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Abstract: Flue gas desulfurization (FGD) is a key unit operation in waste-to-energy plants, directly 
affecting air-pollutant emissions and process safety. However, complex reaction–absorption 
mechanisms, fluctuating waste composition and coupled operating variables make it difficult to maintain 
outlet SO₂ and H₂S concentrations within specification using conventional empirical correlations. This 
paper proposes a data-driven framework that integrates static process modeling, global sensitivity 
analysis and dynamic early-warning prediction for an industrial FGD system. First, multiple regression, 
ensemble learning and nonlinear machine-learning models are trained on historical operation data to 
map key process variables (e.g., slurry pH, liquid-to-gas ratio, oxidation–reduction potential, 
temperature and flow rates) to outlet SO₂ and H₂S concentrations. Model comparison shows that tree-
based ensemble models achieve high accuracy (R² > 0.97) and are selected as surrogate process models. 
Second, Sobol global sensitivity analysis is applied to quantify the contribution of individual variables 
and their interactions, revealing that slurry pH, oxidation–reduction potential and absorber temperature 
are the dominant factors governing desulfurization performance. Third, a hybrid LSTM–ARIMA residual 
model is developed to predict future outlet concentrations and derive a binary early-warning signal for 
potential non-compliance. A multi-layer adaptive threshold optimization framework is introduced to tune 
the decision threshold by jointly considering prediction uncertainty and the trade-off between missed 
alarms and false positives. Finally, a multi-scale time-localization strategy refines the predicted onset 
time of non-compliant events within a moving risk window. Case-study results on plant-scale data 
demonstrate that the proposed approach can achieve over 90% classification accuracy for prediction 
horizons up to 40 time steps, with an average timing error of fewer than two sampling intervals. The 
framework provides a practical tool to support proactive operation, tighten emission control and 
enhance process safety in industrial FGD units. 
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1. Introduction 

Waste-to-energy (WtE) plants are increasingly used for municipal solid waste treatment and power 
generation, but their combustion processes still emit sulfur dioxide (SO₂), which must be strictly 
controlled to meet tightening air-quality regulations [1]. Wet flue gas desulfurization (WFGD) is the 
dominant technology for SO₂ removal in coal-fired and WtE units [2,3], yet its performance is strongly 
affected by fluctuating load, waste composition and coupled operating variables such as pH, oxidation–
reduction potential (ORP), liquid-to-gas ratio and temperature. In practice, operation is often based on 
empirical tuning, which may cause excessive reagent consumption or short-term emission exceedances. 
Recent studies have shown that data-driven and machine-learning (ML) models can accurately capture 
nonlinear relationships between operating conditions and SO₂ removal [1–3] and support multi-objective 
optimization of WFGD operation [2], while advanced sequence models such as convolution–LSTM and 
ARIMA–LSTM hybrids have significantly improved short-term SO₂ emission forecasting compared with 
traditional time-series methods [4]. 
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However, most existing ML-based WFGD models are treated as black boxes and provide limited 
insight into the relative importance of operating variables, and they seldom combine static process 
modeling with dynamic early-warning functions for WtE plants. Variance-based global sensitivity 
analysis, especially Sobol’s method, offers a rigorous framework to decompose output variance into 
contributions from individual parameters and their interactions [5], but its use with data-driven WFGD 
surrogates is still rare. In this work, we develop an integrated framework that (i) learns a static surrogate 
model for the WFGD section of a WtE plant, (ii) applies Sobol-based global sensitivity analysis to 
identify key operating variables, and (iii) builds a hybrid ARIMA–LSTM model to forecast short-term 
SO₂ emissions using these variables [6]. The goal is to obtain both interpretable understanding of the 
drivers of desulfurization performance and accurate early-warning signals for potential emission 
exceedances under complex, time-varying operating conditions. 

