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Abstract: Research on the application of artificial intelligence (AI) methods in power grid analysis has 
been widely conducted. The power flow dataset required for the training of AI models is not uniformly 
distributed, and to improve the quality of the dataset, related research has generally applied tuning 
methods that tend to have a more uniform sample distribution, resulting in improved performance of AI 
models. However, the lack of research on methods to evaluate the uniformity of distribution of the dataset 
poses an obstacle to the judgment of the validity of uniformity adjustment and the analysis of the impact 
of uniformly distributed datasets on the performance of AI models. This paper proposes a method to 
evaluate the uniformity of power flow datasets by using the calculation of distances in the high-
dimensional feature space of the flow datasets and plotting the minimum distance statistics as a way to 
evaluate the uniformity of the flow datasets. It was also tested on the power flow dataset of 36-node grid 
and evaluated separately for two uniformity levels, which can clearly represent the uniformity of 
distribution of the dataset in the high-dimensional feature space. 
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1. Introduction  

At present, research on the application of artificial intelligence technology in power system analysis 
has been gradually carried out [1-3]. Since the performance of AI models is highly dependent on the quality 
of the training dataset [4], to improve the performance of AI techniques in grid analysis applications, 
researchers have conducted research on methods for generating, tuning, and expanding datasets [5-10]. The 
existing power flow dataset suffers from the problem that there are more similar samples for stable 
operation and fewer samples for extreme operation states, a situation similar to the sample class 
imbalance problem [11,12]. Therefore, the trend of adjustment of the dataset is all about eliminating some 
similar samples and supplementing the samples of rare operating states to meet the requirements of 
uniformity and adequacy of the power flow dataset [13]. The adjusted dataset does improve the 
performance of the AI model, but the state of the dataset itself before and after the adjustment is not clear 
due to the lack of evaluation methods for the characteristics of the power flow dataset. Therefore, it is 
impossible to judge whether the adjustment method really achieves the adjustment of the corresponding 
distribution characteristics, and whether the corresponding distribution characteristics dataset is 
beneficial to the performance of the AI model.  

Uniformity of distribution of fower flow datasets is a common requirement, but there are difficulties 
in evaluating uniformity in high-dimensional feature spaces, and some methods that work in low-
dimensional spaces are difficult to generalize to high-dimensional spaces. As in computer graphics, the 
uniformity of distribution of point sets is evaluated using spectral analysis [14-16], which allows the 
uniformity of point sets to be clearly observed in the graph of amplitude-frequency characteristics. 
However, the Fourier transform required for spectral analysis is difficult to implement in high-
dimensional space. 

In view of this, this paper investigates a distance-based method for evaluating the uniformity of power 
flow datasets, which treats power flow datasets as point sets in a high-dimensional feature space, and 
achieves the evaluation of distribution uniformity by using the relationship between the distance between 
points. This paper is organized as follows: Section 2 introduces the content and format of the grid power 
flow dataset, which is the basis for the subsequent discussion of uniformity in high-dimensional feature 
space; Section 3 introduces the distribution uniformity evaluation method of the power flow dataset, and 
verifies the effectiveness of the method by the uniformity evaluation results of the power flow dataset of 
the CEPRI 36-node grid model with different distribution cases in Section 4.  
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2. Power Flow Dataset 

2.1. Contents of Power Flow Dataset 

The power flow dataset consists of n power flow samples, each sample represents a corresponding 
power system state. For a given power system state, often only part of the physical quantities is known, 
i.e., the definite solution conditions in the power flow calculation, and the other power flow state 
quantities are to be found, and the known physical quantities do not reflect the full picture of the power 
flow. If the power flow calculation converges, the complete power flow state data can be calculated. 

An operating point of a power system in a certain steady state can be represented by the combination 
of power and voltage of all buses when the system is in steady state. 

