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Abstract: The quality of higher education has attracted global attention, and foundational courses 
shoulder the critical mission of core knowledge imparting. Therefore, improving the quality of higher 
education must start with enhancing the teaching quality of foundational courses. Currently, the teaching 
of foundational disciplines faces dilemmas including a single teaching method, excessively large class 
sizes, and a lack of hierarchical educational objectives. These issues hinder students’ learning initiative 
and effective interaction between teachers and students, resulting in insufficient momentum for 
improving teaching quality. To address the aforementioned problems, this paper introduces AI 
knowledge graph technology and proposes a hierarchical teaching model, taking Advanced Mathematics 
as an example, to achieve precise learning situation diagnosis, dynamic stratification, and intelligent 
resource matching. A controlled experiment was carried out with 100 undergraduates from two parallel 
engineering classes as research subjects. The experimental group adopted the AI knowledge graph-
driven hierarchical teaching model, while the control group used the traditional teaching model. Results 
indicate that the experimental group achieved a final average score of 81.96 (compared to 76.72 in the 
control group, p=0.018**), a pass rate as high as over 94%, and was significantly superior to the control 
group in self-directed learning time (8 hours/week vs. 7 hours/week in the control group).The research 
confirms that this model can effectively enhance teaching precision and learning effectiveness, offering 
practical references for the intelligent reform of foundational discipline teaching in universities. 
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1. Introduction 

Foundational discipline courses are public compulsory courses offered by all undergraduate 
universities. They serve as a key bridge connecting secondary education and undergraduate professional 
learning, and play a vital role in the construction of college students’ knowledge systems, the cultivation 
of their thinking abilities, and even their future career development.  

However, the current teaching of foundational disciplines in universities still faces numerous practical 
dilemmas. On one hand, public foundational courses have long been in the "peripheral position" of 
undergraduate talent cultivation. Some universities tend to prioritize majors over foundational disciplines, 
and insufficient attention is paid to the teaching quality of foundational disciplines. On the other hand, 
the traditional teaching model for foundational disciplines has obvious shortcomings. Taking Advanced 
Mathematics as an example, most universities still adopt a "one-size-fits-all" uniform teaching model: 
there is high homogeneity in teaching content, progress, and assessment criteria. This model can neither 
meet the in-depth exploration needs of students with a solid foundation and extra learning capacity, nor 
adapt to the personalized needs for strengthening weak areas of students with a weak foundation and 
slow learning pace. Eventually, it leads to the phenomenon of polarization where "high-achieving 
students cannot meet their learning needs (lit. ‘cannot get enough to eat’ ) and low-achieving students 
struggle to keep up," which seriously undermines students’ learning enthusiasm and the effectiveness of 
course teaching. 

With the advent of the "Internet + Education" era, the in-depth integration of technologies such as AI 
with education has provided new possibilities for teaching reform, and the demand of contemporary 
college students for personalized and precise teaching has also become increasingly prominent. However, 
the problems of the disconnection between traditional teaching models and technology empowerment, 
and the mismatch between teaching supply and student needs remain unsolved, and there is an urgent 
need for new teaching models to break the deadlock. 
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Against this backdrop, AI Knowledge Graph, with its core advantages of being structured, visualized, 
and intelligent, provides a new approach to addressing the challenges in foundational discipline teaching. 
AI Knowledge Graph can systematically organize and visually present knowledge points, logical 
connections, and key and difficult points of foundational disciplines such as Advanced Mathematics, 
accurately mapping the knowledge network and students’ cognitive paths; while Hierarchical Teaching 
takes students’ individual differences as its starting point. By accurately identifying students’ knowledge 
foundations and learning abilities, it formulates differentiated teaching objectives, content, and 
evaluation systems to achieve the goal of “teaching students in accordance with their aptitude”. This 
paper organically integrates the two, constructing a hierarchical teaching model for foundational 
disciplines based on AI Knowledge Graph. This model not only leverages technological means to break 
through the bottlenecks of “inaccurate learning situation diagnosis, unscientific hierarchical standards, 
and untimely teaching adjustments” in traditional hierarchical teaching but also fully meets students’ 
personalized learning needs through hierarchical design. Based on this, this paper takes the Advanced 
Mathematics course as the empirical research object, systematically conducting research on the 
construction and application of the hierarchical teaching model for foundational disciplines based on AI 
Knowledge Graph. It aims to provide replicable and promotable practical pathways for improving the 
teaching quality of foundational disciplines and advancing undergraduate foundational teaching reform, 
thereby laying a solid foundation for the cultivation of first-class undergraduate talents. 

