
Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 8, Issue 9: 108-118, DOI: 10.25236/AJCIS.2025.080914 

Published by Francis Academic Press, UK 

-108- 

Real-Time Adaptive Dispatch Algorithm for Dynamic 

Vehicle Routing with Time-Varying Demand 

Sichong Huang 

Duke University, 100 Fuqua Drive, Durham, NC 27708, USA 

sichong.huang@alumni.duke.edu 

Abstract: Urban logistics struggles with fluctuating e-commerce delivery demands. This research 

introduces an adaptive dispatch algorithm combining computational intelligence with operational 

flexibility to tackle dynamic routing challenges. three-layer structure guides operations: strategic 

planning, tactical adjustment, and operational execution. Adaptive tabu search switches between 

incremental updates for normal operations and major reconfigurations during disruptions. Parallel 

computing threads maintain speed while aspiration criteria and network evaluation preserve solution 

quality. Results outperform static optimization significantly. Costs dropped 14.2%; high-variability 

scenarios improved 21.8%. Processing stayed efficient—86.2% of requests completed within one second, 

with 88.7% on-time delivery. The system scaled near-linearly to 500 customers, quality declining just 

9.7% at maximum capacity. This demand-adaptive method surpasses conventional traffic-based routing 

for last-mile delivery, offering practical solutions for modern logistics networks. These findings offer 

valuable insights for enhancing urban delivery systems facing increasingly dynamic demand patterns 

and operational constraints in modern logistics networks. 

Keywords: Dynamic Vehicle Routing, Real-Time Adaptive Scheduling, Time-Varying Demand, Tabu 

Search Optimization, Urban Logistics Dispatch 

1. Introduction 

Supply chains today increasingly rely on artificial intelligence to tackle growing logistics challenges 

[1, 2]. Dynamic vehicle routing with fluctuating demand stands out as particularly complex, especially 

as logistics networks become more intricate. Conventional optimization methods struggle with real-time 

processing when conditions keep changing. Machine learning and deep reinforcement learning offer 

promising solutions. Neural network-based dispatching has already proven successful in ride-hailing 

platforms [3]. Reinforcement learning adapts well to both unpredictable demand and uncertain routing 

conditions [4, 5]. 

Methodological advances such as machine learning-based branch and price algorithms that utilize 

pattern recognition to enhance solution quality [6] and energy-aware routing strategies for electric 

vehicles that use predictive models for consumption optimization [7] have accelerated the evolution of 

intelligent vehicle routing algorithms. Despite these improvements, the current works mostly concentrate 

on static optimization applications or do not properly focus on the real-time adaptive demands of highly 

dynamic environments with rapidly changing demand profiles. Recently, data-driven optimization 

approaches have been developed to address this gap by introducing uncertainty quantification and real-

time information processing [8], and demand-responsive transit systems have initiated studies on 

integrated dispatch and route optimization frameworks [9]. 

Nonetheless, existing solutions are severely hampered in real-time responsiveness, adaptability, and 

computational cost under time-varying demands, particularly when dealing with large-scale networks 

and multi-constraint scenarios. These gaps are filled by introducing an innovative real-time adaptive 

dispatch algorithm which integrates advanced learning mechanisms with dynamic optimization strategies, 

enabling continuous adaptation to fluctuating demand patterns while maintaining computational 

tractability for practical implementation in complex logistics networks. 
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2. Methods 

2.1 Time-Varying Demand Dynamic Vehicle Routing Problem Modeling 

Difficulties exist in the dynamic vehicle routing problem involving time fluctuations, and they are 

different from traditional static routing scenarios, particularly in capturing the temporal evolution of 

customer requests and their spatial-temporal correlations. Service networks experience predictable 

demand patterns disrupted by weather, events, and market shifts. Unlike traditional models assuming 

constant demand, dynamic requirements necessitate continuous routing adjustments throughout 

operations. 

