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Abstract: Clustering high-dimensional tabular data is a complex and challenging problem. Traditional 
clustering techniques nearly fail to identify the latent structure buried in spaces of high dimensionality. 
TabClusterNet is a novel deep clustering model designed specifically for tasks related to tabular data 
analysis. The self-supervised learning encoder-decoder from TabNet is combined with the deep 
clustering framework of Deep Embedding Clustering (DEC). By the high feature-extracting power of 
TabNet and the high clustering ability of DEC, TabClusterNet achieves far superior performance than 
the conventional method in feature extraction towards efficient clustering. Our proposed novel deep 
clustering architecture has been extensively validated over various public datasets for its great 
performance over different evaluation metrics. A closer look at the model shows that it preserves the 
structure of the data. TabClusterNet has been demonstrated to achieve substantially improved 
clustering accuracy and not only offer insights useful for data analytics and decision support, but also 
enable data scientists and researchers to glean deeper insights from complex datasets. 
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1. Introduction 

Unsupervised clustering is a basic task both in data science and in machine learning. The most 
popular clustering methods, K-means and Gaussian Mixture Models [1], classify data based on inherent 
attributes or similarities in manually crafted features. In many cases, however, similarity measures for 
high-dimensional input feature spaces become much less reliable. One way to address this issue and 
still proceed with clustering is to reduce data dimensionality prior to clustering. Principal Component 
Analysis (PCA) can be performed for this purpose. With the advent of deep learning, feature 
transformations can now be performed by Deep Neural Networks (DNNs), a technique known as deep 
clustering. 

Recent deep clustering approaches leave many questions unanswered. Initial work in this area 
focused on feature learning to retain specific data properties by incorporating prior knowledge [2-3]. 
These approaches typically involve two stages: feature transformation and clustering. Later, joint 
algorithms like DEC [4] emerged, which combine both stages. The DEC algorithm defines an objective 
in a self-supervised manner, using clustering loss to update transformation network parameters and 
cluster centers simultaneously. Cluster assignments are incorporated as soft labels. However, recent 
research has shown that deep clustering methods based on image datasets do not universally apply to 
all data types [5-6], particularly tabular data. Experiments have demonstrated that traditional clustering 
for tabular data ranks second among eight methods, outperforming most deep embedding clustering 
methods [7]. 

To address this issue, we developed TabClusterNet, an advanced deep learning model designed for 
tabular data clustering. This model innovatively combines the self-supervised learning encoder and 
decoder of TabNet with the deep clustering framework of DEC, providing an enhanced solution for 
clustering tabular data. The greatest advantage of TabClusterNet is that it transcends the limitations of 
traditional feature extraction by incorporating an attention mechanism within its encoder and decoder 
for advanced clustering. This approach improves the quality of clustering and provides deeper insights 
through more nuanced techniques for data analysis and decision-making processes. 

The main contributions of this paper are threefold: (1) the introduction of a new deep clustering 
architecture specifically designed for high-dimensional tabular data; (2) demonstrating that 
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TabClusterNet achieves superior clustering performance over existing baselines across a multitude of 
metrics in several benchmark datasets; and (3) providing comprehensive and thorough analyses of the 
model across different datasets, proving its ability to preserve data structure. 

2. Related work 

2.1 Autoencoders 

Autoencoders are known to compress data well and learn features; they can further improve 
clustering significantly. These neural architectures compress input data into a latent space and then 
reconstruct it, retaining essential characteristics but keeping redundancy at a minimum. Clustering in 
the latent space, rather than in the original space, produces clearer groupings. On the other hand, the 
introduction of a probabilistic layer in the encoding process provides a mechanism for modeling 
clusters as distributions in latent space with Variational Autoencoders [8]. This procedure enhances 
flexibility and robustness in clustering, providing deeper insights into data categorization and 
highlighting the significant potential of integrating Autoencoders within clustering algorithms.  

