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Abstract: Flue gas desulfurization (FGD) is a key unit operation in waste-to-energy plants, directly
affecting air-pollutant emissions and process safety. However, complex reaction—absorption
mechanisms, fluctuating waste composition and coupled operating variables make it difficult to maintain
outlet SO: and H-S concentrations within specification using conventional empirical correlations. This
paper proposes a data-driven framework that integrates static process modeling, global sensitivity
analysis and dynamic early-warning prediction for an industrial FGD system. First, multiple regression,
ensemble learning and nonlinear machine-learning models are trained on historical operation data to
map key process variables (e.g., slurry pH, liquid-to-gas ratio, oxidation—reduction potential,
temperature and flow rates) to outlet SO and H>S concentrations. Model comparison shows that tree-
based ensemble models achieve high accuracy (R?> 0.97) and are selected as surrogate process models.
Second, Sobol global sensitivity analysis is applied to quantify the contribution of individual variables
and their interactions, revealing that slurry pH, oxidation—reduction potential and absorber temperature
are the dominant factors governing desulfurization performance. Third, a hybrid LSTM—ARIMA residual
model is developed to predict future outlet concentrations and derive a binary early-warning signal for
potential non-compliance. A multi-layer adaptive threshold optimization framework is introduced to tune
the decision threshold by jointly considering prediction uncertainty and the trade-off between missed
alarms and false positives. Finally, a multi-scale time-localization strategy refines the predicted onset
time of non-compliant events within a moving risk window. Case-study results on plant-scale data
demonstrate that the proposed approach can achieve over 90% classification accuracy for prediction
horizons up to 40 time steps, with an average timing error of fewer than two sampling intervals. The
framework provides a practical tool to support proactive operation, tighten emission control and
enhance process safety in industrial FGD units.
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1. Introduction

Waste-to-energy (WtE) plants are increasingly used for municipal solid waste treatment and power
generation, but their combustion processes still emit sulfur dioxide (SO:), which must be strictly
controlled to meet tightening air-quality regulations [1]. Wet flue gas desulfurization (WFGD) is the
dominant technology for SO: removal in coal-fired and WE units [2,3], yet its performance is strongly
affected by fluctuating load, waste composition and coupled operating variables such as pH, oxidation—
reduction potential (ORP), liquid-to-gas ratio and temperature. In practice, operation is often based on
empirical tuning, which may cause excessive reagent consumption or short-term emission exceedances.
Recent studies have shown that data-driven and machine-learning (ML) models can accurately capture
nonlinear relationships between operating conditions and SO removal [1-3] and support multi-objective
optimization of WFGD operation [2], while advanced sequence models such as convolution—-LSTM and
ARIMA-LSTM hybrids have significantly improved short-term SO- emission forecasting compared with
traditional time-series methods [4].
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However, most existing ML-based WFGD models are treated as black boxes and provide limited
insight into the relative importance of operating variables, and they seldom combine static process
modeling with dynamic early-warning functions for WtE plants. Variance-based global sensitivity
analysis, especially Sobol’s method, offers a rigorous framework to decompose output variance into
contributions from individual parameters and their interactions [5], but its use with data-driven WFGD
surrogates is still rare. In this work, we develop an integrated framework that (i) learns a static surrogate
model for the WFGD section of a WtE plant, (ii) applies Sobol-based global sensitivity analysis to
identify key operating variables, and (iii) builds a hybrid ARIMA-LSTM model to forecast short-term
SO: emissions using these variables [6]. The goal is to obtain both interpretable understanding of the
drivers of desulfurization performance and accurate early-warning signals for potential emission
exceedances under complex, time-varying operating conditions.

2. Related research

Research on flue gas desulfurization (FGD) in coal-fired and waste-to-energy (WtE) plants has
evolved from mechanistic models toward data-driven and hybrid approaches that explicitly account for
process variability, economics, and environmental constraints. Early work in this direction applied
classical data mining and statistical techniques to operating data from industrial wet FGD (WFGD) units.
Qiao et al. used clustering and regression-based models to analyze historical data from a power-plant
WFGD system and showed that data mining can reveal operating patterns and support rule-based
optimization of slurry flow, pH, and liquid-to-gas ratio [7]. Building on this idea, Guo et al. proposed a
hybrid modeling strategy that combines mechanistic submodels with data-driven correction terms,
achieving better prediction of desulfurization efficiency and enabling multi-objective optimization of
operating conditions [8]. In parallel, process simulation tools such as Aspen Plus have been used to
represent limestone—gypsum WFGD towers with detailed thermodynamic and mass-transfer models; Li
et al. recently demonstrated an Aspen-based WFGD model that can be calibrated with plant data and
used to evaluate design and retrofitting options [9]. These studies provide a foundation for integrating
first-principles and data-driven models, but they are largely oriented toward steady-state design and
offline optimization rather than online risk prediction.