2. Related Works 

In recent years, the application of digital technologies and intelligent means in foundational discipline 
education has continued to expand. Many scholars have explored the impact of AI, gamification, 
curriculum reform, and teacher professional development on teaching effectiveness, and summarized 
some representative research results. 

Xu Li et al. discussed the pain points in Python programming teaching, such as teacher "monologues" 
and over-reliance on quantitative evaluation. Taking undergraduate students from the School of 
Computer Science as the research objects, they leveraged mathematical models to mine the 
characteristics of learning process data, constructed a multi-dimensional learning effectiveness 
evaluation system, conducted an empirical study, and proposed curriculum optimization suggestions. 
Their core idea of data-driven and precision-oriented teaching optimization provides a direction for this 
paper to construct a precision teaching model for foundational disciplines based on AI Knowledge 
Graph[1]. Pingshan Wang pointed out that AI technology has driven education to urgently need 
transformation. He analyzed the inevitability of reform from multiple dimensions, explored AI 
applications such as intelligent tutoring and classroom management as well as the multi-dimensional 
reconstruction of teaching models, mentioned challenges including ethics and data privacy and proposed 
corresponding response strategies, and emphasized human-machine collaboration and the cultivation of 
core competencies[2]. Aiming at problems such as inefficient utilization of teaching resources in 
traditional Advanced Mathematics instruction, Suxiang Zhang introduced AI and big data technologies 
to construct an online-offline hybrid teaching model. Through an empirical study on undergraduate 
engineering students, the scores and pass rate of the experimental group were significantly higher than 
those of the control group, validating the effectiveness of AI-empowered Advanced Mathematics 
teaching[3]. Taking university interactive classrooms as cases, Hao J et al. explored the correlation 
between teachers’ questioning strategies, students’ AI usage tendencies, and academic performance. They 
found that higher-order thinking questions are correlated with AI usage, but AI usage has limited impact 
on academic performance[4]. Taking undergraduate students as the research subjects, Shomotova, A. et 
al. explored the relationships between digital competence, generative AI usage, personal backgrounds, 
and AI literacy. Through multiple statistical methods, they found that all of these factors show a strong 
positive correlation with AI literacy, and proposed curriculum optimization suggestions that integrate AI 
ethics and practical operation experience[5]. Biehler, R. et al. point out the current state of research on 
university mathematics education, focus on the learning challenges of skills such as formal reasoning 
and proofs in higher-order mathematics courses, and synthesize the trends in three core areas: innovation 
in the teaching and learning of higher-order mathematics, transition between educational stages, and the 
role of proofs[6]. Focusing on the disconnection between content courses and pedagogy courses in pre-
service secondary mathematics teacher education, Marshman, M. interviewed hybrid mathematics 
teacher educators from Australia and the Czech Republic to explore their identity formation across cross-
disciplinary boundaries, and advocates for strengthening collaboration between mathematicians and 
mathematics educators[7]. Taking 748 undergraduate mathematics students as research subjects, 
Gonzalez-DeHass et al. explored and found that fixed mindset and parents’ attitudes towards helping 



Frontiers in Educational Research 
ISSN 2522-6398 Vol. 9, Issue 1: 17-24, DOI: 10.25236/FER.2026.090103 

Published by Francis Academic Press, UK 
-19- 

with mathematics influence students’ math anxiety through paths such as avoidance goals, and female 
students had higher anxiety scores[8]. Taking 90 freshmen taking College English as research subjects, 
Hu L et al. explored the impact of diversified evaluation on students’ sense of learning achievement 
through multiple methods. They found that learning behaviors, teachers’ teaching behaviors, and learning 
environment all show a significant positive correlation with the sense of learning achievement, and 
proposed to conduct multi-dimensional and multi-level evaluations by leveraging learning situation data 
from knowledge graphs[9]. Taking master’s students as research subjects, Wiitavaara B. et al. explored 
through methods such as interviews and phenomenological analysis and found that online learning 
requires higher levels of students’ self-leadership, digital competence, and other capabilities[10]. They 
emphasized the need to strengthen support for students’ self-regulation and the construction of teachers’ 
sense of community. Current studies tend to concentrate on a single aspect of teaching models or 
instructor professional growth, and they are generally deficient in thorough empirical examination of the 
targeted intervention mechanisms of intelligent technology and the individualized learning achievements 
of students. 

