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Abstract: Small sample fraud detection involves extreme class imbalance and scarce positive instances, 
thus creating extreme difficulties for typical machine learning paradigms. This work introduces an 
adaptive regularization boosting framework for boosting algorithms that involves dynamic update 
rules for weights and theoretical convergence guarantees. The approach introduces a new 
temperature-calibrated loss function with regularization terms and provides convergence analysis of 
the proposed framework under small samples. Experimental comparison across five fraud detection 
data sets shows performance improvements ranging from 5.8% to 15.1% across different datasets with 
computational tractability preserved. Methodology contributes to ensemble learning by examining 
boosting behavior in imbalanced settings. 
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1. Introduction 

Fraud detection systems face significant challenges in small sample scenarios where fraudulent 
transactions constitute less than 0.1% of the total transaction volume [1]. Classical boosting algorithms 
are plagued by overfitting and poor generalization when trained on extremely imbalanced data with a 
very small number of positive instances. Existing approaches offer no theoretical guarantees on neither 
convergence nor performance bounds under such conditions. 

The primary concern arises from adaptive weight update mechanisms of traditional boosting 
algorithms, which may cause instability in the presence of a limited number of minority class examples. 
Standard AdaBoost and Gradient Boosting algorithms do not incorporate strong regularization 
techniques tailored for extreme imbalance scenarios, causing the classifiers to memorize training 
examples instead of learning generalizable fraud signals [2]. In addition, the techniques produce 
overconfident predictions on uncertain examples, which restricts their trustworthiness in production 
environments. 

This paper addresses some of these limitations by formulating a theoretically driven adaptive 
regularization framework for enhancing fraud detection in small samples. The main contributions are: 
formulation of a new temperature-calibrated loss function with convergence analysis with theoretical 
guarantees, formulation of adaptive regularization mechanisms with strong theoretical performance 
guarantees, and empirical assessment of practical effectiveness on a wide range of fraud detection 
applications with performance improvements ranging from 5.8% to 15.1% over baseline approaches. 

2. Related Work and Theoretical Foundation 

2.1 Boosting in Imbalanced Learning 

Classical boosting algorithms focus on reducing the overall classification error without considering 
class distribution characteristics. AdaBoost's exponential loss function L(y,f(x))= exp ( -yf(x)) assigns 
equal penalty to all misclassifications, leading to bias toward majority classes in imbalanced scenarios 
[3]. Gradient boosting techniques modify differentiable loss functions but have no specific provision 
for addressing extreme class imbalance characteristic of fraud detection. 

Various modifications of the boosting algorithms have been investigated in recent studies, such as 
asymmetric loss functions and weighted sampling strategies based on classes. These methods typically 
lack theoretical guarantees for convergence properties and performance guarantees under small sample 
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size conditions. Recent machine learning advances have highlighted the capability of temperature 
scaling and confidence calibration schemes to increase model trustworthiness under distribution 
uncertainty. These developments have shown particular promise in neural network architectures where 
classification accuracy is directly connected to prediction confidence. Temperature-based calibration 
techniques have been found to be effective mechanisms for addressing overconfidence in deep learning 
models, especially when there are large distribution shifts present in training data. Despite these 
encouraging developments, theoretical foundations for incorporating temperature calibration into 
ensemble learning frameworks remain in their early stages. Previous calibration approaches are mainly 
dedicated to single-model architectures and do not include the intensive mathematical derivations 
required to extend boosting algorithm guarantees to situations involving extreme class imbalance. This 
is especially the case with fraud detection scenarios where theoretical guarantees of convergence 
become critical to their practical usability. 

2.2 Small Sample Learning Theory 

Small sample learning theory provides mathematical frameworks for analyzing algorithmic 
performance when training data is limited relative to problem complexity. Rademacher complexity can 

be upper bounded by Rm(F)≤�2T log (2)
m

 for boosting algorithms over T weak learners and m samples [4]. 

This bound emphasizes the necessity of managing the complexity of an ensemble in small sample 
cases. 

Fraud detection datasets are highly imbalanced, with only a few out of all transactions being 
fraudulent, often less than 0.1% of the entire transaction volume. Classical machine learning models 
have difficulty with such extreme imbalance, typically being biased towards majority classes or having 
low sensitivity to patterns in the minority classes. This limitation has motivated the development of 
specialized ensemble techniques that explicitly address class imbalance through modified training 
procedures, adaptive weighting schemes, and sophisticated combination strategies [5]. 