The mathematical framework uses rolling horizons, updating routes as information emerges. The 

objective minimizes total costs while incorporating time-varying operational factors. 
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Where ( )ijc t  represents the time-dependent travel cost between nodes i  and j , ( )ijkx t  is a 

binary variable indicating whether vehicle k  travels from i  to j  at time t , ( )newC t  denotes newly 

arrived customers at time t , i  is the penalty for not serving customer i , and iky  indicates whether 

customer i  is served by vehicle k . This formulation, commonly adopted in dynamic routing literature, 

captures both the routing costs and the service penalties inherent in real-time decision making. 

The time window constraints ensure service feasibility within customer-specified intervals: 

 
(1 ), , ,

,

i i ij j ijk

i i i

a s t a M x i j N k K

e a l i C

       

   
 (2) 

Table 1: Problem parameters and decision variables for time-varying demand DVRP 

Category Symbol Description Value/Range 

Network Parameters N  
Set of all nodes (depot + customers) 76 nodes 

C  
Set of customer nodes 75 customers 

K  
Set of available vehicles 12 vehicles 

Q  Vehicle capacity 180 units 

Temporal Parameters T  
Planning horizon 480 minutes 

t  
Time interval for updates 15 minutes 

[ , ]i ie l  Time window for customer i  Variable, avg. window: 45 min 

is  Service time at customer i  5-12 minutes 

ijt  Travel time between nodes i  and j  Distance-dependent 

Demand Parameters ( )id t  Demand of customer i  at time t  8-35 units 

ip  Probability of customer i  appearing 0.65-0.92 

i  Penalty for not serving customer i  50-150 cost units 

Cost Parameters ( )ijc t  
Time-dependent travel cost 1.2-2.8 per unit distance 

  
Aspiration threshold parameter 0.15 

  
Constraint violation penalty weight 100 

Decision Variables ( )ijkx t  Binary: vehicle k  travels i  to j  at time t  
{0, 1} 

iky  Binary: customer i  served by vehicle k  
{0, 1} 

ia  Arrival time at node i  Continuous 

Note: The values represent a medium-scale urban delivery scenario with realistic operational constraints. Time windows vary based 

on customer priority, with commercial customers typically having tighter windows (30-40 minutes) compared to residential 

customers (50-60 minutes). 
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Where  represents the arrival time at node ,  is the service time,  denotes travel time, 

 defines the time window for customer , and  is a sufficiently large constant. Table 1 

presents the key parameters and decision variables that define the problem structure, including temporal 

indices, spatial coordinates, and capacity constraints. 

Table 1 depicts the problem parameters and decision factors for a medium-scale urban delivery model 

consisting of 76 nodes, 12 vehicles, and an 8-hour planning horizon. The options correspond to the 

network structure, the constraints imposed by time, the stochastic demand features in the range of 8-35 

units, and price effect associated with time. 

The constraint regime includes vehicle capacity requirements ensuring that the overall demand served 

by each vehicle does not exceed its capacity, time window constraints that define the reasonable time 

span an individual customer may be served, and precedence constraints that permit network linkages and 

avoid sub-tours. Furthermore, the model incorporates dynamic constraints that account for the evolution 

of the system state, such as inserting new requests into the route structure and moving unreleased 

customers at load or time constraints for vehicles. 

2.2 Real-Time Adaptive Scheduling Algorithm Framework 

The concept for adopting an adaptive scheduling mechanism in the present system solves the 

calculation problem concerning the demand for fast routing decisions, considering that solution quality 

still needs to be maintained even in the face of dynamic constraints. Based on the adaptive tabu search 

concept shown to be effective in stochastic customer situations, the algorithm generalizes classical 

neighborhood search methods by introducing memory structures to instruct the search process in the light 

of past performance and problem characteristics [10]. The framework makes use of a hierarchy of 

decision structure where strategic route skeletons are managed, and are tactically revised based on current 

information, while operational decisions are used to deal with immediate dispatch demand. 

The adaptive tabu search mechanism utilizes an aspiration criterion that overrides tabu status when 

significant improvements are identified: 

 
*( ) ( ) ( ) fA s f s f s        (3) 

Where ( )f s  represents the objective value of candidate solution s', 
*( )f s  is the best known 

solution value,   is an aspiration threshold parameter, and 
f  denotes the standard deviation of 

recent solution values. This adaptive aspiration level, derived from established tabu search 

methodologies, enables the algorithm to escape local optima while preventing cycling behavior. 