3. Teaching Steps for a Tiered Instructional Model in Higher Mathematics Based on AI Knowledge 
Graphs 

Taking Advanced Mathematics as an example, this section implements teaching in accordance with 
the "before class - during class - after class" process based on the hierarchical teaching model supported 
by AI Knowledge Graph. Before class, the Advanced Mathematics knowledge graph is first constructed; 
students are divided into three levels (basic level, improvement level, and advanced level) based on 
learning situation data, and personalized preview resources are pushed to them. During class, 
differentiated teaching objectives and content are set for the three levels; knowledge graph visualization 
is used to support interaction, and real-time feedback is captured to adjust teaching. After class, 
hierarchical assignments and resources are pushed, data is tracked to dynamically optimize hierarchical 
strategies, and personalized reports including knowledge mastery status are generated. Finally, through 
grouped experiments (the experimental group adopts this model while the control group uses the 
traditional model), learning outcomes, behaviors, and subjective perception data are compared to verify 
the effectiveness of the model.  

3.1. Pre-class Preparation Stage 

First, systematically sort out the core knowledge system of Advanced Mathematics. Through AI 
technology, structurally present knowledge points, logical connections, key and difficult points, error-
prone points, adaptation relationships with question types, and other elements to form a visual knowledge 
network, clarifying the hierarchical progressive relationships among various knowledge points. This 
constructs the Advanced Mathematics AI Knowledge Graph. 

Second, release a pre-test (including 30% basic questions, 50% intermediate questions, and 20% 
difficult questions) through Xuexi Tong, collect students’ answer data to initially identify their knowledge 
weaknesses, and divide students into three levels based on their test scores and error question types: basic 
level (below 60 points, weak in core concepts), improvement level (60-80 points, solid foundation but 
needs skill enhancement), and advanced level (above 80 points, requiring application expansion). 
Synchronize the student list to the class groups in Rain Classroom. 

Finally, based on the hierarchical results, dynamically match preview resources using the AI 
Knowledge Graph: for students at the basic level, push visual explanation videos of the knowledge graph, 
microlectures on basic knowledge points, and simple example explanations, focusing on filling 
knowledge gaps; for students at the improvement level, push microlectures on the associated applications 
of knowledge points and tutorials on the breakdown of typical question types to strengthen their 
knowledge transfer ability; for students at the advanced level, push extended knowledge points and 
interdisciplinary cases (such as introductory mathematical modeling) to guide them in independent 
inquiry. 

3.2. In-class Teaching Stage 

First, classroom teaching sets different objectives for students at the three levels: students at the basic 
level are required to master the definitions, formulas, and basic applications of core knowledge points 
and complete drills on basic examples; students at the improvement level are required to proficiently 
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apply knowledge points to solve problems, overcome error-prone points, and finish intermediate-level 
comprehensive questions; students at the advanced level are required to deepen their understanding of 
the logical essence of knowledge points, solve complex comprehensive questions and inquiry-based 
problems, and attempt applications of mathematical modeling. 

Second, teachers deliver in-depth lectures on core knowledge points using PPT (taking into account 
all students), and use knowledge graph visualization to show the position of the current teaching 
knowledge points in the overall knowledge network as well as associated examination points, helping 
students establish systematic cognition. Then, teachers release practice questions for the three levels 
through Rain Classroom: 5 basic questions (e.g., direct application of formulas) for the basic level, 3 
intermediate questions (integration of multiple knowledge points) + 2 basic questions for the 
improvement level, and 2 intermediate questions + 3 extended questions for the advanced level, with 
students required to complete the questions within a time limit. During this process, teachers should 
capture real-time classroom feedback, view answer data in real time through Rain Classroom, quickly 
review and recap knowledge points with concentrated errors for the basic level using PPT, and organize 
cross-group discussions for common problems among the improvement and advanced levels while 
conducting roving guidance to ensure that students at all levels "gain meaningful learning outcomes." 

