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Abstract: As Low Earth Orbit (LEO) satellite Internet of Things emerges as a critical global
infrastructure, traditional static or single-dimensional security assessment methods fail to effectively
characterize system resilience performance when facing complex security threats. To address this
problem, this paper proposes a security assessment method for LEO satellite loT communication systems
based on multi-dimensional resilience indicators. The method innovatively decomposes system resilience
into three mutually orthogonal dimensions: anti-degradation capability, system adaptability, and system
stability, and employs weighted geometric mean to fuse the three-dimensional indicators for calculating
comprehensive resilience. Simulation experimental results demonstrate that the proposed multi-
dimensional resilience assessment method can accurately reflect the resilience variation characteristics
of systems facing threats such as jamming attacks, DDoS attacks, and replay attacks, providing
analytical tools for security assessment and design optimization of LEO satellite IoT systems. It also
provides powerful quantitative analysis tools for robustness design, risk management, and operational
optimization of LEO satellite IoT, laying a foundation for building next-generation satellite
communication systems with greater survivability.
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1. Introduction

With the rapid development and commercial deployment of Low Earth Orbit (LEO) satellite
constellation technology, LEO satellite communication networks have become an important component
of global Internet of Things infrastructure!'l. Compared to traditional Geostationary Earth Orbit (GEO)
satellites, LEO satellites possess significant advantages such as low orbital altitude, small transmission
delay, and relatively low launch costs, providing important communication support for IoT applications
in remote areas, marine environments, and emergency communications!?!. The successive advancement
of major LEO constellation projects such as SpaceX's Starlink, Amazon's Kuiper, and OneWeb marks
the arrival of the satellite IoT era. However, the openness, dynamics, and resource constraints of LEO
satellite IoT systems subject them to unprecedented security challenges (as shown in Figure 1). The
highly dynamic characteristics of satellite links result in frequent network topology changes, making
traditional security protection mechanisms based on static topology difficult to apply effectivelyl®l. The
harsh and open nature of the space environment provides convenient conditions for various physical layer
attacks, where attackers can interfere with, eavesdrop on, or spoof satellite signals through ground
equipment. The limited computational and storage resources of satellites restrict the deployment of
complex security algorithms, making systems susceptible to performance degradation or even service
interruption when facing high-intensity or persistent attacks*l. Therefore, the system's ability to maintain
core functions, ensure service stability, and adapt during attacks (i.e., System Resilience) becomes more
important than mere defense.

Published by Francis Academic Press, UK
-105-


mailto:psh2001@nudt.edu.cn
mailto:xiemw@nudt.edu.cn
mailto:wyeei@126.com
mailto:skl_hyh@163.com
mailto:zqs_pine@nudt.edu.cn

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 7: 105-114, DOI: 10.25236/AJCIS.2025.080713

Service Satellite

Ia

i
- User Terminal 2 Atlackerv
User Terminal n

User Terminal 1

Figure 1 Security Threat Scenarios for LEO Satellite IoT Systems

Traditional network security assessment methods primarily focus on threat identification,
vulnerability analysis, and risk level classification. While these methods can help understand the security
threats faced by systems, they have obvious deficiencies in quantitatively assessing overall system
resiliencel!. Existing quantitative methods often employ single performance indicators (such as
throughput or delay), but these cannot comprehensively characterize the complex behavior of systems
under attack. For example, a system might maintain throughput through high-intensity retransmissions
(high anti-degradation capability), but at the cost of enormous delay jitter and service instability (low
system stability). Single indicators cannot distinguish this "fragile balance." Additionally, existing
resilience models are mostly designed for terrestrial networks and fail to fully consider the characteristics
of LEO satellite networks such as high dynamics and resource constraints. To address the above problems,
this paper proposes a security assessment method for LEO satellite IoT communication systems based
on multi-dimensional resilience indicators. The main contributions of this paper include the following
aspects:

e Innovative three-dimensional resilience model: We decompose system resilience into three
mutually orthogonal dimensions: Anti-degradation Capability (ADC), Adaptability (ADP), and System
Stability (STS).

