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Abstract: At present, the global solution of PDE is usually obtained by the Feynman-Kac formula and 
then constructed by the interpolation method. In this paper, a polynomial fitting method based on the 
annealing algorithm is proposed to replace the interpolation method to construct the global solution. 
The simulated annealing algorithm is used to determine the coefficients of the fitting polynomials to 
obtain higher accuracy. The numerical results show that the improved model has less error than the 
model obtained by the interpolation method, and the annealing algorithm has a great contribution to 
improving the accuracy. Then the convergence analysis of the time step, simulation number, and 
polynomial order is carried out, and the result shows that the convergence is good. Finally, because the 
Feynman-Kac formula is used to determine the numerical solution, the method is expected to be applied 
to high-dimensional problems.  
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1. Introduction 

In recent years, partial differential equations have played an important role in scientific and 
engineering problems. To solve partial differential equations, researchers have been improving the 
solution methods. Traditional solution methods such as the difference method [1] and the finite element 
method [2] face difficulties in dealing with some problems. The difference method is simple to implement, 
but the accuracy is limited by the grid size and step size, and the calculation becomes difficult when 
complex regions and boundary conditions are encountered that require the use of irregular grids. The 
finite element method is computationally expensive and requires a lot of computational resources. There 
are also several methods for solving partial differential equations using the Feynman-Kac formulation, a 
numerical method for solving partial differential equations that relates stochastic differential equations 
to partial differential equations and is usually used to solve linear partial differential equations with 
probabilistic interpretations, such as the Black-Scholes equation in option pricing [3]. In addition, the 
Feynman-Kac formulation can be used in conjunction with reflected Brownian motion to solve numerical 
solutions of Laplace equations with Robin boundary conditions [4], and in addition, the hybrid 
probabilistic and deterministic BIE-WOS method proposed in the literature [5] provides a highly parallel 
algorithm for any hybrid type of BVP for elliptic equations. 

Most of the current research do not construct global solutions, or use interpolation methods to 
construct global solutions. However, due to the randomness of the Feynman-Kac formula, the 
interpolation points obtained are not necessarily on the original function. If the noise is too large, it is 
likely to cause a large number of oscillations between the interpolation function and the data points, 
resulting in a large error. Therefore, a polynomial fitting method based on the annealing algorithm is 
proposed in this paper, which is used to construct global solutions instead of interpolation. By using the 
annealing algorithm to select the coefficients of fitting polynomials, higher precision, and stability can 
be obtained in global solutions. Finally, the numerical simulation results show that the improved model 
has a lower relative error and a better fit than the interpolation method. 
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2. Pre-requisite knowledge 

2.1 Elliptic equation and Feynman-Kac formula 

In this paper, elliptic equations are studied as the object of research. Elliptic equations are widely 
used in physics, engineering and economics, such as steady-state solutions of heat conduction equations, 
Laplace's equation in elasticity, Poisson's equation in electric fields, etc. The elliptic equations studied in 
this paper are of the following form: 

�
𝜇𝜇(𝑥𝑥) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 1

2
𝜎𝜎2(𝑥𝑥) 𝑑𝑑

2𝑑𝑑
𝑑𝑑𝑑𝑑2

+ 𝑓𝑓(𝑥𝑥) = 0 𝑥𝑥 ∈ 𝐷𝐷

𝑢𝑢(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) 𝑥𝑥 ∈  𝐷𝐷�
                  (1) 

Solving elliptic equations usually involves boundary conditions that describe the physical constraints 
of the problem. The boundary conditions are the Dirichlet boundary condition (i.e., the value of the 
function on a given boundary) and the Neumann boundary condition (i.e., the value of the normal guide 
on a given boundary). It was shown in [10] that in bounded domains with Dirichlet or Neumann boundary 
conditions, we can use more complex versions of the equations based on Brownian motion to reduce the 
errors in the equations. Some common methods for solving high-dimensional elliptic equations are, for 
example, the Calder´ on-Zygmund type estimate [6], and the separation of variables method [7] for 
specific cases in high-dimensional elliptic equations, where the hypothetical solution can be expressed 
by decomposing the multidimensional problem into the form of a product of a series of one-dimensional 
problems, thus transforming the high-dimensional elliptic equations into a series of one-dimensional 
ordinary differential equations. By solving these one-dimensional equations, the solution of the original 
high-dimensional elliptic equation can be obtained. 