                          (1) 

Or complex numbers form: 

                            (2) 

Where N is the number of active buses of the grid, including generators and loads. The relationship 
between the above variables is given by a set of nonlinear power flow equations, so that only the known 
condition in the power flow calculation can also represent an operating point of the power system. 
Usually this known condition consists of the active power P and reactive power Q at the PQ node, the 
active power P and voltage magnitude V at the PV node and the voltage magnitude and phase at the 
balance node, so that the amount of data to be stored is reduced by half and the real number The 
representation is changed from an N × 4 matrix to an N × 2 matrix. This representation may suffer from 
a non-convergence of the power flow calculation compared to the complete combination, which is needed 
for some tasks related to power flow convergence discrimination or adjustment. 

2.2. Format of Power Flow Dataset 

To match the dataset format of the data-driven method, it also needs to be adjusted on top of the 
description form. The datasets required for the data-driven approach can be divided into labeled and 
unlabeled datasets, matching supervised learning tasks and unsupervised learning tasks, respectively. If 
part of the dataset is labeled and the other part is unlabeled, such datasets match semi-supervised learning. 
Since there is a mature grid simulation software as the basis, it is easy to obtain the corresponding labeled 
information for the tasks when the data of the grid state is known, so this paper focuses on the labeled 

dataset. The labeled dataset takes the form of a feature-label pair, where the feature is usually 
represented as a d-dimensional row vector, and is typically written as follows 

                                   (3) 

and can be abbreviated to . The label y is usually an element of a finite set . The value 

of y can also be expressed as an integer when encoded by its index in the elements of . A sample in 
the form of a feature-label pair can be represented as 

               (4) 

where  is the feature space when the constraints of  are not considered . In 

practice, the feature vector  is constrained by physical properties, such as the upper and lower limits 

of node power and node voltage, resulting in the feature space  as a high-dimensional finite space. 
To eliminate the effect of dimensional differences between the eigenvalues, the data are also usually 

normalized, i.e.,  is mapped linearly between , resulting in a hypercube with side length 1. The 

discussion of the data distribution in this paper is after normalization, so the feature space  is also the 
feature space of the unit hypercube. The N × 2 matrix of inputs to the power flow equation is expanded 
into a d-dimensional row vector in a fixed order of node placement, at which point the grid state is 
presented in the standard sample format (feature-label pair) in labeled data, where the dimension d of the 
feature vector takes a value equal to twice the number of nodes N.  
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With the above settings, the definition of a power flow sample is given as follows: 

Definition 1 (power flow sample): a sample containing known conditions for power flow calculation 
at a run point, expressed in the form of feature-label pairs, is called a power flow sample. 

The training samples required for the specific task are formed by adapting feature to the specific 
grid analysis task and assigning the corresponding physically meaningful values to label y. The resulting 
samples remain in a consistent format. 

Definition 2 (Power flow dataset): A dataset consisting of power flow samples is called a power flow 

dataset and can also be expressed as a pairwise combination of the form of the feature matrix  of 

 and the label matrix  of . 

                          (5) 

By definition, a power flow dataset is a set of labeled data sets, where the features represent the grid 
operating points and the labels represent the state information that this operating point has in a specific 

task, and the format is also consistent with supervised learning. If the dataset feature matrix  is 
considered as the coordinates of n points on a d-dimensional feature space and these points are plotted in 
the feature space, a point cloud will be formed. This perspective transformation gives the dataset 

geometric properties, and the associated geometric properties are only related to , which makes the 
labeled dataset consistent with the unlabeled dataset in subsequent modeling. 

3. Analysis of Blue Noise Distribution Evaluation Method 

3.1. Blue Noise Distribution 

Uniformity sampling of the sample space is a basic method to ensure comprehensive coverage of the 
data set. In computer graphics, uniformity sampling has been studied in more depth, and the blue noise 
distribution is recognized as the best distribution characteristic to cover the sampling domain to the 
maximum extent. 