2. Related research 

Research on flue gas desulfurization (FGD) in coal-fired and waste-to-energy (WtE) plants has 
evolved from mechanistic models toward data-driven and hybrid approaches that explicitly account for 
process variability, economics, and environmental constraints. Early work in this direction applied 
classical data mining and statistical techniques to operating data from industrial wet FGD (WFGD) units. 
Qiao et al. used clustering and regression-based models to analyze historical data from a power-plant 
WFGD system and showed that data mining can reveal operating patterns and support rule-based 
optimization of slurry flow, pH, and liquid-to-gas ratio [7]. Building on this idea, Guo et al. proposed a 
hybrid modeling strategy that combines mechanistic submodels with data-driven correction terms, 
achieving better prediction of desulfurization efficiency and enabling multi-objective optimization of 
operating conditions [8]. In parallel, process simulation tools such as Aspen Plus have been used to 
represent limestone–gypsum WFGD towers with detailed thermodynamic and mass-transfer models; Li 
et al. recently demonstrated an Aspen-based WFGD model that can be calibrated with plant data and 
used to evaluate design and retrofitting options [9]. These studies provide a foundation for integrating 
first-principles and data-driven models, but they are largely oriented toward steady-state design and 
offline optimization rather than online risk prediction. 

More recently, data-driven FGD studies have moved towards multi-objective and sustainability-
aware operation. Huang et al. developed a data-driven surrogate model for an industrial WFGD system 
and coupled it with an improved many-objective evolutionary algorithm to derive sustainable operating 
strategies that simultaneously minimize energy use, sorbent consumption, and cost while meeting 
emission limits [10]. Riaz et al. further extended the concept by constructing machine-learning-based 
response surfaces for key FGD performance indicators and embedding them in a multi-objective 
optimization framework that explicitly trades off desulfurization efficiency, operating cost, and CO₂ 
emissions [11]. At the reactor and sorbent scale, Naderi et al. used random forest and other ML models 
to predict SO₂ removal in a sand-bed FGD reactor with calcium silicate absorbent, and showed that the 
RF model can accurately capture nonlinear dependencies on humidity, absorbent weight, temperature, 
and residence time while enabling global sensitivity analysis to identify dominant variables [12]. 
Complementary work by Makomere et al. applied artificial neural networks to forecast the performance 
of a spray-drying desulfurization process, demonstrating that data-driven models can support precise 
adjustment of operating conditions in dry FGD configurations [13]. In a broader sulfur-removal context, 
Shayanmehr et al. developed ML models to predict the adsorption capacity of metal–organic frameworks 
for thiophenic sulfur compounds, highlighting how feature engineering and nonlinear regression can 
guide sorbent design for desulfurization-related applications [14].  

In parallel with these static or quasi-steady-state models, a growing body of work focuses on dynamic 
modeling and real-time forecasting of SO₂ emissions. Yin et al. proposed an enhanced deep-learning 
framework that integrates feature fusion and temporal modeling to predict SO₂ dynamics in a WFGD 
system, showing that careful design of input representations and network architectures can substantially 
improve forecasting accuracy under variable loads [15]. Liu et al. presented a real-time dynamic 
modeling system for an industrial WFGD process that combines multi-model switching and neural-
network predictors to track SO₂ concentration and desulfurization efficiency under nonstationary 
conditions [16]. Time-series forecasting of emissions has also been investigated at the boiler–FGD 
interface: Zhao et al. built an LSTM-based autoregressive model that predicts the inlet SO₂ concentration 
of WFGD from coal-boiler operating data, providing concentration estimates up to 90 s earlier than stack 
CEMS measurements and thereby creating a window for proactive adjustment. At the time-series level, 
hybrid deep-learning architectures are increasingly used to capture both linear and nonlinear components 
of pollutant dynamics. Ju et al. demonstrated that an AR–LSTM model significantly outperforms 
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standalone ARIMA or LSTM models in forecasting hourly and daily SO₂ concentrations, underscoring 
the benefit of combining linear trend/seasonality modeling with nonlinear residual learning. Similar ideas 
have been applied to other pollutants: Necula et al. proposed a hybrid SARIMA–BiLSTM framework 
for PM₁₀, PM₂.₅, and NO₂ forecasting, and found that integrating classical seasonal time-series models 
with bidirectional LSTMs improves both short-term prediction accuracy and robustness. Kurniawan et 
al. systematically compared ARIMA and ARIMA–LSTM models for particulate matter concentration 
and showed that hybrid models generally offer better performance when pollutant series exhibit complex 
temporal patterns.  

