 extended questions for the advanced level, with
students required to complete the questions within a time limit. During this process, teachers should
capture real-time classroom feedback, view answer data in real time through Rain Classroom, quickly
review and recap knowledge points with concentrated errors for the basic level using PPT, and organize
cross-group discussions for common problems among the improvement and advanced levels while
conducting roving guidance to ensure that students at all levels "gain meaningful learning outcomes."

Finally, teachers summarize the core points of the lesson using PPT, sort out the knowledge context
by combining with the Al Knowledge Graph, and emphasize the key content that students at all levels
need to master. Xuexi Tong releases hierarchical assignments: for the basic level, complete basic
exercises in the textbook and error question review and recap; for the improvement level, finish
intermediate-level comprehensive questions and sorting out problem-solving ideas; for the advanced
level, complete extended questions and case analysis reports, with the submission deadline clearly
specified.

3.3. Post-class Consolidation and Enhancement Stage

Objective questions are batch-graded by Xuexi Tong, while teachers manually grade subjective
questions and label error types. Data such as students’ assignment completion rate, accuracy rate, and
quality of preview notes are collected and combined with in-class answer data. With the help of the Al
Knowledge Graph, dynamic changes in students’ knowledge gaps are analyzed, and learning outcomes
are fed back to both students and teachers in the form of knowledge graph visualization: marking
mastered knowledge points (green nodes), knowledge points to be consolidated (yellow nodes), and
unmastered knowledge points (red nodes). This forms students’ personal learning profiles, clarifies
subsequent improvement paths, and recommends targeted remediation resources. For unmastered
knowledge points of students at the basic level, Xuexi Tong pushes PPT supplementary lecture videos
and special practice exercises; for students at the improvement and advanced levels, it pushes variant
exercises of error questions and extended resources. The difficulty of hierarchical practice questions for
the next class is dynamically adjusted, forming a closed loop of "diagnosis-learning-feedback-
remediation.".

4. Results and Discussion
4.1. Cluster Design

This study takes 2025-cohort engineering students from an undergraduate institution as the research
subjects, selecting 100 students from two parallel classes and adopting a controlled experimental design:
the experimental group (50 students) employs the hierarchical teaching model supported by Al
Knowledge Graph; the control group (50 students) adopts the traditional teaching model, i.e., PowerPoint
presentations + blackboard lectures + a fixed question bank. Students in both groups are instructed by
the same teacher, and the textbook and basic course content are consistent to ensure fair comparison.

4.2. Experimental Implementation

The experimental period lasted for a complete semester (17 weeks), and the teaching modules covered
core Advanced Mathematics topics such as limits, derivatives, integrals, series, and functions of several
variables. Learning data of students in both groups was recorded throughout the entire process, and
statistical analysis was conducted around two dimensions: "learning outcomes - learning behaviors." See
Table 1 for variable definitions.
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Table 1: Variable Definitions and Descriptions

Variable Type Variable Name Variable Definition & Example Function
1 = Experimental Group (Al-based
Grouping ) ) Distinguish and compare the
) Group hierarchical teaching), 2 = Control
Variable two groups

Group (traditional teaching)

Students’ final Advanced Mathematics Compare the final learning

Learning final_score )
scores (e.g., 0-100 points) effects of the two groups
Outcome
. Compare the learning
Indicators pass_flag 1 = Pass (e.g., >60 points), 0 = Fail
initiative of the two groups
Learning )
Weekly self-study hours for Advanced Compare the learning
Behavior self study hour
) Mathematics (e.g., hours) initiative of the two groups
Indicators

4.3. Data Analysis Methods

First, the evaluation process verifies data applicability through normality tests and homogeneity of
variance tests. Then, for continuous indicators—final average scores and weekly self-study hours—
independent samples t-tests are adopted to compare the quantitative differences between the experimental
group and the control group, with the effect size Cohen’ s d used to quantify the magnitude of the
differences. For the categorical indicator (pass rate), Pearson chi-square tests are employed to analyze
the association between the pass rates of the two groups. The specific experimental results are as follows:

Table 2 Results of Normality Test for Scores

Standard
Variable Name | Sample Size | Median | Mean o Skewness | Kurtosis S-W Test
Deviation
scores 100 80 79.34 11.171 -0.53 0.105 | 0.975(0.050%)

Note: ***, ** and * indicate significance levels of 1%, 5%, and 10%, respectively.