Finally, teachers summarize the core points of the lesson using PPT, sort out the knowledge context 
by combining with the AI Knowledge Graph, and emphasize the key content that students at all levels 
need to master. Xuexi Tong releases hierarchical assignments: for the basic level, complete basic 
exercises in the textbook and error question review and recap; for the improvement level, finish 
intermediate-level comprehensive questions and sorting out problem-solving ideas; for the advanced 
level, complete extended questions and case analysis reports, with the submission deadline clearly 
specified. 

3.3. Post-class Consolidation and Enhancement Stage 

Objective questions are batch-graded by Xuexi Tong, while teachers manually grade subjective 
questions and label error types. Data such as students’ assignment completion rate, accuracy rate, and 
quality of preview notes are collected and combined with in-class answer data. With the help of the AI 
Knowledge Graph, dynamic changes in students’ knowledge gaps are analyzed, and learning outcomes 
are fed back to both students and teachers in the form of knowledge graph visualization: marking 
mastered knowledge points (green nodes), knowledge points to be consolidated (yellow nodes), and 
unmastered knowledge points (red nodes). This forms students’ personal learning profiles, clarifies 
subsequent improvement paths, and recommends targeted remediation resources. For unmastered 
knowledge points of students at the basic level, Xuexi Tong pushes PPT supplementary lecture videos 
and special practice exercises; for students at the improvement and advanced levels, it pushes variant 
exercises of error questions and extended resources. The difficulty of hierarchical practice questions for 
the next class is dynamically adjusted, forming a closed loop of "diagnosis-learning-feedback-
remediation.". 

4. Results and Discussion 

4.1. Cluster Design 

This study takes 2025-cohort engineering students from an undergraduate institution as the research 
subjects, selecting 100 students from two parallel classes and adopting a controlled experimental design: 
the experimental group (50 students) employs the hierarchical teaching model supported by AI 
Knowledge Graph; the control group (50 students) adopts the traditional teaching model, i.e., PowerPoint 
presentations + blackboard lectures + a fixed question bank. Students in both groups are instructed by 
the same teacher, and the textbook and basic course content are consistent to ensure fair comparison. 

4.2. Experimental Implementation 

The experimental period lasted for a complete semester (17 weeks), and the teaching modules covered 
core Advanced Mathematics topics such as limits, derivatives, integrals, series, and functions of several 
variables. Learning data of students in both groups was recorded throughout the entire process, and 
statistical analysis was conducted around two dimensions: "learning outcomes - learning behaviors." See 
Table 1 for variable definitions. 
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Table 1: Variable Definitions and Descriptions 

Variable Type Variable Name Variable Definition & Example Function 

Grouping 

Variable 
Group 

1 = Experimental Group (AI-based 

hierarchical teaching), 2 = Control 

Group (traditional teaching) 

Distinguish and compare the 

two groups 

Learning 

Outcome 

Indicators 

final_score 
Students’ final Advanced Mathematics 

scores (e.g., 0-100 points) 

Compare the final learning 

effects of the two groups 

pass_flag 1 = Pass (e.g., ≥60 points), 0 = Fail 
Compare the learning 

initiative of the two groups 

Learning 

Behavior 

Indicators 

self_study_hour 
Weekly self-study hours for Advanced 

Mathematics (e.g., hours) 

Compare the learning 

initiative of the two groups 

4.3. Data Analysis Methods 

First, the evaluation process verifies data applicability through normality tests and homogeneity of 
variance tests. Then, for continuous indicators—final average scores and weekly self-study hours—
independent samples t-tests are adopted to compare the quantitative differences between the experimental 
group and the control group, with the effect size Cohen’ s d used to quantify the magnitude of the 
differences. For the categorical indicator (pass rate), Pearson chi-square tests are employed to analyze 
the association between the pass rates of the two groups. The specific experimental results are as follows: 