This paper uses the Feynman-Kac formula to solve elliptic equations. The Feynman-Kac formula 
named after Richard Feynman and Mark Kac, establishes the connection between partial differential 
equations and stochastic differential equations. The Feynman-Kac formula is a well-known tool for 
implementing many partial differential equations (such as diffusion or transport equations) with a 
stochastic representation of the point solution. It first appeared in the potential theory of the Schrödinger 
equation, which profoundly reformed quantum mechanics utilizing path integrals. Later, the formula also 
found applications in mathematical finance, interconnecting the probabilistic and partial differential 
equation representations of derivatives pricing. The Feynman-Kac formula corresponding to formula (1) 
is shown in (2). 

�𝑢𝑢
(𝑥𝑥) = 𝐸𝐸�∫ 𝑓𝑓(𝑋𝑋𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑔𝑔(𝑥𝑥𝜏𝜏)𝜏𝜏𝐷𝐷

0 �
𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇(𝑥𝑥)𝑑𝑑𝑥𝑥 + 𝜎𝜎(𝑥𝑥)𝑑𝑑𝐵𝐵𝑡𝑡，

                         (2) 

Where 𝜏𝜏 is the time at which the stochastic process exits the boundary 𝐷𝐷 is the time at which the 
stochastic process exits the boundary, and 𝑥𝑥𝜏𝜏 is the location of the exit boundary. 

2.2 Monte Carlo simulation 

Monte Carlo simulation [8] is a mathematical method based on probabilistic statistics to simulate, 
analyze and predict the behavior of complex systems by performing a large number of random samples 
under some probability distribution. Monte Carlo methods are widely used in various fields, such as 
finance, engineering, and statistical physics [9]. The key to the Monte Carlo method is the large random 
sampling. First, the probability distribution of the problem needs to be determined, and then a large 
number of samples are drawn from these distributions using a random number generator. Finally, these 
samples are statistically analyzed to understand the possible outcomes and risks. 

In addition, Monte Carlo simulation leads to some errors, and the number of simulations𝑁𝑁 related to 
the standard error𝐸𝐸𝑀𝑀 satisfies the following equation (3) [11]: 

𝐸𝐸𝑀𝑀 = 1
√𝑁𝑁

                                       (3) 

The advantages of Monte Carlo simulation [12][13] include: (1) Wide applicability. It can be applied 
to a wide variety of problems, especially those complex problems that are difficult to solve analytically. 
(2) Easy to implement. Only random sampling and statistical analysis are required to complete it. (3) 
Reliable results. The accuracy of the results will keep improving as the number of samples increases. 
However, the Monte Carlo method also has some disadvantages: (1) It is computationally intensive. A 
large number of random samples are needed, which requires high computational resources and 
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sometimes slow convergence. (2) In some cases, the effect of random sampling is not ideal and more 
samples may be needed to get accurate results. Despite the limitations, Monte Carlo simulation is still an 
important tool for solving complex mathematical problems. 

3. Constructing global solutions to differential equations using the Feynman-Kac formula 

This section provides a methodological discussion with the following equations: 

�−0.5Δ𝑢𝑢 = −0.5 exp(𝑥𝑥) 𝑥𝑥 ∈ (0,1)
𝑢𝑢(𝑥𝑥) = exp(𝑥𝑥) 𝑥𝑥 = 0 or 1                        (4) 

Its corresponding Feynman-Kac formula is 

�𝑢𝑢
(𝑥𝑥) = exp(𝑋𝑋𝜏𝜏) + ∫ −0.5 exp(𝑋𝑋𝑠𝑠)𝑑𝑑𝑑𝑑𝜏𝜏

0
𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑑𝑑𝐵𝐵𝑡𝑡,𝑋𝑋0 = 𝑥𝑥                        (5) 

3.1 Interpolation method 

Interpolation is a numerical analysis method used to predict or estimate unknown values between 
known discrete data points based on those data points. The goal of the interpolation method is to find a 
suitable function such that the value of the function at known data points matches the actual value so that 
the value of other unknown points can be inferred. The interpolation method has a wide range of 
applications in scientific computing, engineering, and data analysis. 