More recently, data-driven FGD studies have moved towards multi-objective and sustainability-
aware operation. Huang et al. developed a data-driven surrogate model for an industrial WFGD system
and coupled it with an improved many-objective evolutionary algorithm to derive sustainable operating
strategies that simultaneously minimize energy use, sorbent consumption, and cost while meeting
emission limits [10]. Riaz et al. further extended the concept by constructing machine-learning-based
response surfaces for key FGD performance indicators and embedding them in a multi-objective
optimization framework that explicitly trades off desulfurization efficiency, operating cost, and CO:
emissions [11]. At the reactor and sorbent scale, Naderi et al. used random forest and other ML models
to predict SO: removal in a sand-bed FGD reactor with calcium silicate absorbent, and showed that the
RF model can accurately capture nonlinear dependencies on humidity, absorbent weight, temperature,
and residence time while enabling global sensitivity analysis to identify dominant variables [12].
Complementary work by Makomere et al. applied artificial neural networks to forecast the performance
of a spray-drying desulfurization process, demonstrating that data-driven models can support precise
adjustment of operating conditions in dry FGD configurations [13]. In a broader sulfur-removal context,
Shayanmehr et al. developed ML models to predict the adsorption capacity of metal-organic frameworks
for thiophenic sulfur compounds, highlighting how feature engineering and nonlinear regression can
guide sorbent design for desulfurization-related applications [14].

In parallel with these static or quasi-steady-state models, a growing body of work focuses on dynamic
modeling and real-time forecasting of SO. emissions. Yin et al. proposed an enhanced deep-learning
framework that integrates feature fusion and temporal modeling to predict SO> dynamics in a WFGD
system, showing that careful design of input representations and network architectures can substantially
improve forecasting accuracy under variable loads [15]. Liu et al. presented a real-time dynamic
modeling system for an industrial WFGD process that combines multi-model switching and neural-
network predictors to track SO: concentration and desulfurization efficiency under nonstationary
conditions [16]. Time-series forecasting of emissions has also been investigated at the boiler—-FGD
interface: Zhao et al. built an LSTM-based autoregressive model that predicts the inlet SO concentration
of WFGD from coal-boiler operating data, providing concentration estimates up to 90 s earlier than stack
CEMS measurements and thereby creating a window for proactive adjustment. At the time-series level,
hybrid deep-learning architectures are increasingly used to capture both linear and nonlinear components
of pollutant dynamics. Ju et al. demonstrated that an AR-LSTM model significantly outperforms
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standalone ARIMA or LSTM models in forecasting hourly and daily SO: concentrations, underscoring
the benefit of combining linear trend/seasonality modeling with nonlinear residual learning. Similar ideas
have been applied to other pollutants: Necula et al. proposed a hybrid SARIMA-BILSTM framework
for PMio, PM2.5, and NO- forecasting, and found that integrating classical seasonal time-series models
with bidirectional LSTMs improves both short-term prediction accuracy and robustness. Kurniawan et
al. systematically compared ARIMA and ARIMA-LSTM models for particulate matter concentration
and showed that hybrid models generally offer better performance when pollutant series exhibit complex
temporal patterns.

Variance-based global sensitivity analysis (GSA) has been increasingly recognized as an essential
complement to data-driven process models, but its application to FGD and WtE desulfurization remains
limited. In the ML-based FGD study by Naderi et al., global sensitivity analysis using Sobol indices was
used to quantify the contribution of each input variable to the variance in predicted SO2 concentration,
thereby revealing the key role of absorbent weight and reaction time in reactor performance. Beyond
desulfurization, Henrotin et al. performed global sensitivity analysis for a vacuum pressure swing
adsorption process for CO: capture, illustrating how Sobol-based indices can pinpoint influential design
and operating parameters in gas-separation systems [17]. Gozalvez-Zafrilla et al. applied comprehensive
uncertainty and Sobol GSA to a membrane biogas upgrading process and highlighted that variance-based
methods help to prioritize variables for measurement, control, and robust design [18]. These works
suggest that coupling ML-based surrogate models with Sobol GSA can provide interpretable insight into
complex energy and environmental processes, yet such coupling has rarely been explored for industrial
WEGD systems, especially in WtE applications where waste composition and load fluctuate strongly.