The neighborhood evaluation employs a modified savings calculation for route modifications: 
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Where ( )pred j  and ( )succ i  denote predecessor and successor nodes respectively, and 
ijW  

represents a penalty term for violating operational constraints with weight parameter  . This evaluation 

function, adapted from classical savings algorithms, incorporates penalties for constraint violations 

enabling efficient exploration of infeasible regions during the search process. Figure 1 illustrates the 

multi-layer architecture of the adaptive framework, showing the interaction between strategic planning, 

tactical adjustment, and operational execution components. 

Figure 1 depicts the hierarchical structure of the adaptive scheduling framework, comprising strategic 

planning, tactical adjustment, and operational execution layers with bidirectional information flows that 

enable real-time coordination and feedback-driven optimization across different temporal horizons and 

decision scopes. Under this architecture, the online adaptive mechanism uses a double-mode operation 

in which fine adaptations take place constantly through incremental updates, whereas major 

reconfigurations are invoked when a large modification to the system occurs or performance decreases. 

The algorithm stores a pool of diverse and high-quality solutions, which are used as the initial bases to 

perform re-optimization without repeating all steps, thus reducing response time to new demand 

variations or vehicle breakdowns. 
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Figure 1: Multi-layer adaptive scheduling framework with feedback mechanisms 

2.3 Algorithm Implementation and Optimization 

Real-time performance relies on optimized design. Decomposition divides problems geographically 

or temporally into manageable subproblems. Lagrangian relaxation dualizes coupling constraints for 

subproblem coordination, allowing parallel processing without losing solution coherence. 
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Where ( )r rf x  represents the objective function for region r , i  are Lagrange multipliers for 

coupling constraints, ib  denotes resource limits, and irA  captures resource consumption. 

Decomposition enables parallel subproblem processing, cutting computation time via periodic 

synchronization. The incremental method assesses candidate moves individually rather than rebuilding 

solutions. Spatial indexing accelerates customer-vehicle matching; priority queues manage time-critical 

tasks. Algorithm 1 details iterative refinement for ongoing solution enhancement. 

Algorithm 1: Adaptive Real-time Dispatch Procedure 

Input: Initial solution 
0S , customer set C , vehicle fleet K , time horizon T  

Output: Optimized routing solution 
*S  with assignments ( )ijkx t  

Initialize: Best solution 
*

0S S , tabu list TL   

while t T  do 

Detect new requests ( )newC t  

if significant system change detected then 

Major Reconfiguration: Full re-optimization 

else 

Incremental Update: 

Compute insertion cost: , ( ) ( ), , ( ) ( ),

k

ij i pred j succ i j i succ i pred j j ijc c c c W        

Insert new customers at minimum cost positions 

end if 

Adaptive Search: 

Generate neighborhood solutions ( )N S  

Apply aspiration criterion: 
*( ) ( ) ( ) fA s f s f s        

Select best move respecting tabu restrictions 

Update 
*S  if improved 

Update system state and advance time: t t t   

end while 

return 
*S  
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Algorithm 1 operates dually—incremental updates for routine changes, system reconfiguration for 

major disruptions. Insertion cost evaluation and aspiration criteria balance quality with speed. Rather 

than rebuilding solutions entirely, the system evaluates moves incrementally, maintaining efficiency 

throughout operation. Spatial indices accelerate customer-vehicle matching, while priority queues 

organize time-sensitive tasks. Effective memory management ensures smooth processing of continuous 

demand updates and vehicle status changes. 

During peak periods, the system relaxes certain constraints to prevent service failures. Critical 

constraints remain fixed, but secondary ones can bend with corresponding penalties. This flexibility helps 

maintain service continuity when demand spikes. Figure 2 illustrates the parallel processing architecture, 

where multiple threads handle different algorithm components simultaneously, ensuring quick response 

times despite computational complexity. 