Table 2 presents the results of descriptive statistics and normality test for the quantitative variable
(Scores), including the median, mean, and other metrics, which is intended to verify the normality of the
data. The Shapiro-Wilk (S-W) test was applied to the Scores variable, yielding a significance p-value of
0.05. Since the result is not significant at this level, the null hypothesis cannot be rejected, and thus the
data satisfies the normal distribution.

Table 3: Homogeneity of Variance Test for Scores

Standard Deviation

Variable Name X F P
Experimental Group Control Group

score 9.75 11.961 2.06 0.154
Note: *** ** and * indicate significance levels of 1%, 5%, and 10%, respectively.

Table 3 presents the results of homogeneity of variance, including standard deviations, F-test results,
and significance p-values. The results indicate that for the Scores variable, the test yielded a significance
p-value of 0.154, which is not significant at the 0.05 significance level. Thus, the null hypothesis cannot
be rejected, and the data satisfies homogeneity of variance.

Table 4: Independent Samples t-test Analysis Results for Scores

Variable Sample Standard Welch’ s Mean
Variable Mean t-test Cohen’s d

Name Size Deviation T test Difference

Experimental

50 81.96 9.75 T=2.401 T=2.401
scores Group 5.24 0.48
P=0.018** |P=0.018**
Control Group| 50 76.72 11.961

Note: *** ** and * indicate significance levels of 1%, 5%, and 10%, respectively.
Table 4 presents the results of the independent samples t-test, including mean =+ standard deviations,
t-test statistics, significance p-values, and effect size Cohen’ s d. Class 1 and Class 2 had a mean score
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of 81.96 and 76.72, respectively. Since homogeneity of variance was satisfied, the independent samples
t-test was employed, yielding a significance p-value of 0.018**, indicating a statistically significant result.
This demonstrates that there was a statistically significant difference in scores between Class 1 and Class
2; the magnitude of the difference, as measured by Cohen’ s d, was 0.48, representing a small effect size.
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Figure 1: Error Curve Chart for Scores

Figure 1 intuitively shows that the mean score of the experimental group adopting Al knowledge
graph-based hierarchical teaching (82.480) is significantly higher than that of the control group using
traditional teaching (76.640). Additionally, the error ranges of the two groups basically do not overlap,
confirming the statistical significance of the experimental group’ s superior performance.

Table 5: Results of Normality Test for Self-Study Hours

Variable Standard
Sample Size | Median | Mean ~ |Skewness| Kurtosis S-W Test YTEWQ
Name Deviation
self study | 0.954 0.086
100 7.578 | 7.533 1.363 -0.227 | -0.882
hour (0.001%***) (0.066%)

Note: *** ** and * indicate significance levels of 1%, 5%, and 10%, respectively.

Table 5 presents the results of descriptive statistics and normality test for the quantitative variable
(Self-Study Hours), including the median, mean, and other metrics, which is intended to verify the
normality of the data. The Shapiro-Wilk (S-W) test was applied to the Self-Study Hours variable, yielding
a significance p-value of 0.001. Since the result is statistically significant at the 0.05 significance level,
the null hypothesis is rejected, and thus the data does not satisfy the normal distribution. The absolute
value of Kurtosis (-0.882) is less than 10, and the absolute value of Skewness (-0.227) is less than 3;
further analysis was conducted in conjunction with the normal distribution histogram.
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Figure 2: Normality Test Histogram

Figure 2 presents the results of the normality test for the Self-Study Hours variable. If the histogram
basically exhibits a bell shape (high in the middle and low at both ends), this indicates that although the
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data is not absolutely normally distributed, it is generally acceptable as a normal distribution.