3. Methodology 

3.1 Temperature-Calibrated Loss Function 

The proposed methodology introduces a temperature-calibrated loss function that adapts penalty 
terms based on prediction confidence and class imbalance characteristics. The loss function is defined 
as: 

                  Ltc(yi,f (xi))= exp ( -yif (xi))⋅wtemp(f (xi))⋅wclass(yi)                  (1) 

Where wtemp(f(xi))=1-σ(|f(xi)|/T(t)) represents temperature-scaled confidence weighting with σ as 

the sigmoid function, and 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑖𝑖) = �
𝑁𝑁
𝑁𝑁𝑦𝑦𝑖𝑖

 provides class-specific penalty adjustments. The 

temperature parameter T(t)=T0+κ⋅ log ( 1+t/τ)  changes dynamically during training, where 
T0=1.5,κ=0.1, and τ=10. The temperature calibration mechanism reduces overconfident predictions 
during early training and gradually increases discrimination capacity as the ensemble matures. This 
formulation ensures that uncertain predictions receive higher attention during training while 
maintaining theoretical guarantees for convergence under extreme imbalance conditions. 

3.2 Adaptive Regularization Framework 

The adaptive regularization framework incorporates dynamic penalty terms that adjust based on 
ensemble complexity and prediction stability. The regularized objective function becomes: 

 Jreg=∑ Ltc
m
i=1 (yi,f(xi))+λ(t)Ω(ft)+γ(t)D(f1,…,ft)                   (2) 

Where λ(t)  represents time-varying regularization strength, Ω(ft)  measures individual learner 
complexity, and D(f1,...,ft) quantifies ensemble diversity using prediction disagreement measures 
across base learners. 

The adaptive regularization parameters follow the schedule  λ(t)=λ0⋅�
log (t)

t
 and γ(t)=γ0⋅

1
1+αt

, 
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ensuring convergence while maintaining flexibility to adapt to changing data characteristics during 
training. The diversity term D penalizes highly correlated predictions to encourage complementary 
base learners. 

3.3 Convergence Analysis and Theoretical Guarantees 

The proposed algorithm provides theoretical convergence guarantees through martingale analysis of 
the weight updating process, establishing mathematical foundations for the adaptive regularization 
framework under imbalanced learning conditions [6]. Under the assumption that weak learners achieve 
classification edge γ > 0 on the weighted distribution, the analysis first establishes that the 
temperature-calibrated loss function satisfies the fundamental inequality 
∑ wi

(t+1)
i ≤∑ wi

(t)
i ⋅ exp ( -2γ2⋅ρ(t)) , where ρ(t)= 1

1+‖∇Ltc‖2
 represents the temperature-calibrated 

adjustment factor. This result demonstrates that the temperature scaling mechanism preserves the 
essential convergence properties of classical boosting while providing additional stability through 
controlled gradient norms.  

Building upon this foundation, it can be proven that the training error decreases exponentially 
according to the bound Error(t)≤ exp �-2γ2t⋅ 1

1+β(t)
� , where β(t)=∫ λ t

0 (s)ds  represents the 
accumulated regularization effect. The proof follows from the martingale convergence theorem applied 
to the sequence of normalized sample weights, where the temperature calibration introduces a bounded 
perturbation to the standard AdaBoost analysis. The adaptive regularization provides additional 
stability through controlled complexity growth, ensuring that the convergence rate remains favorable 
even as the ensemble size increases.  

The generalization analysis extends classical boosting theory to imbalanced scenarios through a 
refined bound that explicitly accounts for minority class sample size. Under small sample conditions 
where |Dmin|<nα  for 0<α<1 , the analysis establishes that with probability at least 1-δ , the 

generalization error satisfies Errortest ≤ Errortrain+O ��T+ log (1/δ)
|Dmin|

�. This finding demonstrates the direct 

role of the severity of imbalance, and also explains why using ensemble learning cannot fundamentally 
solve the problem of small sample fraud detection. The bound demonstrates that the generalization 
behavior is largely characterized by the number of minority class instances, rather than the data size, 
thus calling for more targeted methods to tackle the problem of imbalanced learning. 