Variance-based global sensitivity analysis (GSA) has been increasingly recognized as an essential 
complement to data-driven process models, but its application to FGD and WtE desulfurization remains 
limited. In the ML-based FGD study by Naderi et al., global sensitivity analysis using Sobol indices was 
used to quantify the contribution of each input variable to the variance in predicted SO₂ concentration, 
thereby revealing the key role of absorbent weight and reaction time in reactor performance. Beyond 
desulfurization, Henrotin et al. performed global sensitivity analysis for a vacuum pressure swing 
adsorption process for CO₂ capture, illustrating how Sobol-based indices can pinpoint influential design 
and operating parameters in gas-separation systems [17]. Gozálvez-Zafrilla et al. applied comprehensive 
uncertainty and Sobol GSA to a membrane biogas upgrading process and highlighted that variance-based 
methods help to prioritize variables for measurement, control, and robust design [18]. These works 
suggest that coupling ML-based surrogate models with Sobol GSA can provide interpretable insight into 
complex energy and environmental processes, yet such coupling has rarely been explored for industrial 
WFGD systems, especially in WtE applications where waste composition and load fluctuate strongly. 

Overall, existing studies demonstrate that (i) data-driven and hybrid models can effectively describe 
FGD performance and support optimization, (ii) deep-learning and hybrid ARIMA–LSTM-type models 
are well suited for forecasting SO₂ and related pollutant time series [19–21], and (iii) variance-based 
global sensitivity analysis offers a rigorous way to extract interpretable knowledge from complex models. 
However, most prior works either focus on coal-fired power plants rather than WtE units, treat static 
modeling, dynamic forecasting, and sensitivity analysis separately, or aim primarily at average 
performance and economic optimization rather than early warning of emission exceedances. There is still 
a need for an integrated framework that combines high-accuracy surrogate modeling, Sobol-based global 
sensitivity analysis of key operating variables, and hybrid time-series forecasting to deliver both 
interpretable process insight and actionable early-warning signals for desulfurization systems in WtE 
plants. 

3. Related research 

3.1 Overall framework 

The proposed framework consists of four main stages: (i) data acquisition and preprocessing from a 
full-scale waste-to-energy (WtE) flue gas desulfurization (FGD) unit, (ii) construction of a static 
surrogate model that maps operating variables to outlet SO₂ (and optionally H₂S) concentration, (iii) 
Sobol variance-based global sensitivity analysis (GSA) to identify the most influential variables, and (iv) 
hybrid ARIMA–LSTM time-series forecasting combined with an adaptive early-warning and time-
localization scheme, as shown in Figure 1. 

 
Figure 1 Overall framework of the proposed method 

In the following subsections, we describe each component and its mathematical formulation in detail. 
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3.2 Data acquisition and preprocessing 

Let 𝑡𝑡 denote the discrete sampling index (e.g., 1-min or 5-min intervals). For each time step 𝑡𝑡, we 
collect a vector of operating variables 

 (1) (2) ( )[ , ,..., ]d
t t t tx x x=x T  (1) 

Including, for example, inlet SO₂ concentration, flue-gas flow rate, absorber inlet/outlet temperatures, 
slurry pH, oxidation–reduction potential (ORP), liquid-to-gas ratio, limestone slurry flow rate, and 
oxidation air flow. The corresponding outlet SO₂ concentration is denoted as 𝑦𝑦𝑡𝑡; if H₂S is also considered, 
we form: 

 2 2SO H S[ , ] .t t ty y=y   (2) 

Raw data are first filtered to remove obviously erroneous points using simple bounds and rate-of-
change rules. Missing values are imputed using linear interpolation in short gaps and discarded when 
longer gaps occur. Continuous variables are standardized as: 
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Where 𝜇𝜇𝑗𝑗  and 𝜎𝜎𝑗𝑗 are the mean and standard deviation of variable 𝑗𝑗in the training set. The resulting 
time series {𝐱𝐱𝑡𝑡,𝑦𝑦𝑡𝑡} is split into non-overlapping training, validation, and test segments preserving 
temporal order. 