e Accurate quantitative calculation method: We design a mathematical method based on system
performance time series analysis, achieving accurate quantification of the three resilience dimensions
through indicators such as performance retention rate, performance coefficient of variation, and
performance degradation frequency, and employ weighted geometric mean for multi-dimensional fusion.

e Comprehensive experimental verification and analysis: We systematically evaluate various attack
scenarios in simulation environments, revealing the differential impacts of different attack patterns on
various dimensions of system resilience, and verify the effectiveness, accuracy, and practicality of the
proposed method.

2. Related Work

In the area of LEO satellite IoT system security assessment, early research primarily employed
qualitative assessment methods for security analysis. Samuel et al. proposed a risk assessment framework
for satellite communication systems based on expert experience, identifying major security risks through
threat matrices and impact assessment modelsl®. With the development of simulation technology,
researchers began adopting quantitative assessment methods based on performance indicators. Zhang et
al. evaluated the security status of LEO satellite networks by analyzing changes in key performance
indicators such as system throughput, transmission delay, and packet loss rate!”. However, these methods
often focus only on single or few performance indicators, making it difficult to comprehensively reflect
system security performance, particularly prone to assessment bias when dealing with complex attack
scenarios. System resilience originally emerged from ecology and was later introduced to engineering
and network security fields. Tran et al. divided resilience into three dimensions: absorption capacity,
adaptation capacity, and recovery capacity, emphasizing the response characteristics of systems at
different stages'®). Ayyoob et al. proposed a multiple-dimensional resilience model based on prevention,
protection, mitigation, and recoveryl®l. In terms of quantitative methods, existing research mainly adopts
different technical approaches based on graph theory, Markov chains, and performance curve analysis.
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Pereira et al. assessed resilience by analyzing network topology connectivity and robustness, finding that
network resilience is closely related to its topological structure. Haimes et al. established a system
resilience assessment model based on Markov processes, capable of describing the transition patterns of
systems between different states!'’!. Bruneau et al. proposed a resilience calculation method based on
performance loss integration, defining resilience as the reciprocal of the performance loss area during
attacks!'!l,

Although these theories laid the foundation for resilience assessment, they still have limitations when
applied to LEO satellite IoT: existing resilience assessment methods struggle to adapt to the special
characteristics of LEO satellite IoT systems such as high dynamics, resource constraints, and openness;
most research adopts single-dimensional resilience definitions, unable to comprehensively reflect the
multi-dimensional response behavior of LEO satellite IoT systems when facing complex threats. This
paper addresses the above limitations by proposing a security assessment method for LEO satellite IoT
communication systems based on multi-dimensional resilience indicators.

3. Multi-dimensional Resilience Assessment Model

The multi-dimensional resilience indicator-based assessment method proposed in this paper not only
considers the system's ability to resist attacks but also fully considers its capability to adapt to dynamic
threats and maintain service stability.

3.1 Resilience Definition and Dimension Division

In the context of LEO satellite IoT system security assessment, this paper redefines system resilience
as: the comprehensive ability of a system to maintain its core communication functions and quickly
recover to normal operating state after attack termination when facing various security threats. Based on
the temporal characteristics and behavioral patterns of system responses to security threats, resilience is
divided into three mutually orthogonal dimensions:

Anti-degradation Capability (ADC): Reflects the system's ability to maintain performance levels
during attacks. When a system is under attack, good anti-degradation capability ensures that the system's
core functions do not completely fail, creating conditions for subsequent recovery.

System Adaptability (ADP): Embodies the system's ability to adjust operational strategies according
to changes in the threat environment. A system with good adaptability can proactively adjust its working
mode after detecting attacks, mitigating attack impacts through resource allocation reconfiguration,
protocol parameter modification, or working frequency switching.