2.2 Deep Clustering 

Popular deep clustering algorithms explicitly define a clustering loss, analogous to classification 
errors in supervised deep learning. DEC employs a deep neural network to map data from the observed 
space to a low-dimensional latent space, learning feature representations and clustering assignments 
simultaneously. The key contribution of DEC is its clustering loss (target distribution P), which 
supervises high-confidence samples to make cluster distributions more concentrated. Drawing 
inspiration from t-SNE, DEC minimizes the Kullback-Leibler (KL) divergence by focusing on a 
centroid-based probability distribution, reducing KL divergence to an auxiliary target distribution. This 
method enhances clustering assignments and feature representations while reducing complexity to 

, with  being the number of centroids. 

3. TabClusterNet 

3.1 TabNet 

TabNet [9] was developed at Google in 2019 and later published at AAAI 2021. It offers a unique 
neural network structure explicitly designed for tabular data. The main novelty of the sequence-based 
attention mechanism is its ability to select features at each decision step, resulting in better 
representations and increased learning efficiency and model interpretability. TabNet enhances the 
performance of traditional Decision Trees (DT) while retaining most of their strengths through a 
sophisticated design, addressing: (i) sparse, per-instance feature selection derived from data; (ii) 
incrementally improved decision steps based on selected features and nonlinear processing, which 
enhances learning efficiency; and (iii) increased dimensionality and additional steps for simulating 
ensemble learning. TabNet's encoding is based on sequential multi-step processing, where each step 
uses information processed from the previous step to decide on feature usage and outputs the processed 
feature representation for the overall decision. 

Currently, deep-learning methodologies like TabNet only perform well when applied to 
classification or regression tasks involving tabular data. Therefore, the investigation of its applicability 
as a proper framework for the implementation of clustering tasks came with an opportune moment 
useful in providing insight into the feature selection and representation learning ability of TabNet. This 
paper introduces a conceptual framework called TabClusterNet by incorporating the competency of the 
TabNet sequential multi-step feature selection mechanism along with its capability in self-supervised 
learning through deep clustering methods. This combination allows TabClusterNet to cluster tabular 
data effectively while still maintaining the interpretability of the data so that richer findings in complex 
structures within the data are returned. 

3.2 Model Architecture 

TabClusterNet integrates the self-supervised learning encoder and decoder of TabNet into deep 
framework for clustering with DEC. It gives an answer to high-dimensional unsupervised tabular data 
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clustering that marries the strength that TabNet has, in the limitation of the traditional feature extraction 
method in the quality of the feature representation and significant improvement in efficiency of 
clustering. TabClusterNet utilizes a multi-step architecture with the TabNet encoder, aiming to provide 
dynamic identification and processing of key features at each step, thus facilitating deeper 
understanding and analysis of data. The attention mechanism of the TabNet model employs an attentive 
transformer and a feature mask in this case, to help discover important characteristics at each step to 
use them appropriately in clustering tasks. 

 
Figure 1: The architecture of TabNet in self-supervised learning is an encoder–decoder structure. T 
The encoder, through a sequential multi-step process and attention mechanisms, extracts effective 

information from raw numerical features and processes categorical features using trainable 
embeddings. The features are encoded into an embedded representation, and the subsequent 

reconstruction by the TabNet decoder uses a binary mask to preserve the local structure of the initial 
data. The embedded representation is updated further on this round using clustering loss to ensure data 

points are well-distributed for good clustering. 

Figure 1 illustrates the TabClusterNet architecture for tabular data. We utilize TabNet's 
self-supervised learning encoder-decoder structure to replace the traditional autoencoder, thereby 
providing deeper feature representation. Features are encoded into an embedded representation and 
reconstructed through TabNet's decoder, with the reconstruction loss  calculated to retain the 
original data's local structure. During reconstruction, a binary mask  is used, where  
is the batch size and  is the feature dimension, with  presenting masked features. The 
embedded representation  is then used in the clustering loss , guiding the embedding space 
adjustment to effectively disperse data points. 

The overall optimization goal integrates reconstruction loss and clustering loss, expressed as 

, where  and  are coefficients that balance the two losses, with . When
increases, the clustering loss contributes more to the overall optimization. This balancing strategy 

allows TabClusterNet to boost clustering effectiveness while preserving the data's intrinsic properties, 
thereby achieving superior performance in tabular data clustering. 