 

Figure 2: Parallel processing architecture and component synchronization 

Figure 2 shows a side-by-side timeline of the four computational threads—route optimization, 

demand forecasting, constraint evaluation, and data management—in which concurrent processing with 

synchronized checkpoints is capable of making fast real-time decisions while maintaining data 

consistency through carefully controlled inter-thread communication. In addition to the architectural 

efficiency exhibited in the case of a parallel framework, we also address exception handling strategies, 

which are designed for detecting and recovering from numerical instabilities, data inconsistency, and 

communication failure, ensuring continuous operation within real deployment scenarios where perfect 

information and uninterrupted computation cannot be assumed. 

3. Results 

3.1 Experimental Design and Environment Configuration 

Experimental validation was also done for the performance of the real-time adaptive dispatch 

algorithm under a wide set of operational scenarios common in urban logistics. The research included 

synthetic, controlled experiments allowing for routine variations in the parameter set, in combination 

with realistic problem instances generated from urban delivery scenarios for the purpose of real-world 

validation. The computer infrastructure was a server featuring an Intel Xeon Gold 6248R CPU operating 

at 3.0 ghz and 128GB of RAM running under Ubuntu 20.04 LTS and seamlessly integrated for use under 

Python 3.8. When running numerical simulations, Python-based numpy was used, while networkx was 

used for generating and manipulating graphs and using parallel processing by way of special 

multiprocessing libraries corresponding in the number of CPU cores. 

The experimental instances were specifically designed to capture the heterogeneous characteristics 

in real-life dynamic vehicle routing problems, i.e., spatially distributed by urban geography in which 

service requirements at commercial locations are 2.3 times larger than at residential areas, temporal by 

historical delivery records of popular daytime (09:00-11:00) and evening (16:00-18:00) surges, and 

randomness simulating real-world sources of uncertainties. Benchmark Data Generation: BM dataset 
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generation was organized such that the locations of customers were randomly selected from a collection 

of Gaussian mixtures around commercial centers, the amount of demand was selected from log-normal 

distributions set according to real-world volumes of deliveries, and the time windows were generated 

according to common SLAs in urban logistics. Datasets ranged from small scale test cases (50 customers) 

for validation purpose to full scale ones (500 customers) simulating metropolitan complexity VTW by 

vehicle fleets scaled such that about a 20:1 customers ratio is held for every vehicle. Table 2 provides the 

detailed statistics for the benchmark datasets and setting of experimental parameters employed at the 

evaluation phase. 

Table 2: Benchmark datasets and experimental parameter settings 

Dataset Category Small Medium-1 Medium-2 Large-1 Large-2 

Problem Characteristics      

Number of customers 50 100 200 350 500 

Number of vehicles 3 5 10 17 25 

Customer/vehicle ratio 16.7 20.0 20.0 20.6 20.0 

Geographic area (km²) 25 36 49 64 81 

Demand Parameters      

Avg. arrival rate (req/min) 0.8 1.2 1.8 2.4 3.2 

Peak arrival rate (req/min) 1.3 2.1 2.9 3.7 4.8 

Demand quantity range (units) 8-32 10-35 8-38 12-35 10-40 

Commercial/residential ratio 35/65 40/60 42/58 38/62 41/59 

Time Window Settings      

Tight windows (30 min) 38% 42% 40% 39% 41% 

Flexible windows (60 min) 62% 58% 60% 61% 59% 

Avg. service time (min) 5.2 5.8 6.1 5.7 6.3 

Planning horizon (min) 480 480 480 480 480 

Algorithm Parameters      

Update interval Δt (min) 15 15 15 15 15 

Aspiration threshold θ range [0.08, 0.23] [0.09, 0.24] [0.08, 0.25] [0.10, 0.24] [0.09, 0.25] 

Penalty weight λ 100 100 100 100 100 

Tabu tenure τ range [7, 14] [8, 15] [7, 15] [9, 15] [8, 14] 

Table 2 details test instances ranging from 50 to 500 customers with customer-vehicle ratios between 

16.7 and 20.6. Demand rates vary from 0.8 to 3.2 requests per minute under normal conditions, reaching 

4.8 during peak periods. Time windows split 40% tight (30 minutes) and 60% flexible (60 minutes) 

across datasets. Adaptive parameters θ ranged 0.08-0.25 with λ fixed at 100. These settings balanced 

computational efficiency with realistic operational demands across varied scenarios. 