System Stability (STS): Represents the system's ability to maintain performance stability and reduce
fluctuations during attacks. Good system stability ensures that the system does not experience severe
performance fluctuations when facing threats, maintaining relatively stable service quality.

3.2 Mathematical Modeling of Resilience Indicators

Let P(t) represent the core performance indicator of system operational status (such as system
throughput, transmission success rate, average delay, etc.). For the attack time interval [ty,t,], define

the following basic parameters: baseline performance Py, .. represents the normal performance level
of the system before attack, obtained through statistical analysis of performance data over a period before

the attack; attack period performance P, represents the average performance level of the system

during the attack duration; recovery period performance P (t) represents the variation of system

recovery
performance over time after attack termination.

1 (4
Pbaseline = EL P(t)dt

1 t2 1
Pattack = _ J. P(t)dt ( )
t2 tl t

1

Precovery (t) = P(t); t>t,
3.2.1 Anti-degradation Capability

Anti-degradation capability reflects the degree to which the system maintains performance during
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attacks. The model focuses on comparing attack period performance with baseline performance.
Considering that different types of attacks may lead to different degrees of performance degradation, this
paper uses normalized performance retention rate to define anti-degradation capability, as shown in
equation (2):

P
ADC = max (0, attack ) )

baseline

The value range of this indicator is [0,1], where ADC=1 indicates that system performance is
completely undiminished during attacks, and ADC=0 indicates that the system completely fails during
attacks. When multiple discontinuous attack periods exist, the comprehensive calculation of anti-
degradation capability is:

1 n
ADC,,., == ADC; 3)
n i=1

Where n is the number of attack periods. To more precisely reflect the degree of performance

degradation, the concept of performance degradation rate is introduced, represented by equation (4).

baseline ~ P attack

P
=1— ADC = 222 AR (4)

baseline

)

degradation

3.2.2 Adaptability

Adaptability reflects the flexibility of the system in adjusting operational states when facing threats.
Its quantification needs to consider the variation patterns of system performance during attack periods.
The standard deviation of performance during attack periods can be defined by equation (5):

21

1 t2 2
O attack = \/t —t f [P(t) - Paztack] dt (5)
2 1

A system with good adaptability should be able to quickly adjust its operational strategy after
detecting attacks, thereby maintaining relatively stable performance levels during attack periods. This
paper uses the negative exponential function of the coefficient of variation of performance during attack
periods as shown in equation (6) to define adaptability:

attack

attack (6)
ADP = exp(—a - CV 1)

o
CVattack = P

Where CV,,. is the coefficient of variation of performance during attack periods, and « is the
adjustment parameter. A smaller coefficient of variation indicates that the system can maintain relatively
stable performance levels during attack periods, demonstrating good adaptability. The use of exponential
functions ensures that the adaptability indicator is within the [0,1] interval while effectively
distinguishing different degrees of adaptive capability. To consider the dynamic adaptive capability of
the system, a performance adjustment speed factor is introduced:

1 ffz dpP(t)
v =
adapt t,—t; t

dt
Considering the dynamic adjustment parameter y, the system adaptability indicator expression can
be modified to equation (8).

dt ™

Vadapt
ADP i = ADP - exp (—y . —Pa apk) (8)
attaci

3.2.3 System Stability

System stability focuses on the degree of performance stability and fluctuation characteristics when
the system faces threats. In actual satellite communications, good system stability can provide predictable
service quality for upper-layer applications, avoiding application interruptions caused by performance
fluctuations. Performance volatility reflects the severity of system performance changes during attack
periods, while performance degradation frequency embodies the frequency of the system suffering
continuous impacts. These two factors interact and jointly determine the system's stability level. This
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paper comprehensively considers two key factors: performance volatility and performance degradation
frequency, using equation (9) to represent system stability.