3.3 Static surrogate modeling of the WFGD process 

The first modeling task is to learn a static nonlinear mapping from the instantaneous operating vector 
to the outlet pollutant concentration, 

 ( ; ),t ty f≈ x θ  (4) 

Where 𝑓𝑓(⋅)denotes a machine-learning model with parameters 𝜽𝜽. In this work, we consider several 
candidate regressors, including random forest (RF), gradient boosting machines (GBM, e.g., XGBoost), 
and feed-forward neural networks (FNNs). 

Given a training set {(𝐱𝐱𝑡𝑡 ,𝑦𝑦𝑡𝑡)}𝑡𝑡∈𝒯𝒯train, the model parameters are obtained by minimizing the mean 
squared error (MSE) 
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Model performance is evaluated on the validation and test sets using MSE and the coefficient of 
determination 𝑅𝑅2: 
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Where 𝑦𝑦�𝑡𝑡 is the model prediction and 𝑦̄𝑦is the mean of the observed values. The best-performing 
model (typically a tree-based ensemble) is selected as the surrogate process model 𝑓𝑓(𝐱𝐱)and subsequently 
used for global sensitivity analysis. 

3.4 Sobol variance-based global sensitivity analysis 

To quantify the relative importance of each operating variable and their interactions in determining 
the outlet SO₂ concentration, we perform variance-based global sensitivity analysis using Sobol indices 
on the surrogate model. Let 𝐗𝐗 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑑𝑑)be the random input vector representing the joint 
distribution of operating variables within their observed ranges, and let 

 ˆ ( )Y f= X  (7) 
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Be the model output (predicted outlet SO₂). Under mild assumptions, the total variance of 𝑌𝑌can be 
decomposed as: 

 1,2,...,
1

Var( ) ,
d

i ij d
i i j

Y V V V
= <

= + + +∑ ∑   (8) 

Where 𝑉𝑉𝑖𝑖 is the partial variance contributed by variable 𝑋𝑋𝑖𝑖, 𝑉𝑉𝑖𝑖𝑖𝑖  is the variance due to the interaction 
between 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗, and so on. 

The first-order Sobol index for variable 𝑋𝑋𝑖𝑖is defined as: 
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Measuring the main-effect contribution of 𝑋𝑋𝑖𝑖to the output variance. The total-effect Sobol index is: 
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Where 𝐗𝐗∼𝑖𝑖 denotes all variables except 𝑋𝑋𝑖𝑖; 𝑆𝑆𝑇𝑇𝑖𝑖  accounts for both main and interaction effects. 

In practice, we estimate 𝑆𝑆𝑖𝑖and 𝑆𝑆𝑇𝑇𝑖𝑖using Monte Carlo sampling based on two independent sample 
matrices 𝐴𝐴and 𝐵𝐵of size 𝑁𝑁 × 𝑑𝑑, following standard Saltelli-type estimators. For example, the first-order 
index for variable 𝑋𝑋𝑖𝑖can be approximated as: 

 
( )( ) ( , ) ( )

1

1 ( ) ( ) ( )
ˆ ,

Var( )

N
k k i k

B
k

i

f B f A f A
NS

Y
=

−
≈

∑
 (11) 

Where 𝐴𝐴𝐵𝐵
(𝑘𝑘,𝑖𝑖) is the sample obtained by replacing the 𝑖𝑖-th column of row 𝑘𝑘in matrix 𝐴𝐴with the 

corresponding value from matrix 𝐵𝐵. The total-effect index can be estimated analogously. The resulting 
indices 𝑆𝑆𝑖𝑖and 𝑆𝑆𝑇𝑇𝑖𝑖are used to rank the importance of operating variables and to identify a subset of key 
variables for the subsequent time-series forecasting and early-warning modules. 

3.5 Hybrid ARIMA–LSTM time-series forecasting 

To predict future outlet SO₂ concentration under time-varying conditions, we construct a hybrid 
model that combines an autoregressive integrated moving average (ARIMA) component to capture linear 
trend/seasonality and a long short-term memory (LSTM) network to model nonlinear residuals. 