The theoretical analysis also demonstrates that the temperature calibration mechanism improves 
model generalization by reducing the effective complexity of the hypothesis set [7]. The 
temperature-calibrated loss function provides a natural regularisation that disfavours over-confident 
predictions on uncertain instances and hence results in more conservative decision boundaries which 
can generalise better to test data. This process offers a theoretical explanation of the empirical gains in 
training performance (especially in cases when the predictive uncertainty is representative of 
classification difficulty). The adaptive regularization parameters reinforce this effect by adapting in 
real-time the trade-off between training accuracy and model complexity, allowing the ensemble to 
retain appropriate levels of complexity as new weak learners are incrementally added. The convergence 
guarantees apply under a weak learning assumption and lead to explicit rates, which depend on the 
imbalance ratio and the regularization schedule, and thus are of practical interest in real-world fraud 
detection problems as guide for parameter selection. 

3.4 Algorithm Implementation and Design 

The algorithm implementation integrates temperature-calibrated loss functions with adaptive 
regularization through systematic optimization. The framework initializes equal sample weights and 
sets regularization parameters λ0, γ0, and decay rate α. During each iteration, regularization strength 

updates according to λ(t)=λ0⋅� log (t)
t

 and diversity penalty adjusts using γ(t)=γ0⋅
1

1+αt
 , ensuring 

appropriate regularization. as ensemble complexity grows. Each weak learner trains on 
temperature-calibrated distributions where temperature weights are computed as 
wtemp(f(xi))=1-σ(|f(xi)|/T(t)). After training, the algorithm calculates temperature-calibrated error and 

determines ensemble weight αt=0.5⋅ log �1-εt
εt
�, subject to regularization constraints. Sample weight 

updates incorporate both traditional boosting adjustment and temperature calibration factors, ensuring 
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uncertain predictions receive increased attention while maintaining convergence guarantees. 

The framework requires careful hyperparameter tuning for optimal performance. Initial 
regularization strength λ0 typically ranges from 0.01 to 0.1, controlling the training accuracy and 
generalization trade-off. Diversity penalty γ0  influences ensemble member specialization, while 
temperature parameters in the range [1.0, 2.0], with T₀=1.5 as used in our experiments, prove effective 
for most fraud detection datasets. Automated hyperparameter optimization employs Bayesian 
techniques to efficiently explore the parameter space, combining validation metrics with regularization 
terms. 

3.5 Computational Optimization and Scalability Considerations 

The computational complexity of the proposed algorithm scales linearly with the number of training 
instances and features, making it suitable for large-scale fraud detection applications. However, the 
temperature calibration and adaptive regularization mechanisms introduce additional overhead that 
requires careful optimization for real-time deployment scenarios. 

Memory-efficient implementations utilize streaming computation techniques for processing large 
transaction datasets that exceed available system memory. The algorithm processes data in batches 
while maintaining running statistics for regularization parameter updates, enabling application to 
datasets with millions of transactions. Parallel processing capabilities allow concurrent training of 
multiple weak learners, with synchronization points for ensemble weight updates and diversity penalty 
computations [8]. 

4. Experimental Evaluation 

4.1 Experimental Setup 

Evaluation employs five fraud detection datasets: IEEE-CIS fraud detection (590,540 transactions, 
3.5% fraud rate), credit card fraud (284,807 transactions, 0.17% fraud rate), synthetic payment data 
(50,000 transactions, 0.5% fraud rate), PaySim mobile payment simulation (6,362,620 transactions, 
0.13% fraud rate), and e-commerce fraud detection (150,000 transactions, 2.1% fraud rate). The 
experimental protocol uses stratified 5-fold cross-validation with temporal splitting to ensure realistic 
evaluation conditions. 

Performance metrics include Area Under Precision-Recall Curve (AUPRC), F1-score, and 
Matthews Correlation Coefficient (MCC) to provide robust assessment under extreme class imbalance. 
Baseline comparisons include standard AdaBoost, XGBoost, LightGBM, CatBoost, and cost-sensitive 
variants of these algorithms, along with SMOTE+RandomForest and cost-sensitive SVM 
implementations. 

4.2 Overall Performance Evaluation 

The experimental evaluation demonstrates that the proposed framework achieves consistent 
improvements over baseline approaches across all tested datasets. Table 1 summarizes the 
comprehensive performance comparison results across all five fraud detection datasets with statistical 
significance analysis. 