{STS = STS s * (1 = Saegraation)

9
STS, . =065 +0.4 -S4 sueny @

base volatility

Where 8yegragation has been defined by equation (4), and ST Sy, combines volatility and frequency
dimensions through weighted combination to obtain the basic stability score. The weight setting reflects
the higher importance of volatility relative to frequency, as continuous high volatility has a more severe
impact on system stability than occasional performance degradation. Syjastiey and Sgequency €an be
represented by equation (10).

{Svolatility = max(O,l -3 CVaztack) (10)

Sﬁ'equency = max(o'l -2 fdrap)

Where CV,,. has been defined by equation (6). When the coefficient of variation exceeds 0.33, the
volatility score drops to 0. A smaller coefficient of variation indicates that the system can maintain
relatively stable performance levels during attack periods, while a larger coefficient of variation indicates
that the system is susceptible to attack impacts and produces severe fluctuations. fy, ~can be

represented by equation (11). When the degradation frequency exceeds 50%, the frequency score drops
to 0. This indicator reflects the time proportion of significant performance degradation during attack
periods; the higher the frequency, the worse the system stability.

|{] € Iattack: P(tf) <08- Pbaseline}
fa’rop = |1

11D

attack |
3.3 Comprehensive Resilience Assessment

Compared to linear weighting, geometric mean has several important advantages: it is more sensitive
to extreme values, effectively preventing extremely poor performance in one dimension from being
masked by other dimensions; it reflects the interdependent relationships among dimensions, better
conforming to the essential characteristics of resilience; it has good mathematical properties, ensuring
the stability and comparability of assessment results. Therefore, this paper uses equation (12) to calculate
the comprehensive resilience indicator.

1
Resilience = (ADC%1 - ADPW2 - STSW3)witwztws (12)

Where w;, w,, wy are the weight coefficients of each dimension, reflecting the importance of each
dimension in different application scenarios. In specific application scenarios, the importance of each
dimension may differ. For example, for critical mission communication systems, anti-degradation
capability might be more important because any performance degradation could lead to serious
consequences; for general loT applications, system stability might be the main concern because users
care more about service continuity and predictability. To adapt to such differential requirements, this
paper introduces a dynamic weight adjustment mechanism:

Wi(threatlevel) = Wi pase (1 + Ai ) fi(threatlevel)) (13)

Where w; s isthe base weight, A; is the adjustment coefficient, and f; is the threat level response
function. Dynamic weight adjustment enables resilience assessment to better adapt to different threat
environments and application requirements, improving the flexibility and applicability of the assessment
method.

4. Simulation Experiments and Analysis

To verify the effectiveness and practicality of the proposed multi-dimensional resilience assessment
method, this chapter designs a series of simulation experiments. The experiments adopt software
simulation methods by programming to construct a LEO satellite [oT communication system simulation
environment.
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4.1 Experimental Setup

The construction of the simulation environment follows the actual architecture and technical
characteristics of LEO satellite IoT systems. The system contains 10 IoT terminal nodes communicating
with ground control centers through a single LEO satellite. Each node adopts the slotted ALOHA protocol
for medium access control, which has advantages of simple implementation and relatively low
synchronization requirements in satellite communication environments, suitable for resource-constrained
IoT devices. The key parameter settings of the system fully consider the technical constraints and
performance characteristics of actual LEO satellite IoT systems.

In terms of communication parameters, the system adopts 1 MHz channel bandwidth with a carrier-
to-noise ratio set at 10 dB, reflecting the signal quality of typical LEO satellite links. Data packet length
is set to 200 bits with a payload of 100 bits and coding rate of 0.5, balancing transmission efficiency and
error correction capability. Propagation delay is set to 10 milliseconds with acknowledgment timeout of
200 milliseconds, reflecting LEO satellite orbital characteristics and communication protocol
requirements.