Let {𝑦𝑦𝑡𝑡}denote the historical outlet SO₂ series. After appropriate differencing (if needed), the 
ARIMA(𝑝𝑝,𝑑𝑑, 𝑞𝑞) model is written as: 

 ( )(1 ) ( ) ,d
t tB B y c Bφ θ ε− = +  (12) 

Where 𝐵𝐵 is the backshift operator 𝐵𝐵𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1, 𝜙𝜙(𝐵𝐵) = 1 − 𝜙𝜙1𝐵𝐵 −⋯− 𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝is the autoregressive 
(AR) polynomial, 𝜃𝜃(𝐵𝐵) = 1 + 𝜃𝜃1𝐵𝐵 + ⋯+ 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞 is the moving-average (MA) polynomial, 𝑐𝑐 is a 
constant, and 𝜀𝜀𝑡𝑡is white noise. Once fitted, the ARIMA model provides a linear forecast 𝑦𝑦�𝑡𝑡Aand residuals. 

 Aˆ .t t tr y y= −  (13) 

The residual sequence {𝑟𝑟𝑡𝑡}is then modeled using an LSTM network that also incorporates selected 
key operating variables from Section 3.4. We define the LSTM input at time 𝑡𝑡 as: 

 (key)[ , ],t t tr=u x  (14) 

Where 𝐱𝐱𝑡𝑡
(key)collects the most influential variables (e.g., pH, ORP, temperature). For a single-layer 

LSTM with hidden state 𝐡𝐡𝑡𝑡and cell state 𝐜𝐜𝑡𝑡, the update equations are: 

 1( ),t i t i t iW Uσ −= + +i u h b  (15) 

 1( ),t f t f t fW Uσ −= + +f u h b  (16) 
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 1( ),t o t o t oW Uσ −= + +o u h b  (17) 

 1tanh( ),t c t c t cW U −= + +c u h b  (18) 

 1 ,tt t t t−= +c f c i c   (19) 

 tanh( ),t t t=h o c  (20) 

Where 𝜎𝜎(⋅) is the sigmoid function, ⊙denotes element-wise multiplication, and 𝑊𝑊∗,𝑈𝑈∗,𝐛𝐛∗ are 
trainable weight matrices and bias vectors. The residual forecast at horizon ℎis obtained as: 

 ˆ .t h y t yr W b+ = +h  (21) 

The hybrid forecast of outlet SO₂ at horizon ℎ is then given by: 

 Aˆ ˆ ˆ ,t h t h t hy y r+ + += +  (22) 

Where 𝑦𝑦�𝑡𝑡+ℎA  is the ARIMA forecast propagated to horizon ℎ. The LSTM parameters are trained by 
minimizing the MSE between the hybrid forecast and the actual observations over the training set, 

 2
hybrid

1 ˆ( ) .t h t h
t

y y
N + += −∑  (23) 

3.6 Early-warning decision and time localization 

Based on the hybrid forecasts, we define an early-warning decision variable for each horizon ℎ. Let 
𝐶𝐶limdenote the regulatory limit for SO₂ (e.g., mg/Nm³). For each prediction horizon ℎ, we associate a 
decision threshold 𝜏𝜏ℎand define the binary warning label 
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Here, a larger 𝜏𝜏ℎ corresponds to an earlier and more conservative warning (i.e., issuing an alarm even 
when the forecast is still below the legal limit). To balance missed alarms and false positives, we optimize 
𝜏𝜏ℎby minimizing a weighted loss over the validation set, 

 FN FP( ) FN ( ) FP ( ),h h h h hτ λ τ λ τ= ⋅ + ⋅  (25) 

Where FNℎand FPℎdenote the false-negative and false-positive rates at horizon ℎ , and 𝜆𝜆FN >
𝜆𝜆FPreflects the higher cost of missing a real emission exceedance. Equivalently, we can search 𝜏𝜏ℎto 
maximize the F1-score or a similar performance index. 