3.2 Real-Time Performance Verification 

Real-time testing confirms practical viability for online logistics where delays disrupt service. 

Response times spanned light (0.8 requests/minute) to heavy (3.2 requests/minute) loads. Dual-mode 

scheduling balanced throughput and latency across both operating states. 

Tests ran 1000 request sequences per configuration for statistical validity. Wall-clock measurements 

captured incremental updates from arrivals and major reconfigurations from threshold violations. Peak 

load analysis revealed queue lengths and processing patterns. Worst-case scenarios tested vehicles near 

capacity handling priority backlogs, proving responsiveness under stress. Figure 3 displays response 

performance across time windows and demand intensities, demonstrating operational range. 

Comprehensive real-time performance metrics under different operational conditions were presented 

in Figure 3. Figure 3(a) shows that response time with service load increases with demand intensity, 

differentiating the two types of updates – increment versus reconfigure. Figure 3(b) illustrates the 

performance diminution as time windows become narrow, and both average and percentile curves show 

response variation. Figure 3(c) shows the percentiles for the response time distribution with benchmarks 

such as mean and critical boundaries. Memory evolution is represented in Figure 3(d), both morning and 

afternoon peaks were evident, but developed within system capacity. These measures confirm real-time 

performance across varying loads, validating operational viability. Beyond baseline metrics, adaptive 

mechanisms handle demand fluctuations inherent in dynamic logistics environments. 
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Figure 3: Real-time response performance under different time windows and demand intensities 

3.3 Adaptive Capability Assessment 

Adaptive mechanisms respond to demand shifts and operational changes—the core innovation for 

time-varying logistics. Tests covered three realistic scenarios: stable conditions (0.15 coefficient of 

variation), regular 40% peak-to-trough fluctuations matching daily patterns, and sudden 50% demand 

surges within 15 minutes simulating unexpected events. 

Evaluation metrics included confusion matrices tracking pattern recognition accuracy between 

predicted and actual demand. Parameters θ and λ recorded at intervals showed adaptation trajectories. 

Stability indices quantified solution consistency, while recovery times revealed system resilience after 

disruptions. These measurements captured both immediate responses and long-term adaptation 

effectiveness. These comprehensive measurements captured both immediate responses and longer-term 

adaptation effectiveness across diverse operational challenges. All experimental configurations were run 

30 times with new random seeds to guarantee statistical significance, and the performance was measured 

after a warm-up period of 60 minutes, in order to exclude transient systems. All experimental setups have 

been repeated 30 times with independent random seeds for statistical significance, and excluding 60 

minutes of warm-up period in the performance measurement to consider steady-state behavior. Figure 4 

presents the comprehensive adaptive performance metrics under these varied time-varying demand 

patterns, demonstrating the algorithm's response characteristics across different operational dynamics. 

Figure 4 demonstrates the algorithm's adaptive capabilities under time-varying demand conditions. 

Figure 4(a) displays three demand patterns—steady state, periodic fluctuations, and surge events, with 

the surge event clearly marked at its occurrence point. Figure 4(b) shows pattern recognition accuracy 

evolution, with the annotation indicating 78.6% overall accuracy at 120 minutes, and legend values 

showing final accuracies for each pattern type. Figure 4(c) illustrates adaptive parameter θ evolution 

across different demand scenarios, responding to volatility changes. Figure 4(d) presents the stability 

index with an average of 0.796 as indicated in the legend, featuring a marked recovery period of 6.4 
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minutes following surge disruption. 