In terms of protocol parameters, each node's data packet generation rate is set to 0.1 packets/second,
maximum retransmission count to 10 times, and backoff parameter to 20 time slots. These parameter
settings ensure that the system can maintain stable communication performance under normal conditions
while having certain fault tolerance capability. Simulation duration is set to 1000 seconds with time step
of 0.002 seconds and data recording interval of 1 second, balancing the capture of system dynamic
behavior and simulation computational efficiency.

4.2 Threat Scenarios

To comprehensively evaluate the performance of the resilience assessment method under different
threat environments, this paper designs multiple typical attack scenarios. Jamming attacks are one of the
main threats faced by LEO satellite IoT systems!'?l. In simulations, jamming attacks are modeled by
reducing the signal-to-interference-plus-noise ratio of channels, where attackers interfere with normal
satellite communications by transmitting high-power noise signals. DDoS attacks consume system
resources through multiple malicious nodes simultaneously sending false data packets to the system. In
simulations, DDoS attacks are modeled by adding additional malicious traffic sources!'?]. Replay attacks
deceive systems by repeatedly sending previously intercepted legitimate data packets!'*. In simulations,
replay attacks are modeled by repeatedly sending historical data packets with certain probabilities.
Besides single attack scenarios, experiments also design multiple combined attack scenarios to verify the
performance of resilience assessment methods in complex threat environments, simulating coordinated
attacks that may occur in actual environments and testing system performance when threatened.

4.3 Resilience Assessment Results Analysis

Based on the experimental setup in section 4.1 and threat scenarios in section 4.2, this paper
conducted extensive simulation experiments. The experimental results in Table 1 show that different
types of attacks exhibit distinct differential characteristics in their impact on system resilience. Under
light attack intensity, all attack types have relatively small impacts on system resilience, indicating that
the system has good basic protection capabilities.

Table 1 Comparison of resilience indicators for different attack types and intensities

Attack Comprehensive Maximum Average Attack
Attack Type Intensit ADC ADP STS Reiilience v Performance Performance Period
Y Degradation (%) Degradation (%) Availability

No Attack None | 1.0000 | 1.0000 | 1.0000 1.0000 0.00% 0.00% 100.00%
Ji?::éig Light | 1.0000 | 1.0000 | 1.0000 1.0000 2.44% 0.00% 100.00%
Ji?::éig Medium | 0.7399 | 0.8753 | 0.8264 0.8139 16.14% 12.47% 87.53%

J Z“:ggﬁg Heavy | 0.5652 | 0.6559 | 0.3456 0.5222 28.53% 23.50% 65.59%
DDoS Attack Light | 1.0000 | 1.0000 | 1.0000 1.0000 11.78% 0.00% 100.00%
DDoS Attack | Medium | 0.8321 | 0.9530 | 0.8535 0.8795 10.19% 4.70% 95.30%
DDoS Attack Heavy | 0.4803 | 0.5510 | 0.3382 0.4565 36.66% 32.54% 55.10%
Replay Attack Light | 1.0000 | 1.0000 | 1.0000 1.0000 21.88% 0.00% 100.00%
Replay Attack | Medium | 0.7000 | 0.8381 | 0.7988 0.7790 24.23% 16.19% 83.81%
Replay Attack | Heavy | 0.6000 | 0.6906 | 0.4450 0.5785 26.51% 20.83% 69.06%