In this paper, we take equations (4), (5) as an example to solve the global solution on the boundaries 
[𝑎𝑎, 𝑏𝑏]. The global solution is solved on the boundary as follows. 

(1) At the defined boundary [𝑎𝑎, 𝑏𝑏] interval based on Gaussian points are selected 𝑀𝑀. The points to 
be found are given as {𝑥𝑥1,  𝑥𝑥2,⋯𝑥𝑥𝑀𝑀}.  

(2) An arbitrary point 𝑥𝑥𝑚𝑚 is selected, and according to formula (6), this point is taken as the starting 
point of Brownian motion to simulate 𝑃𝑃 Brownian motions. Note that the motion position of the point 
at time t of the path p is 𝐵𝐵𝑡𝑡

𝑝𝑝and the time step is set to 𝛿𝛿, where 𝑅𝑅𝑛𝑛 is generated by the standard normal 
distribution N (0,1). 𝐵𝐵𝑡𝑡

𝑝𝑝 changes every time step δ, until 𝐵𝐵𝑡𝑡
𝑝𝑝 falls outside the motion boundary  and 

stops moving, record the Brownian motion position 𝐵𝐵𝑡𝑡
𝑝𝑝 at this time, record the time as the termination 

time 𝜏𝜏 , {𝐵𝐵𝑡𝑡1
𝑝𝑝 ,𝐵𝐵𝑡𝑡2

𝑝𝑝 ,⋯𝐵𝐵𝑡𝑡𝑛𝑛 
𝑝𝑝 }  and all time node {𝑑𝑑1

𝑝𝑝, 𝑑𝑑2
𝑝𝑝, 𝑑𝑑3

𝑝𝑝,⋯ , 𝑑𝑑𝑛𝑛
𝑝𝑝}  recorded on trajectory list 𝑋𝑋𝑝𝑝  and 

movement time 𝑇𝑇𝑝𝑝 in the list. 

�
𝐵𝐵𝑡𝑡1
𝑝𝑝 = 𝑥𝑥𝑚𝑚

𝐵𝐵𝑡𝑡𝑛𝑛+1 = 𝐵𝐵𝑡𝑡𝑛𝑛 + √𝛿𝛿𝑅𝑅𝑛𝑛
                             (6) 

(3) The values obtained from step (2) are brought into the Feynman-Kac formula (5), and for an 
integral part, the trapezoidal product is taken as shown in equation (7), which can be implemented with 
the trapz command in the numpy library. For the non-integral part directly the 𝑥𝑥𝜏𝜏

𝑝𝑝 is brought in. The two 
parts are summed to solve for a 𝑢𝑢�𝑝𝑝(𝑥𝑥𝑖𝑖) value. 

∫ −0.5 ⋅ 𝑒𝑒𝑥𝑥𝑒𝑒(𝑋𝑋𝑠𝑠)𝑑𝑑𝑑𝑑𝜏𝜏
0 = (−0.5)

𝛿𝛿�exp (𝐵𝐵𝑡𝑡1
𝑝𝑝 )+exp (𝐵𝐵𝑡𝑡2

𝑝𝑝 )�+⋯𝛿𝛿�exp (𝐵𝐵𝑡𝑡𝑛𝑛−1
𝑝𝑝 )+exp (𝐵𝐵𝑡𝑡𝑛𝑛

𝑝𝑝 )�

2
       (7) 

(4) We get P values of 𝑢𝑢�𝑝𝑝(𝑥𝑥𝑚𝑚). Taking the expectation gives the numerical solution 𝑢𝑢�(𝑥𝑥𝑚𝑚) at 𝑥𝑥𝑚𝑚, 
as shown in equation (8). 