 

 

Figure 4: Adaptive performance under time-varying demand patterns 

3.4 Comprehensive Performance Comparison 

To establish the relative effectiveness of the proposed algorithm, extensive comparative experiments 

were conducted against four representative baseline methods spanning different solution paradigms: 

static periodic optimization representing traditional approaches, myopic greedy insertion reflecting 

simple real-time heuristics, adaptive large neighborhood search (ALNS) as state-of-the-art metaheuristic, 

and basic reinforcement learning without adaptive mechanisms. The comparison approach provided a 

fair and consistent means of comparing as it used identical problem instances from the same distribution 

for each algorithm. Resources were matched with one thread in their single-threaded implementations 

for serial algorithms and similar core counts for parallel ones. Parameters were tuned on separate 

validation sets using grid search to determine the best setup for each method, and the same evaluation 

metrics are computed following identical procedures. Fifty independent runs per configuration were 

executed for each algorithm. Performance (mean and variance) was observed in terms of operating costs, 

time in CPU, memory used, delivery on-time ratio, customer average waiting time, hung rate, as well as 

worst quality degradation. These measurements monitored quality of solution, time for computation, 

level of service, and robustness of the system under varying test conditions. Table 3 presents the full 

performance comparison results with 95% confidence intervals, showing enough statistical significance 

of the differences. 

Table 3: Algorithm Performance Comparison 

Metric Proposed 

Algorithm 

Static 

Optimization 

ALNS Myopic 

Cost Reduction Baseline -14.2%±2.3% -8.6%±1.9% -18.7%±3.1% 

Computation Time (relative) 1.00 0.42 1.34 0.73 

On-Time Delivery 88.7% 81.4% 86.2% 79.3% 

Memory Usage (relative) 1.5× 1.0× 1.8× 0.9× 

Convergence Iterations 157±12 89±8 130±10 68±6 

Performance in High-Variability +21.8% Baseline +12.4% +8.9% 
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Table 3 shows the algorithm achieves 14.2%±2.3% cost reduction versus static optimization and 

8.6%±1.9% versus ALNS. On-time delivery reaches 88.7%, improving 7.3 points over traditional 

methods. Computational needs rise 37% above myopic approaches but stay 25% below ALNS. Memory 

increases 1.5-fold due to solution pools. High-variability scenarios yield 21.8% performance gains. The 

system scales effectively from local to city-wide operations, justifying higher resource usage through 

substantial operational improvements. 

3.5 Scalability Analysis 

Scalability testing examined performance from small distribution centers to metropolitan networks. 

Tests covered 50 to 500 customers with approximately 20 customers per vehicle. Geographic areas scaled 

proportionally to customer count's square root. Time windows remained consistent—40% tight (30 

minutes) and 60% flexible (60 minutes). Demand rates maintained similar system loads across all sizes. 

Four metrics tracked scalability: computation time growth, solution quality degradation, memory 

consumption patterns, and parallel processing efficiency through thread utilization and synchronization. 

Each problem size underwent 20 independent runs for statistical reliability. Tests used dedicated 

hardware with background processes disabled to ensure consistent conditions. Results confirmed near-

linear computational scaling up to 500 customers, with quality degradation staying below acceptable 

thresholds even at maximum scale. Figure 5 shows the scalability analysis, which refers to performance 

scaling with problem size classified in terms of computation time, solution quality, and resource 

utilization profiles. 

 

 

Figure 5: Scalability analysis across different problem sizes 

Figure 5 evaluates scalability characteristics critical for practical deployment across varying 

operational scales. Figure 5(a) shows computational time scaling with the fitted model and R²=0.937 

indicated in the legend. Figure 5(b) demonstrates solution quality degradation, with the annotation 

marking 9.7% degradation from smallest to largest instances. Figure 5(c) illustrates memory 

consumption following O(n1.18) growth pattern, reaching the labeled maximum of 2.6 GB. Figure 5(d) 

presents parallel processing efficiency declining from the marked 0.85 to 0.68 across problem sizes. 

These metrics confirm practical scalability for real-world deployment, with identifiable performance 
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boundaries emerging at larger scales, validating the algorithm's applicability from local distribution to 

metropolitan logistics networks. 