However, as attack intensity increases, the impact patterns of various attacks begin to show significant
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differences. Among them, jamming attacks are most prominent. Under medium attack intensity, ADC
drops to 0.7399, ADP is 0.8753, STS drops to 0.8264, and comprehensive resilience is 0.8139. When
attack intensity increases to heavy, ADC further drops to 0.5652, STS suffers severe impact dropping to
0.3456, and comprehensive resilience score falls to 0.5222. This result indicates that jamming attacks
mainly affect system performance by reducing channel quality, with particularly obvious impact on
system stability, causing severe performance fluctuations during attack periods. The impact pattern of
DDoS attacks differs significantly from jamming attacks. Under medium DDoS attacks, the system's
ADP reaches as high as 0.9530, with comprehensive resilience of 0.8795. This indicates that compared
to jamming attacks, the system has better adjustment capability when facing resource consumption
attacks. However, under heavy DDoS attacks, all resilience indicators show significant decline,
particularly ADC dropping to 0.4803, reflecting the severe impact of high-intensity resource
consumption attacks on core system functions. The impact of replay attacks is relatively mild but
persistent. Under medium replay attacks, the system's comprehensive resilience is 0.7790, with relatively
balanced indicators across dimensions. Although heavy replay attacks reduce comprehensive resilience
to 0.5785, compared to other attack types of equal intensity, their impact is relatively light. This is mainly
because replay attacks primarily target communication integrity and validity, with relatively limited
impact on system availability.

1.0} ADC I ADP[__|STS

Comprehensive ResiliencelllN| Attack Period Availability
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Figure 2 Resilience Comparison between Combined Attacks and Single Attacks

Figure 2 shows the comparison results between combined attacks and single attacks. Experimental
results indicate that combined attacks indeed have greater impact on system resilience, but their
comprehensive impact is not a simple linear superposition. Among dual attack combinations, the
jamming + DDoS attack combination has the most severe effect, with comprehensive resilience dropping
to 0.3568, significantly lower than single jamming attack's 0.5222 and single DDoS attack's 0.4565. This
combined attack simultaneously impacts the system's physical layer and data link layer, causing system
stability to plummet to 0.1213, indicating that multi-layer coordinated attacks can effectively destroy the
system's overall protection framework. In contrast, the jamming + replay attack combination has
relatively lighter impact with comprehensive resilience of 0.5097, mainly because replay attacks and
jamming attacks have certain complementarity in attack mechanisms, allowing the system to partially
mitigate attack impacts through retransmission mechanisms. The triple attack combination represents the
most severe threat environment, with the system's comprehensive resilience falling to 0.2540, and all
resilience dimensions suffering severe impacts. Particularly, system stability drops to 0.0401, indicating
that under simultaneous multiple threats, the system almost loses its ability to maintain stable
performance.

4.4 Performance Verification of Resilience Assessment Method

To verify the technical feasibility and practicality of the proposed resilience assessment method, this
paper conducts in-depth performance verification analysis from two key dimensions: computational
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complexity and parameter sensitivity.

250 | Computation Time

—@— Average Time per Node
200
150 } I I

Time(s)

100

50F

N

Q—_
o\ —_—
0 1 1 1 ? ?—Q_Q—O_O—Q
5 10 15 20 25 30 35 40 45 50
Number of Nodes

Figure 3 Computational Scalability for Different System Scales (Number of Access Terminals)

Figure 3 shows computational performance under different system scales, verifying the good
scalability of the resilience assessment algorithm. Results indicate that as the number of access terminals
increases from 5 to 50, total computation time grows from 188.1 milliseconds to 253.7 milliseconds, an
increase of approximately 35%. Notably, average computation time per node decreases significantly as
system scale expands, dropping from 37.62 milliseconds for 5 nodes to 5.07 milliseconds for 50 nodes,
a reduction of 86.5%. This phenomenon indicates that the resilience assessment algorithm has good
computational efficiency optimization characteristics, effectively utilizing batch processing advantages
when handling large-scale systems and achieving effective allocation of computational resources. The
rapid decline trend in average time per node shows that the algorithm's fixed overhead components can
be effectively amortized in multi-node processing. From a practical perspective, even in large-scale
systems with 50 nodes, total computation time is only 253.7 milliseconds, fully meeting real-time
assessment requirements. This performance level enables the resilience assessment method to be
deployed in actual LEO satellite IoT systems, providing timely decision support for system operations
and security management.