𝑢𝑢�(𝑥𝑥𝑚𝑚) =
Σ𝑝𝑝=1𝑃𝑃 𝑑𝑑�𝑝𝑝(𝑑𝑑𝑚𝑚)

𝑃𝑃
                               (8) 

(5) Iterate through all the points to be solved and repeat the above four steps to obtain 𝑀𝑀 numerical 
solutions on the sampling points{𝑢𝑢�(𝑥𝑥1),𝑢𝑢�(𝑥𝑥2)⋯𝑢𝑢�(𝑥𝑥𝑀𝑀)}. 

(6) For this 𝑀𝑀  numerical solutions are subjected to Lagrangian interpolation according to the 
following equation to obtain the global solution 𝑢𝑢�(𝑥𝑥) as shown in equation (9). 

𝑢𝑢�(𝑥𝑥) = ∑ 𝑢𝑢�(𝑥𝑥𝑚𝑚)∏ 𝑑𝑑−𝑑𝑑𝑗𝑗
𝑑𝑑𝑖𝑖−𝑑𝑑𝑗𝑗

𝑀𝑀
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

𝑀𝑀
𝑖𝑖=1                          (9) 
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3.2 Polynomial fitting based on simulated annealing algorithm 

The conventional method of constructing global solutions of partial differential equations, although 
easy, has several problems as follows: 

(1) Because the Brownian motion has a certain randomness, that is, the points used for interpolation 
may have a certain gap with the real value, and the interpolation method requires that the fitted curve 
must pass through the interpolation points, so a large systematic error may arise from the randomness of 
the motion. 

(2) Boundary condition handling: Interpolation methods may encounter difficulties when dealing 
with complex boundary conditions. For example, when partial differential equations have Robin bounds 
with nonlinear or nonuniform boundary conditions, interpolation methods may require more 
sophisticated processing techniques to accurately describe these conditions. 

Given the above shortcomings, this paper uses a new method to construct the global solution by 
replacing the original interpolation method with a polynomial fitting method based on the simulated 
annealing algorithm, and the specific solution steps are as follows: 

(1) On the determined boundary [a, b] interval selected by uniform distribution 𝑀𝑀. The points to be 
solved, let them be {𝑥𝑥1, 𝑥𝑥2,⋯𝑥𝑥𝑀𝑀}. 

(2) Without loss of generality, a point to be found is chosen 𝑥𝑥𝑚𝑚, (𝑚𝑚 ∈ {1,2,⋯ ,𝑀𝑀})and simulate the 
Brownian motion similar to step (2) of the interpolation method in this paper, but the number of 
simulations per point 𝑃𝑃 is fixed to 1.  

(3) The values obtained from step (2) are brought into the Feynman-Kac formula, and the algorithm 
is similar to step (2) of the interpolation method, and the trapezoidal product algorithm is adopted for the 
integral part as shown in Equation (7), and the integral and non-integral parts are added to solve for the 
𝑢𝑢�(𝑥𝑥𝑚𝑚). 

(4) Through all the points to be solved, we get 𝑀𝑀 numerical solutions {𝑢𝑢�(𝑥𝑥1),𝑢𝑢�(𝑥𝑥2),⋯ ,𝑢𝑢�(𝑥𝑥𝑀𝑀)}.  

(5) The polynomial order is set to 𝑜𝑜 , construct the polynomial coefficients by the least squares 
method, to obtain the polynomial 𝑢𝑢�(𝑥𝑥)as shown in equation (10), the approximate analytical expression 
of 𝑢𝑢(𝑥𝑥). 