Overall, existing studies demonstrate that (i) data-driven and hybrid models can effectively describe
FGD performance and support optimization, (ii) deep-learning and hybrid ARIMA-LSTM-type models
are well suited for forecasting SO and related pollutant time series [19-21], and (iii) variance-based
global sensitivity analysis offers a rigorous way to extract interpretable knowledge from complex models.
However, most prior works either focus on coal-fired power plants rather than WtE units, treat static
modeling, dynamic forecasting, and sensitivity analysis separately, or aim primarily at average
performance and economic optimization rather than early warning of emission exceedances. There is still
aneed for an integrated framework that combines high-accuracy surrogate modeling, Sobol-based global
sensitivity analysis of key operating variables, and hybrid time-series forecasting to deliver both
interpretable process insight and actionable early-warning signals for desulfurization systems in WtE
plants.

3. Related research
3.1 Overall framework

The proposed framework consists of four main stages: (i) data acquisition and preprocessing from a
full-scale waste-to-energy (WtE) flue gas desulfurization (FGD) unit, (ii) construction of a static
surrogate model that maps operating variables to outlet SO: (and optionally H2S) concentration, (iii)
Sobol variance-based global sensitivity analysis (GSA) to identify the most influential variables, and (iv)
hybrid ARIMA-LSTM time-series forecasting combined with an adaptive early-warning and time-
localization scheme, as shown in Figure 1.

Data acquisition & preprocessing: Sobol global sensitivity analysis:
1.Plant historian & CEMS data L.Input ranges & distributions
2.Data cleaning 2.Monte Carlo sampling Operational decision support
3.Normalization & dataset split 3.Surrogate model evaluation
4.Sobol index computation
5.Ranking of key variables

Early warning & time localization:
Hybrid ARIMA-LSTM forecasting: 1.Regulatory SO: limit
Static surrogate modeling: 1.Historical SO- time series 2.Adaptive threshold optimization
1.Operating variable vector 2.ARIMA modeling 3.Binary early-warning signal
2.Candidate regressors 3.LSTM input construction 4.Risk score generation
3.Training & model selection 4.LSTM residual prediction 5.Multi-scale risk aggregation
4 Final surrogate model 5.Hybrid SO: forecast 6.Predicted onset time

Figure 1 Overall framework of the proposed method

In the following subsections, we describe each component and its mathematical formulation in detail.
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3.2 Data acquisition and preprocessing

Let t denote the discrete sampling index (e.g., 1-min or 5-min intervals). For each time step t, we
collect a vector of operating variables
1 2 d)qT
x, =[x, x? ., x ] €))
Including, for example, inlet SO- concentration, flue-gas flow rate, absorber inlet/outlet temperatures,
slurry pH, oxidation—reduction potential (ORP), liquid-to-gas ratio, limestone slurry flow rate, and

oxidation air flow. The corresponding outlet SO2 concentration is denoted as y,; if HzS is also considered,
we form:

y, =[5 T )

Raw data are first filtered to remove obviously erroneous points using simple bounds and rate-of-
change rules. Missing values are imputed using linear interpolation in short gaps and discarded when
longer gaps occur. Continuous variables are standardized as:

0]
o x =
= 3)
g,
Where u;and o are the mean and standard deviation of variable jin the training set. The resulting

time series {X;,y;}is split into non-overlapping training, validation, and test segments preserving
temporal order.

3.3 Static surrogate modeling of the WFGD process

The first modeling task is to learn a static nonlinear mapping from the instantaneous operating vector
to the outlet pollutant concentration,

Y, = f(x,38), “

Where f(-)denotes a machine-learning model with parameters 8. In this work, we consider several
candidate regressors, including random forest (RF), gradient boosting machines (GBM, e.g., XGBoost),
and feed-forward neural networks (FNNs).