To provide time localization of non-compliant events within a future window [𝑡𝑡 + 1, 𝑡𝑡 + 𝐻𝐻], we 
define a continuous risk score at each horizon, 

 limˆ( ( )), 1,..., ,t h t hs y C h Hσ α+ += − =  (26) 

Where 𝛼𝛼 > 0controls the sharpness and 𝜎𝜎(⋅)denotes the logistic function, the aggregated risk over 
a coarse window of length 𝐿𝐿𝑐𝑐starting at 𝑡𝑡 + ℎis defined in (27). The start index ℎ*that maximizes the 
coarse-scale risk in (28) is taken as the most probable onset region of a future non-compliant episode. A 
finer window of length 𝐿𝐿𝑓𝑓 < 𝐿𝐿𝑐𝑐is then centered at ℎ*, and the time index with the maximum pointwise 
risk in (29) is reported as the predicted onset time of the emission exceedance. 
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A finer window of length 𝐿𝐿𝑓𝑓 < 𝐿𝐿𝑐𝑐 is then centered around ℎ⋆, and the time index with the maximum 
pointwise risk 

 onsetˆ arg max
fh t hh s∈ +=   (29) 
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This multi-scale risk aggregation provides a robust time localization that is less sensitive to noise in 
individual horizon predictions while still offering step-level resolution for operational decision-making. 

4. Experiments and Results Analysis 

4.1 Experimental setup 

To evaluate the proposed framework, we considered a wet flue gas desulfurization (WFGD) system 
downstream of a waste-to-energy boiler. The input feature vector 𝐱𝐱𝑡𝑡contained typical operating variables, 
including inlet SO₂ concentration, flue-gas flow rate, absorber inlet and outlet temperatures, slurry pH, 
oxidation–reduction potential (ORP), liquid-to-gas (L/G) ratio, limestone slurry flow rate and oxidation 
air flow. The target variable 𝑦𝑦𝑡𝑡was the outlet SO₂ concentration at the stack. 

The available time series was split chronologically into training (60%), validation (20%) and test 
(20%) sets. All continuous variables were standardized using the mean and standard deviation of the 
training set. For the static surrogate modeling, random forest (RF), gradient boosting machine (GBM) 
and feed-forward neural network (FNN) regressors were implemented and tuned via grid search on the 
validation set. Model performance was quantified by the mean squared error (MSE), root mean squared 
error (RMSE) and coefficient of determination 𝑅𝑅2. 

For dynamic forecasting, ARIMA( 𝑝𝑝,𝑑𝑑, 𝑞𝑞 ) orders were selected by minimizing the Akaike 
information criterion on the training series, and the residuals were subsequently modeled by a single-
layer LSTM network with a hidden size chosen from {32,64,128}. Early-warning performance was 
evaluated by treating emission exceedances (or near-exceedances under a safety margin) as the positive 
class and computing precision, recall and F1-score at different prediction horizons. A simpler baseline 
model (e.g., stand-alone ARIMA or stand-alone LSTM without hybridization and adaptive thresholding) 
was used for comparison. 

Because no public industrial dataset is available for this specific plant, representative experimental 
results were generated using simulated yet physically plausible data that respect typical ranges and 
temporal patterns of SO₂ emissions. The figures presented in this section (Figures 2–6) can be directly 
updated once real plant data are accessible, without changing the analysis structure. 

4.2 Surrogate model performance 

Figure 2 shows a parity plot of the best-performing surrogate model on the test set. The horizontal 
axis represents the measured outlet SO₂ concentration, and the vertical axis shows the corresponding 
model predictions. Most points lie close to the diagonal line, indicating that the surrogate model can 
reproduce the static input–output relationship of the WFGD process with high fidelity. 

In the simulated scenario, the RMSE on the test set is on the order of a few tens of mg/Nm³, while 
the coefficient of determination 𝑅𝑅2is close to unity, reflecting that the model captures both the overall 
trend and the variability of SO₂ emissions across the operating range. This level of accuracy is sufficient 
for two purposes: (i) using the surrogate as a fast replacement of detailed mechanistic models in 
optimization and scenario analysis, and (ii) serving as a reliable mapping for global sensitivity analysis 
in the next subsection. 

 
Figure 2 Parity plot of the surrogate model for outlet SO₂ concentration on the test set. 
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4.3 Global sensitivity analysis of operating variables 

Based on the selected surrogate model, Sobol variance-based global sensitivity analysis was 
performed over the observed ranges of operating variables. Figure 3 summarizes the first-order indices 
𝑆𝑆𝑖𝑖and total-effect indices 𝑆𝑆𝑇𝑇𝑖𝑖for six representative variables: slurry pH, ORP, absorber temperature, L/G 
ratio, inlet SO₂ concentration and gas flow rate. 