Table 1: Performance Comparison on Selected Fraud Detection Datasets 
Method IEEE-CIS 

AUPRC 
Credit 

Card F1 
PaySim 
AUPRC 

Synthetic 
F1 

E-commerce 
MCC 

Avg Rank 

AdaBoost 0.342 0.721 0.298 0.705 0.156 7.2 
XGBoost 0.398 0.768 0.334 0.751 0.203 5.8 

LightGBM 0.407 0.775 0.341 0.758 0.211 4.6 
CatBoost 0.412 0.779 0.347 0.762 0.218 4.2 

SMOTE+RF 0.389 0.732 0.312 0.728 0.189 6.4 
Proposed Method 0.456 0.841 0.367 0.823 0.251 1.0 

Improvement vs Best +10.7% +8.0% +5.8% +8.0% +15.1% - 
Statistical analysis using Wilcoxon signed-rank test indicates performance improvements across 

datasets, though the degree of improvement and statistical significance vary by dataset and metric, 
validating the robustness of the proposed strategies. The method demonstrates particular effectiveness 
on highly imbalanced datasets where temperature calibration provides substantial benefits. 
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While Table 1 shows final performance outcomes, analyzing the training dynamics provides 
insights into why the proposed method achieves superior results. Figure 1 illustrates the convergence 
behavior and adaptive regularization effects that reveal how the optimizations address small sample 
fraud detection challenges. 

 
(a)                                (b) 

Figure 1: Convergence Analysis and Temperature Calibration Effects 

(a) Training Error Convergence Comparison across 5 methods over 50 iterations, with error bars 
showing standard deviation across 5-fold CV; (b) Temperature Parameter Evolution showing T(t) 
values and corresponding confidence calibration effects over training iterations. 

4.3 Parameter Sensitivity Analysis 

Comprehensive parameter sensitivity analysis evaluates the robustness of the proposed method 
across different hyperparameter configurations and dataset characteristics. The analysis examines the 
impact of key parameters including regularization strength λ0 , diversity penalty γ0 , temperature 
parameter, and ensemble size on overall detection performance. Figure 2 presents comprehensive 
parameter sensitivity analysis across key hyperparameters of the proposed framework. 

 
(a)                                (b) 

 
(c)                                (d) 

Figure 2: Parameter Sensitivity Analysis 
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(a) Regularization Strength λ0 sensitivity (range 0.001-0.5) on Credit Card dataset; (b) Diversity 
Penalty γ0 sensitivity (range 0.01-1.0) on IEEE-CIS dataset; (c) Temperature Parameter T0sensitivity 
(range 0.5-3.0) averaged across datasets; (d) Ensemble Size impact (range 10-200) showing 
performance vs computational cost trade-off. 

The regularization strength λ0  exhibits optimal performance in the range [0.02,0.08] , with 
performance degradation observed at both extremes. Lower values result in overfitting, while higher 
values over-regularize and reduce the model's ability to capture fraud patterns. The temperature 
parameter T0 shows relatively stable performance across the range [1.0, 2.5], with our chosen value of 
1.5 falling within this stable region. 

4.4 Ablation Study and Component Analysis 

Systematic ablation studies evaluate the individual contributions of each algorithmic component to 
overall performance improvements. The analysis decomposes the proposed method into its constituent 
elements: temperature-calibrated loss function, adaptive regularization, and ensemble diversity 
mechanisms. Table 2 shows the incremental performance impact of each algorithmic component across 
all datasets. 

Table 2: Ablation Study Results 
Configuration Credit 

Card F1 
IEEE-CIS 
AUPRC 

PaySim 
AUPRC 

Synthetic 
F1 

E-commerce 
MCC 

Baseline AdaBoost 0.721 0.342 0.298 0.705 0.156 
+ Temperature Calibration 0.759 0.371 0.318 0.734 0.178 
+ Adaptive Regularization 0.803 0.421 0.347 0.785 0.219 

+ Diversity Penalty 0.825 0.439 0.358 0.807 0.237 
Full Proposed Method 0.841 0.456 0.367 0.823 0.251 

The temperature calibration mechanism contributes 5.3% improvement in F1-score on average, 
primarily by reducing the influence of overconfident predictions on minority class instances. Adaptive 
regularization provides an additional 5.8% improvement by preventing overfitting through dynamic 
penalty adjustment. The diversity penalty mechanism contributes 2.7% improvement by encouraging 
complementary ensemble members. 