Table 2 Results of Normality Test for Scores 

Variable Name Sample Size Median Mean 
Standard 

Deviation 
Skewness Kurtosis S-W Test 

scores 100 80 79.34 11.171 -0.53 0.105  0.975(0.050*)  

Note: ***, **, and * indicate significance levels of 1%, 5%, and 10%, respectively. 
Table 2 presents the results of descriptive statistics and normality test for the quantitative variable 

(Scores), including the median, mean, and other metrics, which is intended to verify the normality of the 
data. The Shapiro-Wilk (S-W) test was applied to the Scores variable, yielding a significance p-value of 
0.05. Since the result is not significant at this level, the null hypothesis cannot be rejected, and thus the 
data satisfies the normal distribution. 

Table 3: Homogeneity of Variance Test for Scores 

Variable Name 
Standard Deviation 

F P 
Experimental Group Control Group 

score  9.75   11.961  2.06 0.154 
Note: ***, **, and * indicate significance levels of 1%, 5%, and 10%, respectively. 

Table 3 presents the results of homogeneity of variance, including standard deviations, F-test results, 
and significance p-values. The results indicate that for the Scores variable, the test yielded a significance 
p-value of 0.154, which is not significant at the 0.05 significance level. Thus, the null hypothesis cannot 
be rejected, and the data satisfies homogeneity of variance. 

Table 4: Independent Samples t-test Analysis Results for Scores 

Variable 

Name 
Variable 

Sample 

Size 
Mean 

Standard 

Deviation 
t-test 

Welch’ s  

T test 

Mean 

Difference 
Cohen’ s d 

scores 

Experimental 

Group 
50 81.96  9.75  T=2.401 

P=0.018** 

T=2.401 

P=0.018** 
 5.24   0.48  

Control Group  50 76.72 11.961  

Note: ***, **, and * indicate significance levels of 1%, 5%, and 10%, respectively. 
Table 4 presents the results of the independent samples t-test, including mean ± standard deviations, 

t-test statistics, significance p-values, and effect size Cohen’ s d. Class 1 and Class 2 had a mean score 
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of 81.96 and 76.72, respectively. Since homogeneity of variance was satisfied, the independent samples 
t-test was employed, yielding a significance p-value of 0.018**, indicating a statistically significant result. 
This demonstrates that there was a statistically significant difference in scores between Class 1 and Class 
2; the magnitude of the difference, as measured by Cohen’ s d, was 0.48, representing a small effect size. 

 
Figure 1: Error Curve Chart for Scores 

Figure 1 intuitively shows that the mean score of the experimental group adopting AI knowledge 
graph-based hierarchical teaching (82.480) is significantly higher than that of the control group using 
traditional teaching (76.640). Additionally, the error ranges of the two groups basically do not overlap, 
confirming the statistical significance of the experimental group’ s superior performance. 

Table 5: Results of Normality Test for Self-Study Hours 

Variable 

Name 
Sample Size Median Mean 

Standard 

Deviation 
Skewness Kurtosis S-W Test YTEWQ 

self_study_ 

hour 
100 7.578 7.533 1.363 -0.227 -0.882 

 0.954 

(0.001***)  

 0.086 

 (0.066*)  

Note: ***, **, and * indicate significance levels of 1%, 5%, and 10%, respectively. 
Table 5 presents the results of descriptive statistics and normality test for the quantitative variable 

(Self-Study Hours), including the median, mean, and other metrics, which is intended to verify the 
normality of the data. The Shapiro-Wilk (S-W) test was applied to the Self-Study Hours variable, yielding 
a significance p-value of 0.001. Since the result is statistically significant at the 0.05 significance level, 
the null hypothesis is rejected, and thus the data does not satisfy the normal distribution. The absolute 
value of Kurtosis (-0.882) is less than 10, and the absolute value of Skewness (-0.227) is less than 3; 
further analysis was conducted in conjunction with the normal distribution histogram. 

 
Figure 2: Normality Test Histogram 

Figure 2 presents the results of the normality test for the Self-Study Hours variable. If the histogram 
basically exhibits a bell shape (high in the middle and low at both ends), this indicates that although the 
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data is not absolutely normally distributed, it is generally acceptable as a normal distribution. 