4. Discussion 

The experimental results demonstrate that the proposed real-time adaptive dispatch algorithm 

achieves a 14.2% cost reduction relative to static optimization and 21.8% improvement in high-

variability scenarios, representing substantial operational efficiency gains in dynamic logistics 

environments. These performance improvements emerge from the algorithm's dual-mode operation 

strategy, which distinguishes it from existing approaches in the literature. While the synergetic attention-

driven transformer approach relies on continuous neural network predictions for routing decisions [11], 

the proposed method's explicit switching between incremental updates and major reconfiguration enables 

more responsive adaptation to demand fluctuations, as evidenced by the 6.4-minute recovery time 

following surge events compared to traditional methods that lack such adaptive mechanisms. 

The complexity analysis reveals practical advantages over theoretical approaches. While quantum-

inspired computing achieves polynomial time complexity for vehicle routing through quantum annealing 

[12], implementation remains limited to small instances. This algorithm demonstrates near-linear scaling 

(R² = 0.937) for up to 500 customers, processing 86.2% of requests within one second. 

Performance metrics prove practical viability: 88.7% on-time delivery on standard hardware with 

memory usage under 2.6 GB. Quantum approaches require specialized infrastructure unavailable to most 

logistics operators. The algorithm maintains robustness across demand variations, achieving 0.796 

stability index and 78.6% pattern recognition accuracy. Unlike specialized frameworks such as battery 

management for electric vehicle routing [13], this approach handles general capacity constraints 

applicable across diverse logistics contexts. Also, dynamic adaptive re-routing policies focus on 

determining the growth of traffic demand in time and space to tackle congestion in grid networks [14]. 

Whereas the present algorithm yields its gain of 21.8% for high-variability cases by adapting to demand 

without referring explicitly to traffic model parameters, indicating that last-mile delivery applications 

may be more sensitive to customer-centric approaches. 

Experimental results of 9.7% quality degradation from scaling 50 to 500 customers demonstrate 

effective performance maintenance for large-scale deployment. The fractional delivery algorithm with 

3D loading constraints targets spatial optimization problems [15], while in this work, attention is devoted 

to timeliness by using simplified capacity models. The automated guided vehicle scheduling in loop-

based graphs demonstrates the advantages of specialized algorithms for structured environments [16], 

while the proposed general-purpose framework trades domain-specific optimizations for broader 

applicability across diverse logistics scenarios. The reinforcement learning applications in supply chain 

efficiency optimization emphasize multi-agent coordination benefits [17], validating that adaptive 

mechanisms provide consistent advantages across different implementation paradigms, though the 

proposed algorithm's single-agent architecture with parallel processing achieves comparable 

performance improvements through architectural simplicity rather than coordination complexity. 

5. Conclusion 

This research presents a real-time adaptive dispatch algorithm for dynamic vehicle routing with time-

varying demand, demonstrating significant operational improvements through the integration of dual-

mode processing and adaptive search mechanisms. The experimental validation confirms that the 

algorithm achieves 14.2% cost reduction compared to static optimization and 21.8% performance gains 

in high-variability scenarios, while maintaining 86.2% of responses under one second and 88.7% on-

time delivery rates across diverse operational conditions. The hierarchical framework combining 

strategic planning, tactical adjustment, and operational execution layers enables effective adaptation to 

demand fluctuations with a stability index of 0.796, while the near-linear computational complexity with 

R²=0.937 ensures scalability to 500-customer instances with only 9.7% quality degradation. 

The practical implications extend beyond algorithmic improvements, as the demonstrated balance 

between computational efficiency and solution quality addresses critical requirements for deployment in 

contemporary logistics systems facing increasingly dynamic demand patterns. Future research directions 

include incorporating multi-objective optimization for sustainability metrics, extending the framework 

to multi-depot scenarios with heterogeneous vehicle fleets, and exploring integration with real-time 

traffic data for enhanced routing accuracy, while the current implementation provides a robust foundation 
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for addressing time-varying demand challenges in urban logistics through adaptive computational 

intelligence. 
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