Table 6: Homogeneity of Variance Test for self study hour

Standard Deviation

Variable Name Experimental F P
Control Group
Group
self study_hour 1.185 1.41 2.034 0.157

Note: *** ** and * indicate significance levels of 1%, 5%, and 10%, respectively.

Table 6 presents the results of homogeneity of variance, including standard deviations, F-test statistics,
and significance p-values. The results indicate that for the Self-Study Hours variable, the test yielded a
significance p-value of 0.157, which is not statistically significant at the 0.05 significance level. Thus,
the null hypothesis cannot be rejected, and the data satisfies homogeneity of variance.

Table 7: Independent Samples t-test Analysis Results for self-study hour

Variable Sample Standard Welch’ s Mean | Cohen’
Variable Mean t-test
Name Size Deviation T test Difference| sd

self study | Experimental Group 50 7.954| 1.185 T=3.229 T=3.229 0.842 0.646

hour Control Group 50 |7.112| 1.41 |P=0.002%%**|P=0.002%**

Note: *** ** and * indicate significance levels of 1%, 5%, and 10%, respectively.

Table 7 presents the results of the independent samples t-test, including mean + standard deviations,
t-test statistics, significance p-values, and effect size Cohen’ s d. Class 1 and Class 2 had a mean self-
study hour of 7.954 and 7.112, respectively. Since homogeneity of variance was satisfied, the independent
samples t-test was employed, yielding a significance p-value of 0.002***, which indicates a statistically
significant result. This demonstrates that there was a statistically significant difference in self-study hours
between Class 1 and Class 2; the magnitude of the difference, as measured by Cohen’ s d, was 0.646,
representing a medium effect size (with critical values of 0.20, 0.50, and 0.80 corresponding to small,
medium, and large effect sizes, respectively).

self_study_hour
10
self_stgcyehofir| 9.61

self_studyhour: 924 self_studyChotir} 9125

9
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Figure 3: Line Chart for Self-Study Hours

Figure 3 illustrates the distribution of self-study hours among students in the experimental group and
the control group: the self-study hours of the experimental group are generally significantly higher
(mostly concentrated in the range of 7-9.64 hours), while those of the control group show a significant
downward trend in the later stage (mostly dropping to around 5-6 hours). This intuitively reflects that the
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Al knowledge graph-based hierarchical teaching model can enhance students’ engagement in
independent learning.

Table 8: Chi-square Test Analysis Results for Pass Rate

Variabl Class
ariabie Name . Control Total Test Method X2 P
Name Experimental Group
Group
Pass 48 47 95 Pearson chi-square
Pass Status Fail 2 3 5 test 0.211 | 0.646

Note: *** ** and * indicate significance levels of 1%, 5%, and 10%, respectively.

Table 8 presents the results of the model test, including data frequencies, chi-square values, and
significance p-values. The results of the Pearson chi-square test indicate that the significance p-value is
0.646. Although p>0.05, indicating no statistically significant difference, the pass rates of both groups
are as high as 94%+. This demonstrates that Al-based hierarchical teaching does not reduce the pass rate
and is slightly higher than that of the control group. Combined with the statistically significant
improvement in the average score, it is confirmed that the model "not only improves scores but also
ensures passing rates."

5. Conclusions

This study systematically verified the effectiveness of the hierarchical teaching model for advanced
mathematics based on an Al knowledge graph through controlled experiments and multi-dimensional
statistical analysis. The core conclusions are as follows: First, in terms of learning outcomes, the final
average score of the experimental group (81.96 points) was significantly higher than that of the control
group (76.72 points), with an independent samples t-test result of P=0.018<0.05. Additionally, the pass
rates of both groups exceeded 94%, indicating that the model can not only effectively improve students’
overall academic performance but also ensure the basic passing rate and avoid polarization. Second, in
terms of learning behaviors, the weekly self-study hours of the experimental group (7.954 hours) were
significantly longer than those of the control group (7.112 hours), with a t-test result of P=0.002<0.01
and a medium effect size (Cohen’ s d=0.646). This proves that the model can effectively stimulate
students’ initiative in independent learning and improve their learning engagement.
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