Table 6: Homogeneity of Variance Test for self_study_hour 

Variable Name 

Standard Deviation 

F P Experimental 

Group 
Control Group 

self_study_hour  1.185   1.41  2.034 0.157 

Note: ***, **, and * indicate significance levels of 1%, 5%, and 10%, respectively. 
Table 6 presents the results of homogeneity of variance, including standard deviations, F-test statistics, 

and significance p-values. The results indicate that for the Self-Study Hours variable, the test yielded a 
significance p-value of 0.157, which is not statistically significant at the 0.05 significance level. Thus, 
the null hypothesis cannot be rejected, and the data satisfies homogeneity of variance. 

Table 7: Independent Samples t-test Analysis Results for self-study hour 

Variable 

Name 
Variable 

Sample 

Size 
Mean 

Standard 

Deviation 
t-test 

Welch’ s  

T test 

Mean 

Difference 

Cohen’  

s d 

self_study_ 

hour 

Experimental Group 50 7.954 1.185  T=3.229 

P=0.002*** 

T=3.229 

P=0.002*** 
 0.842   0.646  

Control Group 50 7.112  1.41  

Note: ***, **, and * indicate significance levels of 1%, 5%, and 10%, respectively. 
Table 7 presents the results of the independent samples t-test, including mean ± standard deviations, 

t-test statistics, significance p-values, and effect size Cohen’ s d. Class 1 and Class 2 had a mean self-
study hour of 7.954 and 7.112, respectively. Since homogeneity of variance was satisfied, the independent 
samples t-test was employed, yielding a significance p-value of 0.002***, which indicates a statistically 
significant result. This demonstrates that there was a statistically significant difference in self-study hours 
between Class 1 and Class 2; the magnitude of the difference, as measured by Cohen’ s d, was 0.646, 
representing a medium effect size (with critical values of 0.20, 0.50, and 0.80 corresponding to small, 
medium, and large effect sizes, respectively). 

  
Figure 3: Line Chart for Self-Study Hours 

Figure 3 illustrates the distribution of self-study hours among students in the experimental group and 
the control group: the self-study hours of the experimental group are generally significantly higher 
(mostly concentrated in the range of 7-9.64 hours), while those of the control group show a significant 
downward trend in the later stage (mostly dropping to around 5-6 hours). This intuitively reflects that the 
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AI knowledge graph-based hierarchical teaching model can enhance students’ engagement in 
independent learning. 

Table 8: Chi-square Test Analysis Results for Pass Rate 

Note: ***, **, and * indicate significance levels of 1%, 5%, and 10%, respectively. 
Table 8 presents the results of the model test, including data frequencies, chi-square values, and 

significance p-values. The results of the Pearson chi-square test indicate that the significance p-value is 
0.646. Although p>0.05, indicating no statistically significant difference, the pass rates of both groups 
are as high as 94%+. This demonstrates that AI-based hierarchical teaching does not reduce the pass rate 
and is slightly higher than that of the control group. Combined with the statistically significant 
improvement in the average score, it is confirmed that the model "not only improves scores but also 
ensures passing rates." 

5. Conclusions  

This study systematically verified the effectiveness of the hierarchical teaching model for advanced 
mathematics based on an AI knowledge graph through controlled experiments and multi-dimensional 
statistical analysis. The core conclusions are as follows: First, in terms of learning outcomes, the final 
average score of the experimental group (81.96 points) was significantly higher than that of the control 
group (76.72 points), with an independent samples t-test result of P=0.018<0.05. Additionally, the pass 
rates of both groups exceeded 94%, indicating that the model can not only effectively improve students’ 
overall academic performance but also ensure the basic passing rate and avoid polarization. Second, in 
terms of learning behaviors, the weekly self-study hours of the experimental group (7.954 hours) were 
significantly longer than those of the control group (7.112 hours), with a t-test result of P=0.002<0.01 
and a medium effect size (Cohen’ s d=0.646). This proves that the model can effectively stimulate 
students’ initiative in independent learning and improve their learning engagement. 
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Variable 
Name Name 

Class 
Total Test Method X² P Experimental Group Control 

Group 

Pass Status Pass  48   47  95  Pearson chi-square 
test  0.211   0.646  Fail  2   3  5 
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