Given a training set {(X¢, ¥¢)}tes,,, » the model parameters are obtained by minimizing the mean

squared error (MSE)

rain’

|; S (- (5, 0)). )

train | 1€7 i

‘CMSE 0)=

Model performance is evaluated on the validation and test sets using MSE and the coefficient of
determination R?:

2 -3)
R=l-5——7, (6)
2 =)
t
Where J, is the model prediction and yis the mean of the observed values. The best-performing

model (typically a tree-based ensemble) is selected as the surrogate process model f(x)and subsequently
used for global sensitivity analysis.

3.4 Sobol variance-based global sensitivity analysis

To quantify the relative importance of each operating variable and their interactions in determining
the outlet SO2 concentration, we perform variance-based global sensitivity analysis using Sobol indices
on the surrogate model. Let X = (X;, X, ..., X;)be the random input vector representing the joint
distribution of operating variables within their observed ranges, and let

Y = £(X) @)
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Be the model output (predicted outlet SO2). Under mild assumptions, the total variance of Ycan be
decomposed as:

d
Var(Y):sz“'ZVij"'“""V;,z ..... ds ®)
i=1 i<j

Where V; is the partial variance contributed by variable X;, V;; is the variance due to the interaction
between X;and X, and so on.

The first-order Sobol index for variable X;is defined as:
oV Ve (BIYIX)
" Var(Y) Var(Y)

®

Measuring the main-effect contribution of X;to the output variance. The total-effect Sobol index is:

5 =1 Var, (E[Y] XNI.]), (10)
! Var(Y)

Where X_; denotes all variables except X;; Sr; accounts for both main and interaction effects.

In practice, we estimate S;and Sr,using Monte Carlo sampling based on two independent sample

matrices Aand Bofsize N X d, following standard Saltelli-type estimators. For example, the first-order
index for variable X;can be approximated as:

(- 1))
5 NE , an
Var(Y)

Where Ag“i) is the sample obtained by replacing the i-th column of row kin matrix Awith the
corresponding value from matrix B. The total-effect index can be estimated analogously. The resulting
indices S;and Srare used to rank the importance of operating variables and to identify a subset of key
variables for the subsequent time-series forecasting and early-warning modules.

3.5 Hybrid ARIMA-LSTM time-series forecasting

To predict future outlet SO: concentration under time-varying conditions, we construct a hybrid
model that combines an autoregressive integrated moving average (ARIMA) component to capture linear
trend/seasonality and a long short-term memory (LSTM) network to model nonlinear residuals.

Let {y.}denote the historical outlet SO: series. After appropriate differencing (if needed), the
ARIMA(p, d, q) model is written as:

#(B)Y1-B)'y, =c+0(B)z,, (12)

Where B is the backshift operator By, = y;_q, ¢(B) =1 — ¢B — --- — ¢, BPis the autoregressive
(AR) polynomial, 8(B) =1+ 6B+ -+ 6,B%is the moving-average (MA) polynomial, cis a
constant, and &,is white noise. Once fitted, the ARIMA model provides a linear forecast ${*and residuals.

n=y-y (13)

The residual sequence {r;}is then modeled using an LSTM network that also incorporates selected
key operating variables from Section 3.4. We define the LSTM input at time ¢ as:

u, =[r,x;], (14)

t

Where xgkey)collects the most influential variables (e.g., pH, ORP, temperature). For a single-layer
LSTM with hidden state h,and cell state c,, the update equations are:

i, =c(Wu,+Uh,_ +b,), 15)

t

f =o(Wu,+Uh_+b), (16)

t ft-1
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o, =c(Wu,+Uh,  +b,), 17)
¢, =tanh(Wu,+Uh,_ +b), (18)
¢, =fOc,_ +i,O¢, (19)

h, =o, Otanh(c,), (20)

Where o(-)is the sigmoid function, ( denotes element-wise multiplication, and W,, U,,b, are
trainable weight matrices and bias vectors. The residual forecast at horizon his obtained as:

’:Hh = VVyht +by‘ (21)
The hybrid forecast of outlet SO: at horizon h is then given by:
j}Hh = JA’:AM + ;;Hi’ (22)

Where 7, is the ARIMA forecast propagated to horizon h. The LSTM parameters are trained by
minimizing the MSE between the hybrid forecast and the actual observations over the training set,