𝑢𝑢�(𝑥𝑥) = 𝑎𝑎′𝑜𝑜𝑥𝑥𝑜𝑜 + 𝑎𝑎′𝑜𝑜−1𝑥𝑥𝑜𝑜−1 + ⋯𝑎𝑎′1𝑥𝑥 + 𝑎𝑎′0                    (10) 

(6) The combination of relative and absolute errors of the fit is used as the energy function 𝐸𝐸. As 
shown in Equation (11), the final global solution is obtained by optimizing the polynomial coefficients 
with the simulated annealing algorithm. The initial temperature of the simulated annealing algorithm 
is 𝑇𝑇0, the annealing rate is 𝛼𝛼,  and the termination temperature is set to 𝑇𝑇𝑒𝑒𝑛𝑛𝑑𝑑 . The final solution 𝑢𝑢�(𝑥𝑥) 
is obtained in the form of Eq. (12). 

𝐸𝐸 = 0.6 ∗ �
𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑡𝑡−𝑦𝑦𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝

𝑦𝑦𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝
� + 0.4 ∗ �𝑦𝑦𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑𝑖𝑖𝑝𝑝𝑡𝑡 − 𝑦𝑦𝑡𝑡𝑝𝑝𝑑𝑑𝑒𝑒�                (11) 

𝑢𝑢�(𝑥𝑥) = 𝑎𝑎𝑜𝑜𝑥𝑥𝑜𝑜 + 𝑎𝑎𝑜𝑜−1𝑥𝑥𝑜𝑜−1 + ⋯𝑎𝑎1𝑥𝑥 + 𝑎𝑎0                     (12) 

4. Numerical experimental results 

In this section, numerical experiments are conducted with equations (4), (5), and global solutions are 
constructed by interpolation and polynomial methods, respectively, with the true solution of the equation 
as 𝑒𝑒𝑑𝑑 for comparison. 

Numerical experiments of the interpolation method are performed first. The points to be found on 
[0,1] were selected as [0,0.3,0.6,0.9]. The number of simulations for each point. Experiment according 
to the operation in the interpolation method in 3.1 of this paper. The fitting results are shown in Figure 
1. 
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Figure 1: Lagrangian interpolation image 

Then the numerical experiment of the improved method is carried out. M points are generated by a 
uniform distribution. 𝑀𝑀 takes 20000 and the boundary 𝐷𝐷 is set to [0,1]. The polynomial order 𝑜𝑜  is 
taken as 6, and the parameters of simulated annealing set as 𝑇𝑇0 = 1000,  𝑇𝑇𝑒𝑒𝑛𝑛𝑑𝑑 = 1e-5. 𝛼𝛼 = 0.999. The 
global solution equations (13)(14) before and after the optimization of the simulated annealing algorithm 
are obtained as follows. 

𝑢𝑢�(𝑥𝑥) = 10.042𝑥𝑥6 + −26.239𝑥𝑥5 +  24.391𝑥𝑥4 + −9.455𝑥𝑥3 +  2.139𝑥𝑥2 +  0.844𝑥𝑥 +  1.018(13) 

𝑢𝑢�(𝑥𝑥) = 10.044𝑥𝑥6 + −26.223𝑥𝑥5 +  24.389𝑥𝑥4 + −9.478𝑥𝑥3 +  2.132𝑥𝑥2 +  0.853𝑥𝑥 +  1.009(14) 

The images of the fitted global solution compared with the real solution are shown in Figure 2. 

 
Figure 2: Polynomial fitting image based on simulated annealing algorithm 

Finally, the advantages and disadvantages of these two methods are compared. In this paper, the 
relative error is chosen as the evaluation index to compare the fitting of the traditional method, the 
polynomial fit by least squares, and the polynomial fit method optimized by the annealing algorithm. The 
specific steps are to select 100 points uniformly in [0,1] as the test set, calculate the predicted values 
using the traditional method, the polynomial obtained by least squares and the polynomial optimized by 



Academic Journal of Mathematical Sciences 
ISSN 2616-5805 Vol. 4, Issue 4: 27-35, DOI: 10.25236/AJMS.2023.040405 

Published by Francis Academic Press, UK 
-32- 

annealing algorithm, respectively, and calculate the relative error 𝐸𝐸𝑝𝑝𝑒𝑒𝑟𝑟1,𝐸𝐸𝑝𝑝𝑒𝑒𝑟𝑟2,𝐸𝐸𝑝𝑝𝑒𝑒𝑟𝑟3  , and the results 
obtained from the calculation are shown in Table 1. 