3.3 Feature Extraction Process 

The encoder in this process is sequential, with attention progressively at each decision level on the 
most informative features. Less important features are ignored, since the attention mechanism focuses 
on retaining only those features which are most relevant, based on which a compressed feature 
representation is formed. The latent features are then decoded to the original dimensionality by a 
decoder for the computation of reconstruction loss. The process learns such features that are not only 
effective at reconstructing the data but also have great discriminative ability for clustering. BN and 
feature transformers are applied directly on the original tabular data, which includes numeric features 
and categorical represented by trainable embeddings. The architecture for feature extraction is 
illustrated in Figure 2. 
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Figure 2: The TabEncoder architecture in TabClusterNet for feature extraction processes data through 
a sequential multi-step approach, emphasizing the most significant features at each decision step. This 

attention mechanism retains the key features to create a compressed feature representation. This 
representation is then reconstructed back to its original space using the TabDecoder to calculate 
reconstruction loss, aiming to learn features that effectively reconstruct the original data while 

providing strong discriminative power for clustering. 

Feature Selection: Feature selection is implemented through a learnable mask  for 
soft selection of the most significant features. This mask, used multiplicatively , optimizes 
the model's parameter efficiency by sparsely selecting the most significant features at each decision 
step. Sparsemax normalization guides this process, encouraging sparsity and enabling the model to 
focus on a subset of relevant features within the high-dimensional input. The attentive transformer 
(Figure 3) utilizes features from the previous step  to create the mask: 

, where , and  is a trainable 
function, as shown in the FC (fully connected) +BN layer in Figure 3.  represents the prior scale, 

indicating previous usage of a specific feature: , where  is a 
relaxation parameter ensuring a feature is used only in one decision step when .  is 
initialized as all ones,  , imposing no prior on the mask features.  

 
Figure 3: An example of the attentive transformer block utilized in TabClusterNet demonstrates feature 
selection implemented through a learnable mask for the soft selection of the most significant features. 

This method optimizes parameter efficiency by sparsely selecting the relevant features at each decision 
step. 
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Figure 4: An example of the feature transformer block in TabClusterNet demonstrates how filtered 

features pass through the transformer and are divided into outputs for the decision step and 
information for subsequent steps. The feature transformer includes shared layers across all decision 

steps and specific layers for each decision step. Each FC layer is followed by BN and gated linear units 
(GLU), leading to a normalized residual connection. 

Feature Processing: The filtered features pass through a feature transformer and are divided into 
outputs  for the decision step and information  for subsequent steps, 

, where  and . For parameter-efficient 
and robust learning, the feature transformer includes layers shared across all decision steps (since the 
same features are input at different steps) and decision step-specific layers. Figure 4 illustrates this as a 
combination of two shared layers and one step-specific layer.  

Normalizing by  stabilizes learning by keeping the variance consistent throughout the 
network [10]. Inspired by decision trees, the overall decision embedding is constructed as 

, which is then applied to a linear mapping to produce the output. 

Data Reconstruction: The core of data reconstruction lies in the decoder architecture illustrated in 
Figure 5. The decoder includes a feature transformer followed by FC layers at each decision step. The 
outputs are summed to achieve the reconstructed features. A binary mask  encodes the 

reconstructed features  input to the encoder, and the reconstructed features output  
by the decoder. Consider the reconstruction loss: 

 

 
Figure 5: The architecture of the TabDecoder in TabClusterNet includes a feature transformer followed 

by FC layers at each decision step, with the outputs summed to achieve the reconstructed features. A 
binary mask is used to encode the reconstructed features input to the encoder and the reconstructed 

features output by the decoder. 
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3.4 Clustering Process 

DEC proposed a clustering loss based on the Kullback-Leibler (KL) divergence between 
distributions  and .  is the soft label distribution measured by the Student's t-distribution, while 

 is the target distribution derived from . The clustering loss is formulated as: 

 

The KL divergence measures the asymmetric difference between two probability distributions,  
and .  represents the similarity between the embedded point  and the cluster center , 
measured by the Student's t-distribution [11]: 

 

The target distribution  is defined as: 

 

The target distribution  is defined by , so minimizing  serves as self-training [12]. Let  

be the encoder mapping, , where  is a sample from tabular data . We can use  to 
get embeddings , apply k-means on  to determine initial cluster centers , and proceed with  
calculations as per the previous formula. 