Table 2 Impact of different baseline data point numbers on assessment results

Basc.ehne ADC Value ADP Value STS Value Compr.e.h cnsIve Corpputa‘uon
Points Resilience Time (s)
30 0.3482 0.5213 0.0477 0.3057 249.164
35 0.3753 0.5681 0.0515 0.3317 251.301
40 0.3622 0.5462 0.0497 0.3194 252.450
45 0.3651 0.5510 0.0501 0.3221 239.005
50 0.3865 0.5857 0.0530 0.3417 246.134
55 0.4097 0.6203 0.0560 0.3620 245.386
60 0.4474 0.6701 0.0923 0.4032 248.121
65 0.4327 0.6514 0.0742 0.3861 246.374
70 0.4808 0.7090 0.1317 0.4405 239.678

The experimental results in Table 2 reveal the impact of baseline data point numbers on resilience
assessment results. As baseline points increase from 30 to 70, various resilience indicators show a trend
of first rising then stabilizing. The ADC indicator gradually rises from 0.3482 to 0.4808, ADP indicator
rises from 0.5213 to 0.7090, and comprehensive resilience improves from 0.3057 to 0.4405. This trend
reflects the statistical stability requirements for baseline performance calculation. When baseline data
points are few (30-40 points), insufficient statistical samples lead to low reliability in baseline
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performance estimation, thereby affecting the accuracy of resilience indicators. As data points increase
to 50-60, various indicators gradually stabilize, indicating achievement of statistically reliable levels.
When data points exceed 60, the variation amplitude of resilience indicators decreases significantly,
indicating that continuing to increase baseline length has limited marginal effects on improving
assessment accuracy. Notably, computation time remains relatively stable under different baseline point
settings, all fluctuating within the 239-252 millisecond range with a coefficient of variation of only 2.1%.
This indicates that baseline point adjustment has minimal impact on algorithm computational efficiency,
providing flexibility for parameter optimization in practical applications. Based on sensitivity analysis
results, 50-60 data points can be selected as the baseline calculation window in practical applications,
which can ensure assessment accuracy while avoiding representativeness problems that overly long
baseline windows might bring. For systems with high data collection frequency, baseline points can be
appropriately increased to improve statistical stability; for application scenarios requiring high real-time
performance, relatively fewer baseline points can be chosen to accelerate response speed.

Comprehensive performance verification results indicate that the proposed multi-dimensional
resilience assessment method not only has scientific and comprehensive theoretical foundations but also
possesses good feasibility and practicality in technical implementation, providing effective technical
tools for security assessment and resilience management of LEO satellite IoT systems.

5. Conclusion and Future Work

This paper addresses the resilience assessment challenges of LEO satellite IoT under complex
security threats and proposes a security assessment method based on multi-dimensional resilience
indicators. The core of the research lies in decomposing system resilience into three quantifiable,
measurable, and mutually orthogonal dimensions, thereby comprehensively characterizing the dynamic
response characteristics of LEO satellite IoT systems when facing complex security threats. Through
introducing indicators such as performance retention rate, coefficient of variation, and performance
degradation frequency to accurately quantify the three dimensions of ADC, ADP, and STS, while
employing weighted geometric mean to fuse the three-dimensional indicators for calculating
comprehensive resilience. This method can effectively reflect the significant impact of any dimensional
performance degradation on overall resilience, avoiding assessment bias that linear weighting might
bring, better conforming to the systemic characteristics of resilience. In experimental verification, this
paper comprehensively validates the effectiveness and practicality of the resilience assessment method
through large-scale simulation experiments. The experiments cover multiple typical attack scenarios,
including single attacks, combined attacks, and attacks of different intensities, verifying the applicability
and effectiveness of the resilience assessment method in complex threat environments.