Table 1: Error comparison 

Method 𝑬𝑬𝒓𝒓𝒓𝒓𝒓𝒓 
Interpolation method 1.838e-03 

Polynomial fit 4.000e-04 
Polynomial fitting based on 

simulated annealing algorithm 4.855e-06 

According to the table, it can be seen that 𝐸𝐸𝑝𝑝𝑒𝑒𝑟𝑟1 > 𝐸𝐸𝑝𝑝𝑒𝑒𝑟𝑟2 ≫  𝐸𝐸𝑝𝑝𝑒𝑒𝑟𝑟3. The improved method clearly 
outperforms the traditional method in the case of the same number of simulated Brownian motions and 
almost the same arithmetic power consumption. 

5. Convergence analysis 

Three aspects of this polynomial fitting approach may lead to errors, such as the degree of 
discretization represented by the time interval between recorded Brownian motions, the number of Monte 
Carlo simulations, and the order of the polynomial, for which convergence analysis, as well as validation 
experiments, which are carried out in this section. 

5.1 Impact of Discretization 

The smaller the time step, the higher the accuracy of the numerical computation, but the longer the 
time required for the computation will be. When the time step is smaller, the calculation results will be 
closer to the real solution because the simulation is closer to the real physical process at a smaller time 
step. However, when the time step is too small, the errors in the numerical computation also become 
more sensitive because the errors can accumulate over more time steps and thus affect the accuracy of 
the computation. On the other hand, when the time step is larger, the time required for the calculation 
will be shorter, but the accuracy of the numerical calculation will be reduced. When the time step is too 
large, problems such as numerical instability and divergence may occur, which can lead to inaccurate 
calculation results. Therefore, it is necessary to balance the computational accuracy and computational 
efficiency when choosing the time step to obtain optimal numerical calculation results. In conclusion, 
the time step is an important parameter in numerical computation, which determines the accuracy and 
computational efficiency of numerical computation. The selection of the appropriate time step requires 
comprehensive consideration of simulation accuracy, computational efficiency, computational stability, 
and other factors, and adjustment according to the specific problem to obtain the optimal numerical 
calculation results. 

To investigate the effect of the degree of discretization on the accuracy of the results, the number of 
simulated Brownian motions is fixed as 𝑀𝑀 = 20000 and the polynomial order 𝑜𝑜 is fixed to 6, and the 
transform the time step 𝛿𝛿. To carry out the above numerical simulation experiments, the transverse 
coordinates are transformed as follows to make the data more intuitive. 

𝑥𝑥 = − lg(𝛿𝛿)                                 (15) 

The obtained results are shown in Fig. 3, where it can be seen that the error shows a tendency to 
converge to 0 as the time step is shortened. 
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Figure 3: Relative error vs. Step size 

5.2 Effect of the Number of Monte Carlo Simulations 

Monte Carlo simulation is a random number-based simulation method that estimates the solution of 
a problem by generating a large number of random samples. As the number of simulations increases, the 
error of Monte Carlo simulation gradually decreases because more samples can provide more accurate 
statistical information, thus improving the accuracy of the estimates. The error of a Monte Carlo 
simulation can usually be measured by the standard error, which is the standard deviation of the estimate 
divided by the square root of the number of samples. As the number of simulations increases, the standard 
error decreases and approaches zero. This indicates that the more the number of simulations, the smaller 
the error of the Monte Carlo simulation. On the other hand, the error of Monte Carlo simulation does not 
decrease linearly but shows a decreasing trend. At the beginning of increasing the number of simulations, 
error decreases rapidly as the number of simulations increases, but as the number of simulations increases, 
the error decreases gradually and slows down until it stabilizes. Therefore, when choosing the number of 
simulations, it is necessary to balance the computational accuracy and computational efficiency to obtain 
optimal simulation results. In conclusion, there is a decreasing relationship between the error of Monte 
Carlo simulation and the number of simulations, and the error decreases gradually and tends to be stable 
with the increase of the number of simulations. Choosing a suitable number of simulations can obtain 
more accurate simulation results, but factors such as computational efficiency need to be considered. 