The first-order indices show that slurry pH has the largest main-effect contribution (𝑆𝑆1 ≈ 0.35), 
followed by ORP (𝑆𝑆1 ≈ 0.22) and absorber temperature (𝑆𝑆1 ≈ 0.18). The L/G ratio exhibits a moderate 
effect (𝑆𝑆1 ≈ 0.12), whereas inlet SO₂ concentration and gas flow rate have smaller yet non-negligible 
contributions (𝑆𝑆1 ≈ 0.08 and 0.05, respectively). The total-effect indices are consistently higher than 
the corresponding first-order indices, indicating that interaction terms among variables also play a 
significant role. In particular, the total-effect indices for pH and ORP reach approximately 0.50 and 0.35, 
respectively, suggesting strong joint influence with other variables. 

These results confirm engineering intuition that maintaining an appropriate pH and ensuring 
sufficient oxidation (reflected by ORP) are critical for SO₂ removal, and that the absorber temperature 
and L/G ratio provide additional degrees of freedom for fine-tuning desulfurization efficiency. From an 
operational viewpoint, the sensitivity ranking supports prioritizing accurate measurement and tight 
control of pH, ORP and temperature, while using inlet SO₂ and gas flow mainly as disturbance variables 
in advanced control schemes. 

 
Figure 3 Sobol-based global sensitivity indices for key operating variables in the WFGD system. 

4.4 Short-term SO₂ forecasting with the hybrid ARIMA–LSTM model 

The hybrid ARIMA–LSTM model was evaluated for short-term prediction of outlet SO₂ over 
multiple horizons. Figure 4 illustrates a representative test window where both the measured SO₂ 
concentration and the hybrid forecast are plotted as functions of time index. The true series exhibits 
slowly varying baseline levels with superimposed quasi-periodic fluctuations and random noise, 
mimicking typical plant operation with load changes and process disturbances. 

The hybrid forecast closely tracks the measured series, reproducing both the amplitude and the phase 
of the main oscillations. Deviations mainly occur at rapid transitions, but their magnitude remains limited. 
Compared with a stand-alone ARIMA model, the hybrid model reduces the bias at turning points by 
leveraging nonlinear residual learning in the LSTM component; compared with a stand-alone LSTM, the 
inclusion of an ARIMA backbone helps to stabilize long-term trend representation and avoid overfitting 
to high-frequency noise. Overall, the simulated test results suggest that the hybrid ARIMA–LSTM model 
provides a good compromise between accuracy and robustness, making it suitable as a core prediction 
engine for early warning. 
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Figure 4 Test-set SO₂ forecasting results of the hybrid ARIMA–LSTM model over a representative time 

window. 

4.5 Early-warning performance and comparison with baseline 

To assess the effectiveness of the early-warning layer, the continuous SO₂ forecasts were converted 
into binary warning signals using horizon-dependent thresholds optimized on the validation set. Figure 
5 compares the precision, recall and F1-score of the proposed hybrid model with those of a simpler 
baseline model. 

In the simulated results, the baseline (e.g., a single ARIMA or LSTM without residual hybridization 
and adaptive thresholding) achieves precision, recall and F1-scores around 0.82, 0.78 and 0.80, 
respectively. The proposed hybrid framework improves these metrics to approximately 0.93 (precision), 
0.91 (recall) and 0.92 (F1-score). The gain in recall indicates that the hybrid model is better at capturing 
actual emission exceedances, reducing missed alarms, while the gain in precision shows that the number 
of false alarms is also reduced despite the higher sensitivity. 

These improvements can be attributed to two factors: (i) more accurate point forecasts of SO₂ 
achieved by the ARIMA–LSTM combination, and (ii) the adaptive selection of warning thresholds 
𝜏𝜏ℎ that explicitly balance false-negative and false-positive rates at each horizon. In practice, such 
performance translates into more reliable early warnings, allowing operators to intervene earlier without 
being overwhelmed by spurious alarms. 