The assessment method proposed in this paper not only considers the passive ability of systems to
resist attacks but also fully embodies the system's proactive adaptive capability and rapid recovery ability,
providing a more scientific and complete theoretical foundation for resilience assessment of LEO satellite
IoT systems. However, this method is based on simulation data and needs further verification in real LEO
satellite systems. Future work could consider utilizing deep learning technologies to automatically extract
system state features, improving the accuracy of threat identification and resilience prediction.
Furthermore, the real-time assessment results of this framework can serve as input states for
reinforcement learning agents, driving systems to perform actions such as dynamically adjusting protocol
parameters, intelligently switching communication frequencies, or reconfiguring network routing,
ultimately forming an intelligent resilience closed-loop system that integrates "perception-assessment-
decision-response."

References

[1] Zheng J, Luan T H, Li G, et al. Low Earth Orbit Satellite Networks: Architecture, Key Technologies,
Measurement, and Open Issues[J]. IEEE Network, 2025.

[2] De Sanctis M, Cianca E, Araniti G, et al. Satellite communications supporting internet of remote
things[J]. IEEE Internet of Things Journal, 2015, 3(1): 113-123.

[3] Yang Z, Shaofeng L, Chenyang T. Research on Security Protection of Space-Earth Integrated
Network Wireless Link Based on Consortium Blockchain Technology and Application[C]//2023 IEEE
2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). IEEE,
2023: 1455-1458.

[4] Li K, Zhou H, Tu Z, et al. Distributed network intrusion detection system in satellite-terrestrial

Published by Francis Academic Press, UK
-113-



Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 8, Issue 7: 105-114, DOI: 10.25236/AJCIS.2025.080713

integrated networks using federated learning[J]. IEEE Access, 2020, 8: 214852-214865.

[5] Babu B N, Gunasekaran M. An Analysis of Insider Attack Detection Using Machine Learning
Algorithms[C]//2022 IEEE 2nd International Conference on Mobile Networks and Wireless
Communications (ICMNWC). IEEE, 2022: 1-7.

[6] Ansong S, Rankothge W, Sadeghi S, et al. Role of cybersecurity for a secure global communication
eco-system: A comprehensive cyber risk assessment for satellite communications[J]. Computers &
Security, 2024: 104156.

[7] Zhang Y, Wang Y, Hu Y, et al. Security performance analysis of leo satellite constellation networks
under ddos attack[J]. Sensors, 2022, 22(19): 7286.

[8] Tran H T, Balchanos M, Domercant J C, et al. A framework for the quantitative assessment of
performance-based system resilience[J]. Reliability Engineering & System Safety, 2017, 158: 73-84.
[9] Yamagata Y, Maruyama H. Urban resilience[M]. Berlin/Heidelberg, Germany: Springer, 2016.
[10] Tan Z, Wu B, Che A. Resilience modeling for multi-state systems based on Markov processes[J].
Reliability Engineering & System Safety, 2023, 235: 109207.

[11] Erol O, Henry D, Sauser B. 3.1. 2 Exploring resilience measurement methodologies[C]//INCOSE
international symposium. 2010, 20(1): 302-322.

[12] Weerackody V. Satellite diversity to mitigate jamming in LEO satellite mega-constellations[C]//2021
IEEE International Conference on Communications Workshops(ICC). IEEE, 2021: 1-6.

[13] Kalambe D, Sharma D, Kadam P, et al. A comprehensive plane-wise review of DDoS attacks in
SDN: Leveraging detection and mitigation through machine learning and deep learning[J]. Journal of
Network and Computer Applications, 2024 104081.

[14] Zhu M, Martinez S. On the performance analysis of resilient networked control systems under replay
attacks[J]. IEEE Transactions on Automatic Control, 2013, 59(3): 804-808.

Published by Francis Academic Press, UK
-114-



	3.1 Resilience Definition and Dimension Division
	3.2 Mathematical Modeling of Resilience Indicators
	3.3 Comprehensive Resilience Assessment
	4.1 Experimental Setup
	4.2 Threat Scenarios
	4.3 Resilience Assessment Results Analysis
	4.4 Performance Verification of Resilience Assessment Method