3.5 Optimization and Training Strategies 

This paper uses mini-batch Stochastic Gradient Descent (SGD) and backpropagation for 
optimization. Specifically, three sets of parameters are optimized: the encoder weights, the cluster 
centers, and the target distribution . 

Update the weights of the encoder and the cluster centers: The gradient of  relative to the 
embedding point  and the cluster center  is calculated as: 

 

 

The derivation above is from DEC. For a mini-batch with  samples and a learning rate , the 
update of  is done using the formula: 

 
The weights of the decoder are updated using the following formula: 

 
The weights of the encoder are updated using the following formula: 
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Update target distribution: The target distribution serves as "ground truth" soft labels but also 

depends on predicted soft labels. To prevent instability, the target distribution  should not be updated 
using only one data batch per iteration. When updating the target distribution, the label assigned to  
is derived from, where  is computed from the previous formula: 

 

4. Experiments 

4.1 Dataset 

Dataset: We utilized three public datasets, each with a single train-validation-test split to maintain 
consistency for all algorithms. The selected datasets include Helena (HE, anonymized) [13], Epsilon 
(EP, simulated physics experiments) [14], and Covertype (CO, forest characteristics) [15]. Table 1 
provides a summary of the dataset attributes. 

Table 1: A summary of the attributes of the three public datasets used in this study, including sample 
size, dimensions, and the number of classes. 

Data set Sample size Dimensions Classes 
HE 65196 27 100 
EP 500000 2000 2 
CO 581012 54 7 

4.2 Baseline 

To comprehensively evaluate the clustering performance of the developed TabClusterNet model, we 
proposed several baselines for comparison. 

K-means: The algorithm iteratively calculates the distances between data points and centroids, 
reallocating points to the nearest clusters, so that the within-cluster sum of squared distances is 
minimized. In our experiments with different initializations, K-means was run 20 times, and the best 
result was selected. 

PCA+K-means: Principal Component Analysis (PCA) reduces the dataset's dimensionality, 
followed by K-means clustering in the lower-dimensional space. As a result of this preliminary 
treatment, PCA constructs a clearer clustering structure by discarding noisy and redundant features.  

Autoencoder (AE)+K-means: This approach employs an autoencoder to learn a low-dimensional 
dense representation of the data, followed by K-means clustering on these representations. The feature 
extraction capabilities of autoencoders provide more compact and meaningful data representations.  

DEC: DEC unifies feature learning and clustering by iteratively refining a clustering objective to 
enhance the low-dimensional data representation, thereby improving clustering quality. The encoder 

and decoder are structured as , where  is the input data 
dimension, and the embedding dimension is 16. 

4.3 Experiment Setup 

Parameter settings: Drawing from the TabNet and DEC models, the initial parameters are 
configured as follows: dimension of the prediction layer and dimension of the attention layer are both 
set to 2, number of steps is set to 2, scaling factor for attention updates is 1.3, number of independent 
GLU layers and number of shared GLU layers are both 2. In the clustering layer, the clustering loss 

coefficient  is set to 0.81 (identified through grid search from {0.1, 0.19, 0.27, 0.34, 0.41, 0.61, 0.86, 

1.0}), and the batch size across all datasets is 512. The initial learning rate  for the Adam optimizer 
[16] is set at 0.001. 
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Evaluation Metric: To compare the algorithms, we use the Fowlkes-Mallows Index, Normalized 
Mutual Information, Silhouette Coefficient, and Davies-Bouldin Index for evaluation. For each 
algorithm, the number of clusters was set to the actual number of classes. 

4.4 Performance on Different Datasets 

Tables 2, 3, and 4 provide a performance comparison of five clustering methods across different 
datasets, revealing valuable insights: 

For the Helena dataset (Table 2), characterized by a moderate sample size, numerous categories, 
and low dimensionality, K-means and PCA+K-means perform robustly. However, TabClusterNet 
excels in the Silhouette Coefficient (SC) and the Davies-Bouldin Index (DBI). This indicates that 
TabClusterNet is particularly proficient at maintaining the data's intrinsic structure and achieving 
well-separated clusters. 