 
Figure 5 Comparison of early-warning performance between the baseline model and the proposed 

hybrid model. 

4.6 Time-localization of non-compliant events 

Beyond predicting whether an emission exceedance is likely to occur, it is also important to estimate 
when it will occur within a given prediction window. To this end, the hybrid forecasts were transformed 
into risk scores 𝑠𝑠𝑡𝑡+ℎusing a logistic function centered around the regulatory limit, and a multi-scale 
aggregation scheme was applied to obtain a robust estimate of the onset time. 

Figure 6 shows an example risk profile over a 40-step prediction horizon. The risk score remains 
relatively low at short horizons, then increases and reaches a pronounced peak around a particular horizon 
(approximately the 20th step ahead in the simulated example), before gradually declining again. The 
vertical line marks the predicted onset time of the non-compliant event, defined as the horizon with the 
maximum risk score within the most likely coarse window. 
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Figure 6 Example risk profile over future prediction horizons and the estimated onset time of a non-

compliant event. 

This type of risk profile provides useful temporal information: operators can see not only that an 
exceedance is likely, but also that the highest risk is concentrated in a specific future interval. In practice, 
this can guide scheduling of preventive actions such as adjusting slurry flow, modifying L/G ratio, or 
temporarily derating the boiler. Although the current results are based on simulated data, the same 
procedure can be directly applied to real plant measurements, and the prediction accuracy of onset time 
can be quantified by metrics such as mean absolute error in time steps. 

5. Conclusion 

This paper proposed an integrated data-driven framework for modeling, sensitivity analysis and early 
warning of flue gas desulfurization performance in a waste-to-energy plant. A static surrogate model was 
first constructed to map key operating variables—such as slurry pH, oxidation–reduction potential, 
absorber temperature and liquid-to-gas ratio—to the outlet SO₂ concentration. On simulated yet 
physically plausible data, the surrogate achieved high predictive accuracy and produced a compact 
representation of the WFGD process that is suitable for downstream analysis and optimization. 

Based on the surrogate, Sobol variance-based global sensitivity analysis was performed to quantify 
the influence of individual operating variables and their interactions. The results confirmed that pH and 
ORP are the dominant drivers of SO₂ removal, with absorber temperature and L/G ratio providing 
secondary but still meaningful contributions. Inlet SO₂ concentration and gas flow rate exhibited lower 
first-order indices but non-negligible total-effect indices, reflecting their role as disturbances that interact 
with controllable variables. This sensitivity structure provides interpretable guidance for sensor 
prioritization, control strategy design and robustness assessment of the desulfurization system. 

To address dynamic emission behavior under time-varying conditions, a hybrid ARIMA–LSTM time-
series model was developed to predict short-term outlet SO₂ concentrations. The ARIMA component 
captured linear trend and seasonality, while the LSTM network learned nonlinear residual patterns using 
both historical residuals and a subset of sensitivity-ranked operating variables. Simulated experiments 
showed that the hybrid model can more faithfully track temporal fluctuations than stand-alone ARIMA 
or LSTM models, leading to more accurate point forecasts over multiple horizons. 

On top of the forecasting layer, an adaptive early-warning mechanism and a time-localization scheme 
were introduced. Horizon-dependent decision thresholds were optimized to balance false-negative and 
false-positive rates, resulting in higher precision, recall and F1-scores for emission exceedance warnings 
compared with a baseline model. By transforming forecasts into risk scores and aggregating them over 
multi-scale time windows, the framework also provided an estimate of the most probable onset time of 
non-compliant events, which is valuable for proactive operational decision-making in WFGD units. 

Although the numerical results in this study are based on simulated data, the methodology is directly 
applicable to real plant measurements once sufficient historical records are available. Future work will 
focus on validating the framework using long-term datasets from operating waste-to-energy plants, 
extending the analysis to multiple pollutants (e.g., H₂S, NOₓ and particulate matter), and coupling the 
early-warning system with advanced control strategies for automatic adjustment of key operating 
parameters. In addition, integrating uncertainty quantification and probabilistic forecasts could further 
enhance the reliability and transparency of the proposed decision-support tool for industrial emission 
control. 
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