3.2. Blue Noise Distribution Evaluation Method 

The power spectral density of noise (the spectral distribution of power) is often used to distinguish 
between different types of noise. In fields such as acoustics and physics, this classification of noise is 
often given a different "color" designation for different power spectral densities, i.e., different types of 
noise are named different colors. The color classification of noise comes from a formal analogy between 
a noise spectral density function in the frequency domain and a light wave signal in the frequency domain, 
i.e., if a light wave has the same spectral density pattern as blue noise in the frequency domain, the light 
wave will appear blue, and so on. 

 
Figure 1: Example of blue noise point set and its spectrum analysis. 

In computer graphics, the concept of blue noise is sometimes also used generically to refer to any 
noise that has a minimal low-frequency component and no significant peaks appear in the spectrum. As 
shown in Figure 1, (a) is the sampled blue noise point set, (b) is the power spectrum of the point set, and 
(c) is a further processing of (b) for the radial mean and normal anisotropy of the power spectrum. The 
upper plot in figure (c) shows that the power spectrum of the planar point set has a small low-frequency 
component and a large high-frequency component, which is consistent with the blue-noise characteristic 
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[17]. The blue noise characteristic is determined by the power spectrum function curve in the frequency 
domain and is found to be related to the uniformity and homogeneity of the distribution of the planar 
point set, i.e., whether the spectral curve of the planar point set conforms to the blue noise characteristic 
indicates whether the distribution of the point set is uniform, and the degree of conformity of the spectral 
characteristic to the blue noise characteristic also reflects the homogeneity of the point set. 

3.3. Blue Noise Sampling Versus Random Sampling 

Many studies default random sampling as a kind of uniformity sampling, in fact, pure randomness 
does not bring the most desirable results. As shown in Figure 2, under uniform distribution, the left panel 
shows the set of points formed by blue-noise sampling, and the right panel shows the set of points formed 
by random sampling. Sampling points tend to be chaotic and leave blank space in the region, while blue-
noise sampling will make the sample points as uniform as possible. If each sample point can represent 
the information in a certain surrounding area, the blue noise distribution can cover a larger feature space, 
while the distribution formed by random sampling shows the characteristics of some regions with blank 
space and others with denser points. 

 
Figure 2: Blue noise sampling and stochastic sampling in the two-dimensional plane 

The online data of power flow presents a more non-uniform distribution characteristic, and a large 
number of duplicate and similar samples are represented in the feature space as a dense cloud of points 
in a region, while there are no non-converging samples in the online data, that is, the non-converging 
region in the feature space is blank. The concept of high-dimensional blue noise characteristic was 
proposed in the literature [18]. Since the number of configurable samples in the feature space is much 
larger than the usually used sample set capacity as the dimensionality grows, forming a significant 
sparsity, the high-dimensional blue noise characteristic cannot cover the entire feature space uniformly 
and can only ensure that no two sample points are too close to each other. The high-dimensional blue-
noise distribution is still a distribution characteristic that covers the largest range of feature space with 
the same sample capacity. Therefore, it is still important to evaluate the uniformity of the sample 
distribution in the high-dimensional feature space. 

4. A Method for Evaluating the Uniformity of Power Flow Datasets  

4.1. Distance in High-dimensional Feature Space 

The distance between the sample input features  in vector form, such as sample  

and sample  is calculated as 

                               (6) 

Therefore, for the sample point , the distance from its minimum point can be 
expressed as 

                              (7) 

The -dimensional array  of the minimum distance of the sample points is obtained when  
is taken over all the points in the point set, and the uniformity of the sample can be judged by counting 

the number of  in each of the taken segments. 
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4.2. Method Flow 

According to the definition of the blue noise distribution in the literature [18], the statistic of the 
minimum distance between sample points and points is used as the evaluation index. 

The specific steps are as follows: 

(1) Calculate the distance  between two points in the sample set according to Equation(6), where 

; 

(2) Calculate the minimum distance between each point and other sample points in the data set, i.e., 

the distance from each point to the nearest adjacent point , according to Equation(7), and calculate 

the  of all sample points to form an array . 