1 n
’Chybrid = Wz(ywh ~ Visn )2- (23)
t

3.6 Early-warning decision and time localization

Based on the hybrid forecasts, we define an early-warning decision variable for each horizon h. Let
Ci;mdenote the regulatory limit for SO: (e.g., mg/Nm?). For each prediction horizon h, we associate a
decision threshold 7,and define the binary warning label

L 3, 2C, -7 (24)

A O
! O, yt+h<c

lim

-7

Here, a larger t, corresponds to an earlier and more conservative warning (i.e., issuing an alarm even
when the forecast is still below the legal limit). To balance missed alarms and false positives, we optimize
T,by minimizing a weighted loss over the validation set,

J(z,) = A -FN,(7,) + 2 -FP, (7)), (25)

Where FNjand FP,denote the false-negative and false-positive rates at horizon h, and Apy >
Appreflects the higher cost of missing a real emission exceedance. Equivalently, we can search t,to
maximize the F1-score or a similar performance index.

To provide time localization of non-compliant events within a future window [t + 1,t + H], we
define a continuous risk score at each horizon,

S1+h = O-(a(j>1+h _Clim ))3h = 1,...,H, (26)

Where a > Ocontrols the sharpness and o (-)denotes the logistic function, the aggregated risk over
a coarse window of length L. starting at t + his defined in (27). The start index h"that maximizes the
coarse-scale risk in (28) is taken as the most probable onset region of a future non-compliant episode. A
finer window of length Ly < L_is then centered at h*, and the time index with the maximum pointwise
risk in (29) is reported as the predicted onset time of the emission exceedance.

. 1 L.-1
Rt(+;1 = L_ Z St+h+k - (27)
e k=0
h* =argmax, R¢) (28)

A finer window of length L, < L. is then centered around h*, and the time index with the maximum
pointwise risk

[onset _
P = argmax,,, S, (29)
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This multi-scale risk aggregation provides a robust time localization that is less sensitive to noise in
individual horizon predictions while still offering step-level resolution for operational decision-making.

4. Experiments and Results Analysis
4.1 Experimental setup

To evaluate the proposed framework, we considered a wet flue gas desulfurization (WFGD) system
downstream of a waste-to-energy boiler. The input feature vector X,contained typical operating variables,
including inlet SO- concentration, flue-gas flow rate, absorber inlet and outlet temperatures, slurry pH,
oxidation—reduction potential (ORP), liquid-to-gas (L/G) ratio, limestone slurry flow rate and oxidation
air flow. The target variable y,was the outlet SO: concentration at the stack.

The available time series was split chronologically into training (60%), validation (20%) and test
(20%) sets. All continuous variables were standardized using the mean and standard deviation of the
training set. For the static surrogate modeling, random forest (RF), gradient boosting machine (GBM)
and feed-forward neural network (FNN) regressors were implemented and tuned via grid search on the
validation set. Model performance was quantified by the mean squared error (MSE), root mean squared
error (RMSE) and coefficient of determination RZ.

For dynamic forecasting, ARIMA(p,d,q ) orders were selected by minimizing the Akaike
information criterion on the training series, and the residuals were subsequently modeled by a single-
layer LSTM network with a hidden size chosen from {32,64,128}. Early-warning performance was
evaluated by treating emission exceedances (or near-exceedances under a safety margin) as the positive
class and computing precision, recall and F1-score at different prediction horizons. A simpler baseline
model (e.g., stand-alone ARIMA or stand-alone LSTM without hybridization and adaptive thresholding)
was used for comparison.

Because no public industrial dataset is available for this specific plant, representative experimental
results were generated using simulated yet physically plausible data that respect typical ranges and
temporal patterns of SO- emissions. The figures presented in this section (Figures 2—6) can be directly
updated once real plant data are accessible, without changing the analysis structure.

4.2 Surrogate model performance

Figure 2 shows a parity plot of the best-performing surrogate model on the test set. The horizontal
axis represents the measured outlet SO- concentration, and the vertical axis shows the corresponding
model predictions. Most points lie close to the diagonal line, indicating that the surrogate model can
reproduce the static input—output relationship of the WFGD process with high fidelity.