To investigate the effect of the number of Monte Carlo simulations on the accuracy of the results, 
varying the number of simulations 𝑁𝑁 is taken as {100, 1000, 10000, 25000, 50000, 100000, 150000} 
fixed polynomial order 6, fixed time step 𝛿𝛿 as 0.001, the sub numerical experiments were conducted, 
and the experimental results are shown in Figure 4, where it can be seen that the error shows a tendency 
to converge to 0 as the number of simulations increases. 

 
Figure 4: Relative error vs. number of simulations 
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5.3 Polynomial order effect 

In this subsection, we explore the relationship between polynomial order and polynomial fitting 
accuracy. Polynomial fitting is a widely used mathematical method for data analysis, modeling, and 
prediction. By choosing the right polynomial order, we can achieve high accuracy in the fitting process. 
However, the appropriate choice of polynomial order is crucial to avoid overfitting and underfitting. 

The basic principle of the polynomial fitting is to use an 𝑜𝑜 polynomial of order to approximate the 
objective function of the form, As shown in formula (16). 

𝑃𝑃(𝑥𝑥) =  𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 +  𝑎𝑎2𝑥𝑥2 + … + 𝑎𝑎𝑜𝑜𝑥𝑥𝑜𝑜                 (16) 

where 𝑎𝑎₀,𝑎𝑎₁, … ,𝑎𝑎𝑜𝑜  are the polynomial coefficients, and 𝑥𝑥  denotes the input variable, and 𝑃𝑃(𝑥𝑥) 
denotes the output variable, and 𝑜𝑜 denotes the order of the polynomial. The goal of the fitting process 
is to find the best coefficient value that minimizes the error of the polynomial at a given data point. 

There is a complex relationship between polynomial order and fitting accuracy. In general, increasing 
the order of a polynomial can improve the fitting accuracy. This is because polynomials of higher order 
have more degrees of freedom and can capture more complex data features. However, when the order is 
too high, it may lead to an overfitting phenomenon. Overfitting means that the polynomial performs well 
on training data, but has poor predictive performance on new, unseen data. This is because higher-order 
polynomials may focus too much on the noise in the training data and fail to capture the true patterns in 
the data. On the other hand, if the polynomial order is too low, it may lead to an underfitting phenomenon. 
Underfitting refers to the inability of the polynomial to capture the key features in the data, which leads 
to poor prediction performance. To avoid overfitting and underfitting, a balance between model 
complexity and fitting accuracy is needed. 

To investigate the effect of polynomial order on the results, varying the polynomial order is shown 
in the horizontal coordinate of Fig. 5, fixed as the number of simulations 𝑀𝑀 is 20000, the time step of 
Brownian motion 𝛿𝛿 = 0.001. The numerical experiments were conducted, and the convergence of the 
experiments is shown in Fig. 5, where it can be seen that the error shows a tendency to converge to 0 as 
the polynomial order increases. 

 
Figure 5: Relative error vs. polynomial order 

6. Conclusion 

This paper introduces the importance of partial differential equations in scientific and engineering 
problems and the difficulties encountered by traditional numerical methods such as the finite element 
method and the difference method in dealing with the problems, as well as the problems encountered by 
general interpolation methods in constructing global solutions. In this paper, we propose a method for 
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constructing global solutions of partial differential equations by solving numerical solutions with the 
Feynman-Kac formula and replacing the interpolation method with a polynomial fitting method based 
on the annealing algorithm, which constructs global solutions with higher accuracy than the traditional 
methods. The relative error of the constructed global solution is much smaller than that of the traditional 
method. The subsequent numerical experiments of convergence analysis show that with the decrease of 
the time step, the number of simulations increases, the order of polynomials increases, and the error 
gradually approaches 0. On the other hand, because of the use of the Feynman-Kac formula, it can be 
extended to a certain extent to solve in higher dimensions. 
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