(3) Statistical analysis of  is performed to form a histogram. 

When the statistic of  forms a peak at a small distance value, it indicates that there are a large 
number of sample points clustered together, or a large number of similar or repeated samples, then the 
uniformity is poor; when the statistic shows a Gaussian distribution and the peak is high, it indicates that 
each sample point stays close to the nearest sample point, i.e., the uniformity is good. 

 
Figure 3: Example of uniformity evaluation results graph 

As shown in Figure 3, the results will be presented in the form of such a bar chart, with the horizontal 

coordinate indicating the value of  and the vertical coordinate indicating the number of sample 
points in this interval. The results shown in the figure are that most of the points are concentrated within 
a relatively small interval from their nearest neighbors, and the data set has a good uniformity. 

4.3. Algorithm Implementation Considering Performance 

In the implementation of the program, calculating the minimum distance between a sample and all 
other sample points is a computationally intensive task. In this paper, we use kd-tree to implement the 

minimum distance  to improve the computational efficiency. Kd-tree, as a data structure for 
accessing high-dimensional data, is highly efficient in static queries and is commonly used to achieve 
fast k-nearest neighbor search of data, and the function implemented in this paper using kd-tree is to 
quickly search the distance of the nearest point. 

5. Experimental Validation 

5.1. Example Introduction 

The samples in the power flow dataset of this paper describe various modes of operation of the grid 
model CEPRI36, and the grid structure is shown in Figure 4, where some nodes are connected to 
capacitors or reactors that are not involved in regulation, and there are 18 nodes of generating units or 
loads involved in regulation, with the nodes injecting power as the input feature values, for a total of 36 
variables, i.e., the sample contains a feature dimension of 36 dimensions. 
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Figure 4: CEPRI36 grid model topology connection diagram 

In order to demonstrate the results of the evaluation of the dataset with or without uniformity by the 
method in this paper, two datasets were generated using different methods, respectively. Dataset 1 with 
uniformity is a blue-noise dataset generated using the method in the literature [18]; Dataset 2 without 
uniformity is designed with reference to the distribution characteristics of the dataset in actual runs, where 
the dataset has a high sample similarity and a low number of sample points for the extreme run cases. 
Both datasets have 30,000 samples. 

5.2. Results and Discussion 

The experimental results are shown in Figure 5. The upper bar graph is the minimum distance 
statistics of the blue noise data set, while the lower bar graph is the minimum distance statistics of the 
inhomogeneous data set made as a comparison group. The horizontal coordinates are the different values 
of the minimum distances, and the vertical coordinates are the number of samples whose distances from 
the nearest neighbors fall in the corresponding value interval. 

 
Figure 5: Experimental results graph 

The blue noise dataset has better uniformity, so the minimum distance statistic plot presents a 
Gaussian distribution with higher peaks, and higher peaks indicate a more uniform distribution of the 
dataset. In contrast, the inhomogeneity of the comparison group is reflected by a part of similar samples 
gathered together, and other samples are more sparsely distributed, which is presented as two peaks in 
the minimum distance statistical graph, the peak in the range of 0~0.2 corresponds to a large number of 
similar samples, while the second more gentle peak corresponds to other samples, due to the existence 
of a large number of similar samples, the minimum distance of other samples is also larger and the 
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distribution is more sparse. 

6. Conclusions 

This paper presents a method for evaluating the distribution uniformity of a power flow dataset. The 
method treats the power flow dataset as a set of points in a high-dimensional space and achieves the 
distribution uniformity assessment by using the relationship between the distance between points. By 
testing different distribution datasets, the uniformity of the dataset can be clearly reflected, which is of 
positive significance for the subsequent research on the need of generating power flow datasets and the 
influence of power flow dataset distribution characteristics on AI models.  
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