4.5 Computational Performance and Scalability Analysis 

Detailed computational analysis evaluates the practical feasibility of the proposed method for 
real-world fraud detection deployment. Training time complexity scales as O(m×n×T), where m 
represents the number of training instances, n the feature dimensionality, and T the number of boosting 
iterations. Table 3 presents the computational performance analysis comparing the proposed method 
with baseline approaches. 

Table 3: Computational Performance Comparison 

Method Training 
Time (min) 

Memory 
Usage (GB) 

Prediction 
Latency (ms) 

Scalability 
Factor 

AdaBoost 12.3 1.2 2.1 1.0x 
XGBoost 8.7 1.8 1.8 1.4x 

LightGBM 6.2 1.5 1.6 2.0x 
Proposed Method 14.8 1.7 2.3 0.83x 

The proposed method introduces approximately 20% computational overhead compared to standard 
AdaBoost due to temperature calibration computation and adaptive parameter updates. Memory 
requirements increase modestly due to storage of ensemble diversity metrics and regularization 
statistics. Prediction latency remains competitive with existing methods, making the approach suitable 
for real-time fraud detection applications. 

Scalability experiments on synthetic datasets demonstrate linear scaling characteristics with respect 
to both dataset size and feature dimensionality. The method maintains stable performance across 
datasets ranging from 10K to 1M instances, with training times scaling predictably according to 
theoretical complexity bounds. 
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5. Discussion and Analysis 

5.1 Performance Analysis and Component Contributions 

The proposed approach achieves superior performance on card-not-present fraud, with F1-scores of 
0.841 compared to 0.779 for standard XGBoost on the Credit Card dataset. The temperature calibration 
mechanism is effective in distinguishing legitimate transactions from fraudulent activities with similar 
characteristics, while the adaptive regularization framework provides significant improvement by 
preventing overfitting through dynamic penalty adjustment [9]. 

Account takeover fraud presents evolving pattern challenges where the adaptive regularization 
component demonstrates particular value. The time-varying nature of the regularization parameters 
allows the algorithm to maintain learning capacity early in training while increasing regularization 
strength as ensemble complexity grows, proving especially effective in scenarios with severe sample 
size constraints. 

5.2 Practical Implementation and Computational Considerations 

Real-world deployment reveals that the method supports various feature types commonly used in 
fraud detection including transaction frequency patterns, spending behavior deviations and geographic 
anomalies. The temperature calibration method generalizes to different feature types and preserves 
moderate interpretability with feature importance rankings and confidence scores for individual 
predictions. The computational overhead proves manageable in practice, with training time increasing 
by approximately 20% compared to baseline boosting approaches. This overhead is compensated for by 
increased detection and decreased false positive rates, resulting in operational savings in terms of 
reduced manual review. 

5.3 Limitations and Research Constraints 

The experimental evaluation focuses primarily on tabular transaction data, with limited exploration 
of alternative data modalities such as network transaction graphs and temporal sequence patterns. 
While this represents a common and important class of fraud detection problems, future work should 
explore the framework's applicability to other data modalities. The performance gains vary 
significantly across datasets (ranging from 5.8% to 15.1%) and the process is sensitive to 
hyperparameters. The method assumes that weak learners consistently achieve positive edge on the 
weighted distribution, which may not hold when dealing with highly sophisticated fraud schemes. The 
theoretical bounds, while providing convergence guarantees, may be loose in practice and could benefit 
from tighter analysis specific to fraud detection scenarios. The proposed framework can be used to 
tackle concept drift and temporal patterns more directly by adopting adaptive ensemble management 
techniques. 

6. Conclusion 

This paper introduces an adaptive regularization framework for boosting algorithms in small sample 
fraud detection problems. The approach amalgamates temperature-calibrated loss functions and offers 
theoretical convergence analysis in imbalanced learning environments. Empirical analysis shows 
improvements over baseline methods, with gains varying from 5.8% to 15.1% depending on dataset 
characteristics with guaranteed computational tractability [10]. 

The key contributions include theoretical convergence analysis for boosting under imbalanced 
conditions, novel temperature-calibrated regularization mechanisms, and comprehensive empirical 
evaluation on five fraud detection datasets. The method contributes to the understanding of ensemble 
learning under small sample requirements and offers practical solutions for fraud detection applications 
based on strict mathematical derivations and thorough experimental evaluations. 

Future directions for research involve applying the framework to address temporal fraud detection 
aspects, exploring other confidence measures, and devising automatic parameter selection methods. 
The approach may also be used for other imbalanced learning problems outside fraud detection. 
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