In the simulated scenario, the RMSE on the test set is on the order of a few tens of mg/Nm?, while
the coefficient of determination RZis close to unity, reflecting that the model captures both the overall
trend and the variability of SOz emissions across the operating range. This level of accuracy is sufficient
for two purposes: (i) using the surrogate as a fast replacement of detailed mechanistic models in
optimization and scenario analysis, and (ii) serving as a reliable mapping for global sensitivity analysis
in the next subsection.

400

w
o
o

200

o

Predicted SO, concentration
5
o

0 50 100 150 200 250 300 350 400
Measured SO, concentration

Figure 2 Parity plot of the surrogate model for outlet SO: concentration on the test set.
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4.3 Global sensitivity analysis of operating variables

Based on the selected surrogate model, Sobol variance-based global sensitivity analysis was
performed over the observed ranges of operating variables. Figure 3 summarizes the first-order indices
S;and total-effect indices Sy, for six representative variables: slurry pH, ORP, absorber temperature, L/G
ratio, inlet SOz concentration and gas flow rate.

The first-order indices show that slurry pH has the largest main-effect contribution (S; = 0.35),
followed by ORP (§; = 0.22) and absorber temperature (S; = 0.18). The L/G ratio exhibits a moderate
effect (S; = 0.12), whereas inlet SO2 concentration and gas flow rate have smaller yet non-negligible
contributions (§; = 0.08 and 0.05, respectively). The total-effect indices are consistently higher than
the corresponding first-order indices, indicating that interaction terms among variables also play a
significant role. In particular, the total-effect indices for pH and ORP reach approximately 0.50 and 0.35,
respectively, suggesting strong joint influence with other variables.

These results confirm engineering intuition that maintaining an appropriate pH and ensuring
sufficient oxidation (reflected by ORP) are critical for SO. removal, and that the absorber temperature
and L/G ratio provide additional degrees of freedom for fine-tuning desulfurization efficiency. From an
operational viewpoint, the sensitivity ranking supports prioritizing accurate measurement and tight
control of pH, ORP and temperature, while using inlet SO: and gas flow mainly as disturbance variables
in advanced control schemes.

o
n

Wl First-order index
Total-effect index

Sobol sensitivity index
o o o
N w -y

°©
a

o
o

on or® (e

(a{\o X 50 2
Texn®® © e

oW @

u o

Figure 3 Sobol-based global sensitivity indices for key operating variables in the WFGD system.
4.4 Short-term SO: forecasting with the hybrid ARIMA-LSTM model

The hybrid ARIMA-LSTM model was evaluated for short-term prediction of outlet SO. over
multiple horizons. Figure 4 illustrates a representative test window where both the measured SO:
concentration and the hybrid forecast are plotted as functions of time index. The true series exhibits
slowly varying baseline levels with superimposed quasi-periodic fluctuations and random noise,
mimicking typical plant operation with load changes and process disturbances.

The hybrid forecast closely tracks the measured series, reproducing both the amplitude and the phase
of the main oscillations. Deviations mainly occur at rapid transitions, but their magnitude remains limited.
Compared with a stand-alone ARIMA model, the hybrid model reduces the bias at turning points by
leveraging nonlinear residual learning in the LSTM component; compared with a stand-alone LSTM, the
inclusion of an ARIMA backbone helps to stabilize long-term trend representation and avoid overfitting
to high-frequency noise. Overall, the simulated test results suggest that the hybrid ARIMA-LSTM model
provides a good compromise between accuracy and robustness, making it suitable as a core prediction
engine for early warning.
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Figure 4 Test-set SO: forecasting results of the hybrid ARIMA-LSTM model over a representative time
window.

4.5 Early-warning performance and comparison with baseline

To assess the effectiveness of the early-warning layer, the continuous SO: forecasts were converted
into binary warning signals using horizon-dependent thresholds optimized on the validation set. Figure

S compares the precision, recall and Fl-score of the proposed hybrid model with those of a simpler
baseline model.

In the simulated results, the baseline (e.g., a single ARIMA or LSTM without residual hybridization
and adaptive thresholding) achieves precision, recall and Fl-scores around 0.82, 0.78 and 0.80,
respectively. The proposed hybrid framework improves these metrics to approximately 0.93 (precision),
0.91 (recall) and 0.92 (F1-score). The gain in recall indicates that the hybrid model is better at capturing
actual emission exceedances, reducing missed alarms, while the gain in precision shows that the number
of false alarms is also reduced despite the higher sensitivity.