For the Epsilon dataset (Table 3), which features a large sample size and high dimensionality with 
fewer categories, TabClusterNet's FMI is slightly lower than that of the top-performing method. 
However, the comparison shows that TabClusterNet's superior performance in NMI and SC measures, 
compared to the best results of other methods, underlines its strong robustness in capturing intrinsic 
data structures in high-dimensional data. 

The Covertype dataset (Table 4) has the largest dimensionality, with a moderate number of 
categories. TabClusterNet achieves competitive FMI and SC scores while significantly outperforming 
in the DBI index. This further confirms TabClusterNet's methodological robustness in maintaining 
clustering quality, particularly in terms of cohesion and separation. 

Overall, it can be observed that although TabClusterNet is not always the best in FMI scores, it tops 
or equals all other methods with respect to NMI, SC, and DBI. Therefore, this confirms 
TabClusterNet's ability to capture and exploit the underlying data structure for deeper insights in data 
analytics and decision support. TabClusterNet is very effective on large, complex, and 
high-dimensional datasets, making it highly useful for practical applications. 

Table 2: A comparison of five clustering methods on the Helena dataset shows that TabClusterNet 
performs exceptionally well according to both the Silhouette Coefficient and Davies–Bouldin Index. 

This indicates that this method effectively preserves the intrinsic structure of the data. 

 FMI NMI SC DBI 
K-means 0.271 0.249 0.288 1.857 
PCA+K-means 0.295 0.166 0.331 1.066 
AE+K-means 0.273 0.259 0.282 1.911 
DEC 0.335 0.152 0.289 1.496 
TabClusterNet 0.350 0.180 0.447 0.791 

Table 3: A performance comparison of the five clustering methods was conducted on the Epsilon 
dataset, showing that TabClusterNet has an FMI only slightly lower than the benchmarked 

best-performing method but mainly better or rather good results in terms of NMI, SC, and the DBI 
score against the scores from other approaches. This demonstrates that TabClusterNet effectively 

captures intrinsic data structures under high-dimensional settings. 

 FMI NMI SC DBI 
K-means 0.506 0.0045 0.364 1.156 
PCA+K-means 0.506 0.0045 0.483 0.802 
AE+K-means 0.504 0.0266 0.475 0.825 
DEC 0.629 0.0345 0.238 0.955 
TabClusterNet 0.685 0.0141 0.774 0.467 

Table 4: Through comparison of five clustering methods' performance on Covertype, it shows that 
TabClusterNet achieves a score that is competitive in FMI and SC and outperforms in DBI, thus further 

validating its robustness in maintaining clustering quality. 

 FMI NMI SC DBI 
K-means 0.294 0.243 0.281 1.766 
PCA+K-means 0.574 0.126 0.146 0.789 
AE+K-means 0.335 0.269 0.243 1.624 
DEC 0.580 0.215 0.219 1.157 
TabClusterNet 0.539 0.267 0.557 0.605 
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5. Conclusion 

This paper introduces TabClusterNet, an advanced deep learning model designed for clustering 
tabular data. Comprehensive experiments on three different datasets, namely Helena, Epsilon and 
Covertype, show that TabClusterNet is robust in its clustering capabilities across various data contexts.  

In the Helena dataset, TabClusterNet performs strongly, especially with Silhouette Coefficient and 
Davies-Bouldin Index values, which point to good capturing of the intrinsic structure in the data. The 
ability of TabClusterNet to preserve the data's characteristics and quality of the clustering is obvious, 
even though it does not score the best in the Fowlkes-Mallows Index and Normalized Mutual 
Information. For the high-dimensional Epsilon dataset, TabClusterNet demonstrates good effectiveness 
in preserving the intrinsic data structure while it reveals a stable clustering performance. The stability 
in the quality of clustering was also evident on the Covertype dataset, with TabClusterNet achieving 
significantly better performance over all measures, mainly for SC and DBI. 

In conclusion, performance in different datasets and scenarios stands out due to its integrations, 
innovative in nature, with self-supervised learning TabNet encoders with decoders and deep clustering 
framework of DEC. Future research will include exploration over more data sets, optimization of the 
model architecture, and validation on real-world problems. We believe that TabClusterNet will provide 
a highly robust solution for clustering of tabular data and unlock deep insights for data scientists and 
researchers. 
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