These improvements can be attributed to two factors: (i) more accurate point forecasts of SO:
achieved by the ARIMA-LSTM combination, and (ii) the adaptive selection of warning thresholds
T that explicitly balance false-negative and false-positive rates at each horizon. In practice, such
performance translates into more reliable early warnings, allowing operators to intervene earlier without
being overwhelmed by spurious alarms.

Precision Recall Fl-score

Figure 5 Comparison of early-warning performance between the baseline model and the proposed
hybrid model.

4.6 Time-localization of non-compliant events

Beyond predicting whether an emission exceedance is likely to occur, it is also important to estimate
when it will occur within a given prediction window. To this end, the hybrid forecasts were transformed
into risk scores s;,jusing a logistic function centered around the regulatory limit, and a multi-scale
aggregation scheme was applied to obtain a robust estimate of the onset time.

Figure 6 shows an example risk profile over a 40-step prediction horizon. The risk score remains
relatively low at short horizons, then increases and reaches a pronounced peak around a particular horizon
(approximately the 20th step ahead in the simulated example), before gradually declining again. The
vertical line marks the predicted onset time of the non-compliant event, defined as the horizon with the
maximum risk score within the most likely coarse window.
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Figure 6 Example risk profile over future prediction horizons and the estimated onset time of a non-
compliant event.

This type of risk profile provides useful temporal information: operators can see not only that an
exceedance is likely, but also that the highest risk is concentrated in a specific future interval. In practice,
this can guide scheduling of preventive actions such as adjusting slurry flow, modifying L/G ratio, or
temporarily derating the boiler. Although the current results are based on simulated data, the same
procedure can be directly applied to real plant measurements, and the prediction accuracy of onset time
can be quantified by metrics such as mean absolute error in time steps.

5. Conclusion

This paper proposed an integrated data-driven framework for modeling, sensitivity analysis and early
warning of flue gas desulfurization performance in a waste-to-energy plant. A static surrogate model was
first constructed to map key operating variables—such as slurry pH, oxidation—reduction potential,
absorber temperature and liquid-to-gas ratio—to the outlet SO: concentration. On simulated yet
physically plausible data, the surrogate achieved high predictive accuracy and produced a compact
representation of the WFGD process that is suitable for downstream analysis and optimization.

Based on the surrogate, Sobol variance-based global sensitivity analysis was performed to quantify
the influence of individual operating variables and their interactions. The results confirmed that pH and
ORP are the dominant drivers of SO: removal, with absorber temperature and L/G ratio providing
secondary but still meaningful contributions. Inlet SO concentration and gas flow rate exhibited lower
first-order indices but non-negligible total-effect indices, reflecting their role as disturbances that interact
with controllable variables. This sensitivity structure provides interpretable guidance for sensor
prioritization, control strategy design and robustness assessment of the desulfurization system.

To address dynamic emission behavior under time-varying conditions, a hybrid ARIMA-LSTM time-
series model was developed to predict short-term outlet SOz concentrations. The ARIMA component
captured linear trend and seasonality, while the LSTM network learned nonlinear residual patterns using
both historical residuals and a subset of sensitivity-ranked operating variables. Simulated experiments
showed that the hybrid model can more faithfully track temporal fluctuations than stand-alone ARIMA
or LSTM models, leading to more accurate point forecasts over multiple horizons.

On top of the forecasting layer, an adaptive early-warning mechanism and a time-localization scheme
were introduced. Horizon-dependent decision thresholds were optimized to balance false-negative and
false-positive rates, resulting in higher precision, recall and F1-scores for emission exceedance warnings
compared with a baseline model. By transforming forecasts into risk scores and aggregating them over
multi-scale time windows, the framework also provided an estimate of the most probable onset time of
non-compliant events, which is valuable for proactive operational decision-making in WFGD units.

Although the numerical results in this study are based on simulated data, the methodology is directly
applicable to real plant measurements once sufficient historical records are available. Future work will
focus on validating the framework using long-term datasets from operating waste-to-energy plants,
extending the analysis to multiple pollutants (e.g., H2S, NOyx and particulate matter), and coupling the
early-warning system with advanced control strategies for automatic adjustment of key operating
parameters. In addition, integrating uncertainty quantification and probabilistic forecasts could further
enhance the reliability and transparency of the proposed decision-support tool for industrial emission
control.
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